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Abstract

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer but is less frequent

in adolescents and young adults (AYAs) and is rare among older adults. The 5-year survival of

ALL is above 90% in children, but drops significantly in AYAs, and over half of ALL-related

deaths occur in older adults. In addition to diagnosis age, the race/ethnicity of patients

consistently shows association with ALL incidence and outcomes. Here, we review the

racial/ethnic disparities in ALL incidence and outcomes, discuss how these vary across the age

spectrum, and examine the potential causes of these disparities. In the United States, the

incidence of ALL is highest in Hispanics/Latinos and lowest in Black individuals across all age
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groups. ALL incidence is rising fastest in Hispanics/Latinos, especially in AYAs. In addition,

survival is worse in Hispanic/Latino or Black ALL patients compared to those who are non-

Hispanic White. Different molecular subtypes of ALL show heterogeneities in incidence rates

and survival outcomes across age groups and race/ethnicity. Several ALL risk variants are

associated with genetic ancestry, and demonstrate different risk allele frequencies and/or effect

sizes across populations. Moreover, non-genetic factors including socioeconomic status, access

to care, and environmental exposures all likely influence the disparities in ALL risk and survival.

Further studies are needed to investigate the potential joint effects and interactions of genetic and

environmental risk factors. Improving survival in Hispanic/Latino and Black patients with ALL

requires advances in precision medicine approaches, improved access to care, and inclusion of

more diverse populations in future clinical trials.

Keywords: Acute lymphoblastic leukemia, race/ethnicity, genetic variation, socioeconomic

status, access to care, recruitment to clinical trials, children, adolescents and young adults

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a hematologic malignancy characterized by impaired

differentiation, proliferation, and accumulation of B- and T-lineage lymphoid precursor cells in

the bone marrow, peripheral blood, and other organs [1,2]. In the United States (US), the age-

adjusted incidence rate (AAIR) for ALL was estimated to be 1.64 per 100,000 people [3], with

approximately 5,700 new cases and 1,600 deaths projected to occur in 2021 [4]. The incidence

rate (IR) of ALL demonstrates a bimodal age pattern, in which the initial peak occurs at age 1-4

years, followed by a decline at age 20-59 years and a modest rise at ages above 60 years [5].

Indeed, ALL is the most common childhood malignancy, with approximately 2,700 incident

ALL cases diagnosed under age 15 each year in the US [6].

The causes of ALL are multifactorial, and likely vary based on the molecular subtype and patient

age of diagnosis [7]. Only a small proportion (<10%) of ALL cases are attributable to known risk

factors with large effects [8], namely ionizing radiation and congenital syndromes [9–13], although

both common and rare genetic variants are now known to contribute to childhood ALL risk [14].
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Genome-wide association studies (GWAS) of childhood ALL have identified multiple genomic

regions harboring common risk alleles for ALL, including at: 7p12.2 (IKZF1), 8q24.21, 9p21.3

(CDKN2A/B), 10p12.2 (PIP4K2A), 10p12.31 (BMI1), 10p14 (GATA3), 10q21.2 (ARID5B),

10q26.13 (LHPP), 12q23.1 (ELK3), 14q11.2 (CEBPE), 16p13.3 (USP7), 17q12, and 21q22.2

(ERG) [15–32] (Table 1). In addition, sequencing studies of familial and sporadic ALL have

discovered rare germline variants in PAX5 [33,34], ETV6 [35–39], IKZF1 [40–42], and TP53 [43,44] that

are associated with disease risk. Non-genetic factors also contribute to ALL risk; for example,

there is strong epidemiological evidence supporting a role for early life infections and

modulation of the developing immune system in childhood ALL etiology, which has been

reviewed in detail elsewhere [45]. Studies have also reported modest associations for childhood

ALL risk with several environmental exposures [46], including tobacco smoke [47–49], pesticides
[50,51], paint [52,53], and air pollution [54–56]. The vast majority of epidemiologic studies for ALL

have been conducted in children, and very little is known regarding potential differences in ALL

etiology across age groups.

Table 1. Genetic variants associated with ALL risk in genome-wide association studies.

Gene Region SNP ref alt risk Trait(s) PubMed ID Year First Author

ARID5B 10q21.2 rs10821936 C T C ALL 19684603 2009 Treviño LR

ARID5B 10q21.3 rs10994982 A G A ALL 19684603 2009 Treviño LR

ARID5B 10q21.4 rs7089424 T G G ALL 19684604 2009 Papaemmanuil E

ARID5B 10q21.5 rs7089424 T G G B-ALL 19684604 2009 Papaemmanuil E

BAK1 6p21.31 rs210143 T C C B-ALL (High-hyperdiploidy) 31767839 2019 Vijayakrishnan J

BMI1 10p12.31 rs4748793 A G A ALL 23512250 2013 Xu H

BMI1 10p12.31 rs11591377 G A G ALL 29923177 2018 de Smith AJ

C5orf56 5q31.1 rs886285 T C T B-ALL (High-hyperdiploidy) 31767839 2019 Vijayakrishnan J

CCDC26 8q24.21 rs28665337 C A,T A B-ALL 29632299 2018 Vijayakrishnan J

CCDC26 8q24.21 rs4617118 A C,G G ALL 29348612 2018 Wiemels JL

CDKN2A 9p21.3 rs3731217 A C,T A ALL 20453839 2010 Sherborne AL

CDKN2A 9p21.3 rs3731249 C T T ALL 26527286 2015 Walsh K

CDKN2B 9p21.3 rs77728904 A C,G C B-ALL 26868379 2016 Hungate EA
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CEBPE 14q11.2 rs2239633 G A G B-ALL (ETV6-RUNX1) 22076464 2012 Ellinghaus E

CEBPE 14q11.2 rs4982731 C T C ALL 23512250 2013 Xu H

CPSF2 14q32.12 rs189434316 A T T B-ALL (Normal cytogenetic) 29296818 2017 Clay-Gilmour AI

ELK3 12q23.1 rs4762284 A T T B-ALL 27694927 2017 Vijayakrishnan J

ERG 21q22.2 rs2836365 A G G B-ALL 30510082 2019 Qian M

ERG 21q22.2 rs8131436 G C C ALL 31296947 2019 de Smith AJ

GATA3 10p14 rs3824662 C A,T A B-ALL 23996088 2013 Migliorini G

GATA3 10p14 rs3824662 C A,T A B-ALL (Ph-like) 24141364 2013 Perez-Andreu V

IGF2BP1 17q21.32 rs10853104 C G,T T B-ALL (ETV6-RUNX1) 31767839 2019 Vijayakrishnan J

IKZF1 7p12.2 rs11978267 A G G ALL 19684603 2009 Treviño LR

IKZF1 7p12.2 rs4132601 T G G ALL 19684604 2009 Papaemmanuil E

IKZF1 7p12.2 rs4132601 T G G B-ALL 19684604 2009 Papaemmanuil E

IKZF3 17q21.1 rs2290400 T C T ALL 29348612 2018 Wiemels JL

LHPP 10q26.13 rs35837782 A G G B-ALL 27694927 2017 Vijayakrishnan J

OR8U8 11q12.1 rs1945213 C G,T C B-ALL (ETV6-RUNX1) 22076464 2012 Ellinghaus E

PIP4K2A 11q12.1 rs10828317 T C T B-ALL 23996088 2013 Migliorini G

PIP4K2A 10p12.2 rs7088318 C A A ALL 23512250 2013 Xu H

PIP4K2A 10p12.2 rs4748812 G A A ALL 29923177 2018 de Smith AJ

RPL6P5 2q22.3 rs17481869 C A A B-ALL (ETV6-RUNX1) 29632299 2018 Vijayakrishnan J

SP4 7p15.3 rs2390536 G A A ALL 29348612 2018 Wiemels JL

TLE1 9q21.31 rs76925697 A T A B-ALL 31767839 2019 Vijayakrishnan J

TP63 3q28 rs17505102 G C C B-ALL (ETV6-RUNX1) 22076464 2012 Ellinghaus E

USP7 16p13.2 rs74010351 A C,G G T-ALL 30938820 2019 Qian M

Risk allele frequencies for the 33 ALL-associated SNPs are global frequencies obtained from

gnomAD v2.1.1. [57] Ref, alt, AF_af, AF_amr, and AF_nfe were annotated through ANNOVAR
[58]. AF_af, AF_amr, and AF_nfe were transformed to indicate the allele frequency of the risk

alleles. Other information was extracted from the GWAS Catalog and was confirmed in each

publication.
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Gene, nearest gene; SNP, single nucleotide polymorphism; ref, reference allele; alt, alternative

allele; risk, risk allele; AF, allele frequency; afr, African/African American; amr, American

Admixed/Latino; nfe, Non-Finnish European; OR, odds ratio; CI, 95% confidence interval; IRR,

incidence rate ratio; ALL, acute lymphoblastic leukemia.

Two SNPs, rs10821936 and rs10994982, were identified within the same region by the same

study and are included in this table as the causal variant is unknown [59].

One factor that consistently shows association with ALL incidence is race/ethnicity. We

acknowledge that race and ethnicity are dynamic and multifactorial concepts [60], and in this

review we use the term race/ethnicity to refer to heterogeneous groups of people defined by the

USA Office of Management and Budget as African Americans/Blacks (hereafter, Blacks);

Hispanics/Latinos; American Indians and Alaska Natives (AI/ANs); and Asians and Native

Hawaiians/other Pacific Islanders (APIs) [61]. Race/ethnicity reflects genetic ancestry, and

additionally conveys important epidemiologic information as to how social determinants such as

racism and discrimination, socioeconomic position, and environmental exposures can influence

disease incidence and mortality [60]. In the US, the incidence of ALL is highest in

Hispanics/Latinos and lowest in Blacks, and this is consistent across age groups [5,62–66].

Race/ethnicity is also associated with ALL patient outcomes. Overall, survival of ALL patients

has improved dramatically in recent decades [3], primarily in children [2,67], which can largely be

attributed to improvements in combination chemotherapy protocols [2], as well as advances in the

understanding of cytogenetics and genetics of the disease and, more recently, the development of

immunotherapy and targeted therapies [68–70]. Although in children the overall 5-year survival

rate of ALL has risen above 90% [71,72], it remains inferior in later age groups, with 60-85% in

adolescents and young adults (AYAs, age range varies by studies, between 15-39 years) [73–76],

and under 30% in older adults [77–82]. In addition, ALL patients who are Hispanic/Latino or Black

show worse outcomes compared to those who are non-Hispanic White (NHW) [83–89].

Here, we review the racial/ethnic disparities in ALL incidence and outcomes, and discuss how

these vary across the different age groups of patients: children, AYAs, and older adults. We also
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examine the potential causes of these disparities, including genetic and non-genetic risk factors,

and how epidemiologic studies across populations are essential to our understanding the causes

of ALL.

DISPARITIES IN ALL INCIDENCE ACROSS THE LIFESPAN

ALL incidence initially peaks in the first decade of childhood, ranging from 1-4 years to < 9

years in different studies [5,64–66], declines at age 20-59 years, and rises again modestly among

older adults aged 60 or above, with the highest second peak among Hispanic/Latino adults [90].

The initial peak of ALL incidence occurs earlier for B-cell ALL (B-ALL) at 1-4 years compared

to T-cell ALL (T-ALL) at 5-14 years, and with a less prominent peak in the latter [5]. ALL

develops more often in males than females with an incidence rate ratio (IRR) of 1.29 overall [3],

and 2.20 and 1.20 for T-ALL and for B-ALL, respectively [5].

Incidence of ALL is highest in Hispanics/Latinos

Hispanic/Latino children are more likely to be diagnosed with ALL compared to NHW, Black or

Asian children in both genders and across all age groups [5]. The reported Hispanic/Latino-to-

NHW IRR of childhood ALL ranges from 1.25 to 1.65 for all subtypes combined [5,62,64–66], and

appears to be more prominent for B-ALL (IRR=1.64), but close to unity for T-ALL (IRR=0.94)
[5]. Moreover, the disparity in ALL IRs between Hispanic/Latino and NHW children increases

with increased age from <1 year to 19 years [64]. This disparity in ALL risk corresponds to what

has been observed geographically. For instance, Latin American countries, including Mexico and

Costa Rica, have some of the highest incidences of childhood ALL in the world [91,92].

Meanwhile, the highest incidence of childhood ALL in the US is found in the West US Census

Region, where a high proportion of residents are Hispanics/Latinos [65]. On the contrary,

compared to NHWs, Black children have lower IRs of nearly all ALL subtypes in all age groups
[5,62,64–66], and API children also have lower IRs [93]. Among API regional groups, East Asians

have a significantly higher IR of childhood ALL compared to Southeast Asians (IRR=1.59), and

Oceanians have the highest IR [93].

Among AYAs aged 15-39 years (age range defined by the National Cancer Institute), the overall

ALL AAIR was 0.98 (95% CI, 0.96, 1.01) per 100,000 during 2000-2016, with the highest
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incidence being observed in Hispanics/Latinos (AAIR=1.63 [95% CI, 1.56, 1.70]), followed by

AI/ANs (AAIR=1.16 [95% CI, 0.86, 1.52]), NHWs (AAIR=0.79 [95% CI, 0.76, 0.83]), API

(AAIR=0.78 [95% CI, 0.70, 0.86]), and Blacks (AAIR=0.53 [95% CI, 0.47, 0.59]) [66] (Figure 1).

A similar trend has been found in B-ALL specifically, with the highest incidence seen in

Hispanics/Latinos and the lowest in Blacks [94].

(B)
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Figure 1. Disparities in acute lymphoblastic leukemia (ALL) incidence across the lifespan.

Data extracted from Tables 1 and 2 from Feng et al. [66] Age-adjusted incidence rate per 100,000

population was derived from the Surveillance, Epidemiology, and End Results Registry, version

18. Centers of points and horizontal bars indicate point estimates and 95% confidence intervals.

(A) Age-adjusted incidence rates of ALL by age group and race/ethnicity, United States, 2000-

2016. (B) Annual Percent Change in incidence rates of ALL by age group and race/ethnicity,

United States, 2000-2016. AI/AN, American Indian and Alaska Native; API, Asian and Pacific

Islander; Black, African American/Black; NHW, non-Hispanic White; AYA, adolescents and

young adults.

Among older adults, ALL incidence again predominates among Hispanics/Latinos [5]. For those

aged 40 or older, Hispanics/Latinos had the highest AAIR (AAIR=1.76 [95% CI, 1.67, 1.86]),

followed by AI/ANs (AAIR=1.17 [95% CI, 0.87, 1.54]), NHWs (AAIR=0.97 [95% CI, 0.94,

1.00]), APIs (AAIR=0.85 [95% CI, 0.78, 0.93]), and Blacks (AAIR=0.77 [95% CI, 0.70, 0.84])
[66] (Figure 1).

Furthermore, Philadelphia chromosome-like (Ph-like) ALL (patients with a similar gene

expression pattern as those with t(9;22), BCR-ABL1 translocations, i.e., Ph+), a subtype of B-
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ALL associated with poor outcomes [95], is more common in AYAs (19-27%) and older adults

(20%) than in children (10%) [96–99]. In addition, patients with Ph-like ALL or with its subtype

carrying CRLF2 rearrangement (also associated with poor outcomes) [99] are more likely to be

Hispanics/Latinos compared to other races/ethnicities (68% in Ph-like ALL and 85% in Ph-like

ALL with CRLF2 rearrangement) [99].

Intriguingly, a higher percentage of residents born in a foreign country at the county level

contributes to a higher incidence of ALL among both NHWs and Blacks, but was contradictorily

associated with a lower incidence of ALL among Hispanics/Latinos [66]. For US-based API

children, ALL IRs were similar to rates seen in originating countries [93]. The inverse association

between percent foreign-born and the incidence of ALL in Hispanics/Latinos represents an

example of the “Hispanic paradox” [100,101], which refers to the observation that foreign-born

Hispanics/Latinos have better health outcomes when compared to US-born Hispanics/Latinos.

Incidence of ALL is rising fastest in Hispanics/Latinos

During 1992-2013, the incidence of ALL increased significantly by approximately 2% per year

for Hispanic/Latino children diagnosed from age 10-14 years (APC=2.09), and by 3% for those

15-19 years of age (APC=2.67), while no significant increases were observed in NHW, Black, or

Asian children in the same age groups [64]. In the US Cancer Statistics database, the IR of ALL in

both overall children and Hispanic children aged below 20 years increased significantly during

2001-2008, with the largest increase being observed in Hispanic/Latino children (APC=2.5), and

which remained stable during 2008-2014 [65].

Despite of the relatively low AAIR of ALL compared to other age groups, AYA had the greatest

increase of ALL AAIR during 2000-2016 (overall APC=1.56 [95% CI, 1.03, 2.09]) [66] (Figure

1). Hispanics/Latinos had significant increase of AAIR across all age groups (APC=1.18 [95%

CI, 0.76, 1.60]), with the greatest increase found in AYAs (APC=2.02 [95% CI, 1.17, 2.88]) [66].

Across all age groups, AYA is the only group in which AI/ANs had a significant increase of

AAIR (APC=9.79 [95% CI, 5.65, 14.09]) [66]. Given the small population size of AI/ANs, the

substantial interregional differences of incidence rates and misclassification of AI/ANs in central

registries that were observed in SEER data [102], a note of caution should be offered in
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interpreting rates and trends for the AI/AN population. The AAIR of ALL also increased

significantly among Asian and Hawaiian/Pacific Islander AYAs (APC=1.95 [95% CI, 0.15,

3.79]) [66]. Among older adults, the incidence of ALL increased significantly only among

Hispanics/Latinos during 2000-2016 [66]. The trend of AAIR remained stable among NHWs and

Blacks across all age groups over time [66].

DISPARITIES IN SURVIVAL OF ALL PATIENTS

In this section, we summarize disparities in the overall survival rates of ALL patients, though we

do not review potential disparities in long-term outcomes, such as treatment-related morbidities,

which have been described elsewhere [103–106].

Children

Among children, the survival of ALL is lowest in infants (<1 year), highest in those aged 1-9

years, and thereafter, decreases with increased age [5,83]. Girls have better survival than boys

overall [83]. Hispanic/Latino children have inferior outcomes compared to NHWs [83–87], with a 5-

15% difference in overall survival rate being persistently seen in SEER data [84,85,87]. Furthermore,

in Hispanics/Latinos, childhood ALL mortality has been shown to differ by genetic ancestry [107].

For instance, Hispanic/Latino children in general have a 2.27 times higher mortality compared to

NHW children (mortality rate ratio [MRR]=2.27 [95% CI, 1.68-3.06]), with a MRR of 2.56

(95% CI, 1.93-3.40) in continental Hispanic/Latino children (Mexicans, Central Americans, and

South Americans) but with a MRR of only 1.23 (95% CI, 0.74-2.03) in Caribbean

Hispanic/Latino children (Puerto Ricans, Cubans, and Dominicans) [107], suggesting that higher

Indigenous American ancestry is associated with poorer overall survival.

In Black childhood ALL patients, improvement of 5-year survival lags behind compared to in

other races/ethnicities [108]. The largest improvements of survival in Blacks occurred at much

later diagnosis periods (1995-2001 and 2002-2008) compared to those in NHWs and AI/ANs

(1988-1994 and 1995-2001) [84]. Promisingly, SEER data have revealed a decreased inequality in

ALL survival between Black and NHW children [83,85,109]. From 1992-1995 to 2003-2007, 5-year

relative survival rate improved faster in Black children (APC=3.01) than in NHW children
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(APC=1.37) [85]. In another study, from 1975-1983 to 2000-2010, the difference in 5-year

cumulative mortality of ALL between Black and NHW children reduced from 15% to 3%;

compared with NHWs, the adjusted Hazard Ratio (HR) for Blacks dropped from 1.46 (95% CI,

1.09-1.94) to an insignificant 1.21 (95% CI, 0.74-1.96) [83].

API and AI/ANs also have significantly worse survival of childhood ALL compared to NHWs
[83,84], with the 5-year cumulative ALL mortality being 10% in APIs, and 19% in AI/ANs versus

being 8% in NHWs at 2000-2010 [83]. Compared with NHW counterparts, APIs diagnosed at 1-9

years, and AI/ANs diagnosed at 10-19 years had about twice the ALL mortality HR [83]. Further,

in a stratified analysis for Asian subgroups, when comparing to NHWs, East Asians in general

(i.e., Chinese, Filipino, Korean, Japanese, Vietnamese and other Southeast Asians combined) had

significant inferior outcomes, with particularly worse survival for Vietnamese (relative risk

[RR]=2.44 [95 % CI, 1.50-3.97]) and Filipino (RR=1.64 [95 % CI, 1.13-2.38]) patients, whereas

the inferior outcomes for Koreans, Japanese and other Southeast Asians were non-significant [84].

AYAs

A “survival cliff” has been observed for ALL in AYA patients at age 17 to 20 years, where the

survival rate drops considerably during just this 3-year difference in age, and accounts for nearly

half of the total survival decrease from childhood to older adults [110]. This substantial drop of

survival rate partly results from the high frequency of the high-risk Ph-like B-ALL subtype

among AYAs [95–99]. Based on data obtained from the Texas Cancer Registry, among AYA ALL

patients, the overall 5-year survival rate was better in females than in males, and it has improved

over time across all races/ethnicities in both sex groups [88]. However, improvement in the

survival rate of Black AYA patients lags behind other racial/ethnic groups, similar to the pattern

seen in Black children. Among AYA patients, survival in Black males diagnosed in 2004-2012

(66.9% [95% CI, 64.0%, 69.6%]) was significantly worse than in NHW (78.2% [95% CI, 77.2%,

79.1%]) and in Hispanic/Latino males (71.8% [95% CI, 70.3%, 73.3%]) diagnosed back in 1995-

2003 [88]; Black females diagnosed in 2004-2012 (76.9% [95% CI, 75.2%, 78.4%]) had a worse

survival rate compared to NHW females diagnosed in 1995-2003 (83.9% [95% CI, 83.2%,

84.2%]) [88].
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Older adults

Older adult ALL patients have the worst survival across all age groups [77–82]. While

approximately 22.5% of patients are diagnosed after the age of 55 years, 54.6% of ALL-related

deaths occur in patients in this age stratum [111]. This is likely related to the elevated prevalence

of multiple high-risk subtypes of ALL in older adults. First, both Ph+ ALL and Ph-like ALL are

very common subtypes of B-ALL among older adults aged 60 years or above (Ph+ ALL:

approximately 50%; Ph-like ALL: 24%-26%) [96–99,112,113]. In addition, older adults with Ph-

negative B-ALL tend to present with high-risk cytogenetics and complex karyotypes [114,115]

associated with increased risks of treatment failure and treatment complications [81].

Promisingly, the 1973-2008 SEER data revealed a significant improvement for patients aged

over 45 years in survival among the overall population, NHWs, and in particular APIs (19.8%),

and a large but marginally significant improvement for Blacks (11.3%) [89]. However, these

improvements were not seen in Hispanic/Latino patients. For instance, in 2003 to 2008, the 5-

year survival rate of older adult Hispanic/Latino ALL patients was only 13.9% compared with

23.6% in NHWs and 17.1% in Blacks [89], perhaps due to the high frequency of Ph-like ALL in

Hispanic/Latino ALL patients [99]. Similarly, in the 1980-2011 SEER data, there was a modest

improvement of median overall survival rate of ALL among adults aged 60 years or above [116],

partly attributable to advances in novel therapies for Ph+ ALL [117].

FACTORS ASSOCIATED WITH DISPARITIES IN ALL RISK AND OUTCOMES

Differences in ALL tumor biology

Immunophenotype

The World Health Organization (WHO) classifies ALL based first on immunophenotype, and

categorizes patients into either B-ALL or T-ALL [118], with both comprising multiple subtypes

defined by structural chromosomal alterations [119]. B-ALL prevalence is higher than T-ALL,

accounting for approximately 80% of ALL cases in children and 75% in adults in the US [120]. In

childhood ALL, the B-cell immunophenotype confers more favorable survival than T-ALL,

whereas in adults survival is substantially higher for T-ALL than B-ALL [5,114,121,122], likely due

to differences in molecular subtypes across age groups. In both children and adults, B-ALL
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appears to have a higher incidence in Hispanics/Latinos compared to other races/ethnicities [5].

On the other hand, T-ALL occurs more frequently in Black children, in whom a T-ALL-related

genetic variant in USP7 is overrepresented [30]. Thus, the contribution of immunophenotype to

disparities in the survival of ALL patients may vary across population groups.

Cytogenetic subtypes

The most common chromosomal alterations in childhood B-ALL are high hyperdiploidy

(chromosomal number 51-67) and t(12;21)(p13;q22) translocation encoding the ETV6-RUNX1

fusion gene [115,123]. Each presents in 25-30% of children with ALL [119], and is associated with a

favorable prognosis [115,124]. However, both subtypes are less common in adolescent ALL patients

and very rare in adult ALL patients [119]. Among ALL cases in the California Childhood

Leukemia Study, the prevalence of high hyperdiploidy was similar in Hispanics/Latinos and

NHWs, at 28.3% and 27.6%, respectively [125], whereas there was a significantly lower frequency

of ETV6-RUNX1 translocation in Hispanics/Latinos (13%) than in NHWs (24%) [126]. To our

knowledge, the frequencies of these two subtypes have not been compared across race/ethnicity

in AYAs or older adults, perhaps due to small numbers.

The Ph chromosome translocation (t(9;22), i.e., Ph+), which results in the BCR-ABL1 fusion

gene [127], is infrequent among childhood B-ALL patients (<5%) but presents in up to half of

adult B-ALL cases and becomes more prevalent with increased age (22% in patients <40 years

of age, 41% in patients ≥40 years and nearly 50% in patients aged 60 years or older) [97,112,113]. A

higher percent of Ph+ B-ALL has been reported in Black AYA/adult patients compared with in

NHW and Hispanic/Latino patients [99,128]. A similar pattern has been identified in children –

compared with Ph-negative ALL patients, Ph+ ALL patients were more likely to be Black [129].

Although Ph chromosome has been historically recognized as an adverse prognostic factor for

ALL, Ph+ ALL now has noninferior or even superior outcomes compared to Ph-negative ALL in

older adult ALL patients [113,130,131], due to recent advances in novel therapies such as CAR-T cell

therapy and tyrosine kinase inhibitor therapy [117].

The WHO 2017 revision introduced Ph-like ALL as an additional subgroup for B-ALL [118]. Ph-

like B-ALL shares a similar gene-expression profile with Ph+ B-ALL, but does not harbor the
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BCR-ABL1 fusion protein expressed from the t(9;22) [118]. Unlike Ph+ ALL that occurs more

frequently with increased age, Ph-like ALL has the highest incidence in AYAs (19-28%), a

lower frequency in childhood (10%), and is relatively common among adults aged 40 or above

(20%) [96–99]. Ph-like ALL partly contributes to the AYA “survival cliff” [110], and the continuing

poor outcomes in older age groups [77–82]. Patients with Ph-like ALL had a significantly inferior

event-free and disease-free survival, a lower complete remission rate, and an elevated level of

minimal residual disease at the end of the induction therapy compared to non-Ph-like patients [95].

Furthermore, Ph-like ALL likely plays a role in both the high incidence and the inferior survival

of ALL in Hispanics/Latinos. Ph-like ALL occurs more frequently in Hispanics/Latinos in

particular in AYA/adults [99]. Indeed, Hispanics/Latinos have been shown to account for up to

two-thirds of Ph-like ALL in AYA/adult patients [99]. Notably, nearly half of the patients with

Ph-like ALL had CRLF2 rearrangements [96]. Both Ph-like ALL and its subtype with CRLF2

rearrangements have significantly worse outcomes compared to other subtypes [96,98,99,132–134], and

are more prevalent among Hispanics/Latinos compared to other racial/ethnic groups [132]. In sum,

the Ph-like subtype contributes significantly to the poor survival of Hispanic/Latino AYA ALL

patients.

Genetic variation

Genetic variants contribute to racial/ethnic disparities in ALL incidence

Several ALL risk loci identified by GWAS have been associated with genetic ancestry, and have

demonstrated differences in risk allele frequency and/or differences in effect size across

population groups [15–32,135,136] (Figure 2). For example, an increased number of risk alleles at 5

ALL risk single nucleotide polymorphisms (SNPs) rs3731217 (CDKN2A), rs7088318

(PIP4K2A), rs2239633 (CEBPE), rs7089424 (ARID5B), and rs3824662 (GATA3) was correlated

with increased genome-wide Indigenous American ancestry in Hispanic/Latino children [137,138].

ARID5B SNP risk allele frequency has also been associated with increased local Indigenous

American ancestry in Hispanics/Latinos [139]. At the GATA3 risk locus, SNP rs3824662 has a

markedly higher risk allele frequency in Hispanic/Latino than in European ancestry populations,

with 39% compared with only 17% frequency in the Genome Aggregation Database (gnomAD)

v2.1.1. (Table 1 and Figure 3) [57]. Further, the GATA3 SNP rs3824662 risk allele has been

shown to confer a remarkably high risk for Ph-like ALL in both children and AYAs, with an
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almost 4-fold risk of this subtype [21,135], supporting that this risk locus likely contributes

significantly to the increased prevalence of Ph-like ALL in Hispanic/Latino ALL patients.

(A)

(B)

Figure 2. Genetic variants associated with ALL risk and outcomes across the genome.

PhenoGram plots [140] were constructed for genetic variants associated with (A) ALL

susceptibility, and/or (B) ALL patient outcomes (i.e., relapse and response to therapy). Genetic
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variants included in the PhenoGrams were identified in the NHGRI-EBI catalog of human

genome-wide association studies (GWAS Catalog) [141] and included in published GWAS for

acute lymphoblastic leukemia (ALL) [15,16,18–20,24–27,32,135,136] or for outcomes of ALL [142–150]. We

also included some variants described in additional papers included in this review for ALL

susceptibility [17,21–23,28–31] and ALL patient outcomes [21,139]. For ALL susceptibility (A) we only

included variants that passed genome-wide significance levels of P<5x10-8. For patient outcomes

(B), we included variants that passed genome-wide significance levels of P<5x10-8 plus variants

in GATA3 and ARID5B from gene-specific analyses. Lines are plotted on each chromosome

corresponding to the base-pair position of each single nucleotide polymorphism (SNP). Variants

are colored by related phenotypes that have been detected in GWAS (from the “Reported trait”

column in the GWAS Catalog). Shapes of variants correspond to the genetic ancestry (if any)

that has been associated with the SNP risk allele. N/A represents no related ancestry has been

reported so far.
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Figure 3. Risk allele frequency and effect size of selected single nucleotide polymorphisms

(SNPs) associated with acute lymphoblastic leukemia (ALL) risk. SNPs (n=33, Table 1) are

grouped by nearest genes in each panel. (A) Percentage higher of risk allele frequency in

Africans/African-Americans and Latinos/Admixed Americans as compared to in Europeans

(non-Finnish). Percentage change equation:

. Horizontal bars are

annotated by risk allele and colored by the direction of percentage difference. (B) Difference of

risk allele frequency in Africans/African-Americans and Latinos/Admixed Americans as
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compared to in Europeans (non-Finnish). (C) Effect size of selected GWAS-identified SNPs

associated with ALL risk. Centers of points and horizontal bars indicate point estimates and 95%

confidence intervals. Points are shaped by study-reported traits. Points and horizontal bars are

colored by ancestry with the highest risk allele frequency. X axis is on a log-10 scale in order to

better present those relatively small effect sizes.

In two recent GWAS of ALL conducted in Hispanic/Latino-only discovery studies, a novel ALL

risk locus was identified at the chromosome 21 gene ERG [29,31]. The effect of this locus on ALL

risk was larger in Hispanics/Latinos than in NHW and, in addition, this locus was associated

with an increased risk of ALL in Hispanic/Latino individuals both with higher genome-wide and

higher local Indigenous American ancestry [29,31]. Together, risk loci in ARID5B, GATA3,

PIP4K2A, CEBPE, and ERG likely account for some of the observed differences in ALL

incidence between Hispanics/Latinos and non-Hispanic/Latino races/ethnicities, which may be

partly explained by the Indigenous American ancestry in Hispanics/Latinos. Indeed, it has been

suggested that the CEBPE, ARID5B, and GATA3 risk SNPs may account for approximately 3%,

11%, and 11% increased risk of B-ALL in Hispanics/Latinos versus non-Latino whites,

respectively [137,138]. Intriguingly, a recent study found that Indigenous American ancestry

increased by ~20% on average in Mexican Americans in the US during the 1940s-1990s, partly

attributable to assortative mating, shifts in migration pattern and changes in population size [151].

Given the association between ALL risk alleles and Indigenous American ancestry, this perhaps

suggests that this shift in genetic ancestry may contribute to the rising ALL incidence among

Hispanics/Latinos, although this warrants further investigation. Further research is needed to

determine whether the ancestry-dependent effects from these SNPs are confounded by other

genetic or environmental factors, and to discover additional ancestry-associated risk loci via

admixture mapping and larger GWAS of ALL with a more diverse population across all age

groups.

Apart from the risk loci described above that are associated with Indigenous American ancestry,

a novel risk locus for T-ALL was recently identified at the USP7 gene and was found to be

overrepresented in children of African ancestry. This locus may, therefore, contribute to the
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higher incidence of T-ALL in Black children compared to their counterparts of other

races/ethnicities [30].

Finally, we summarized established GWAS-identified SNPs for ALL [15–32] in Table 1, and we

observed disparities in risk allele frequency and in effect size of these SNPs. In gnomAD (v2.1.1.)
[57], the risk allele frequency of the Ph-like ALL-related SNP rs3824662 (GATA3) is 130% higher

in Latinos/Admixed Americans compared to in Europeans; further, SNPs in ARID5B have a 20-

50% higher risk allele frequency in Latinos/Admixed Americans compared to Europeans

(Figure 3A). Many of the established ALL GWAS SNPs have a higher absolute risk allele

frequency in Latinos/Admixed Americans than in Europeans (Figure 3B). In Blacks, risk allele

frequency of the T-ALL-related SNP at rs74010351 (USP7) is strikingly high, nearly 200%

higher than in Europeans, but the absolute difference is only ~10% because of the low frequency

of this risk allele across all populations (Table 1); other GWAS SNPs did not show consistent

differences in risk allele frequency between African and European populations (Figure 3). The

strongest risk effect is seen for the GATA3 SNP rs3824662 association with Ph-like ALL, with

an effect size of nearly 4.0 (Figure 3C).

Genetic variants are associated with racial/ethnic disparities in ALL outcomes

Genetic variation contributes to racial/ethnic disparities not only in ALL susceptibility but also in

treatment outcomes [139,152] (Figure 2). Indigenous American ancestry has been associated with

an increased risk of relapse in Hispanic/Latino ALL patients, which may result from the effects

of ancestry-related genetic variants on therapy response [153]. For example, in a study conducted

in children treated on Children's Oncology Group (COG) clinical trials, ARID5B genetic risk

alleles that have a higher frequency in Hispanic/Latino populations and are associated with

increased Indigenous American ancestry were associated with both ALL susceptibility and

relapse risk [139]. In another example, the GATA3 risk SNP rs3824662, associated with

Indigenous American ancestry [138] and Ph-like ALL, has been found additionally to contribute to

the increased risk of relapse in both childhood [21,154] and adult ALL patients [155].

Two variants in TPMT (rs1142345) and NUDT15 (rs116855232) have been discovered by

GWAS to be strongly associated with thiopurine intolerance during therapy resulting in
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excessive toxicity in children with ALL [142]. The TPMT variant is most prevalent in Blacks and

least common in East Asians [142]. The NUDT15 variant is most prevalent in East Asians,

followed by Hispanics/Latinos, and extremely rare in NHWs and Blacks [142]. In a recent

sequencing study, 4 additional germline loss-of-function variants were identified in NUDT15 that

confer a major risk for thiopurine intolerance, and appear to be highly prevalent in East Asians,

South Asians and Indigenous American populations [156].

Moreover, a study of children with high-risk B-ALL enrolled in COG clinical trials revealed 19

genetic loci associated with increased relapse risk, of which 12 were specific to an ancestry

group, including 7 SNPs specific to Hispanics/Latinos and 3 SNPs specific to Black patients [152].

These loci are associated with pharmacokinetic and pharmacodynamic phenotypes (e.g.

resistance or rapid clearance of chemotherapy) [152]. Further, including ancestry-specific SNPs in

multivariate models of relapse risk significantly attenuated the increased risk of relapse in

Hispanic/Latino and Black patients compared to white patients [152].

Environmental exposures and ALL risk

Genetic variation undoubtedly contributes to the racial/ethnic disparities in ALL risk and

outcomes, but non-genetic factors also play an important role. In terms of the natural history of

the disease, it has been proposed that childhood ALL, in particular B-ALL, follows a “two-hit”

model of leukemogenesis [45,157], with in utero development of a pre-leukemic clone [158,159] that

progresses to overt leukemia following postnatal acquisition of secondary genetic changes [160]. A

lack of microbial infectious exposure perinatally or in infancy impacts immune function [161–163],

and this in combination with delayed exposure to infections may lead to abnormal immune

responses that result in secondary somatic events that drive leukemogenesis [45]. This is

supported by epidemiological evidence, including from studies that have assessed the impact of

early-life infectious exposure on ALL risk, using proxies such as day-care attendance [164–166],

birth order [166–168], and timing of birth [168]. Intriguingly, day-care attendance and higher birth

order have been found to have a protective effect on ALL risk among NHWs supporting the

“delayed infection” hypothesis [45], but not in Hispanic/Latino children [164–166,168]. On the other

hand, Caesarean section and in utero CMV infection, found to be risk factors for childhood ALL,

conferred a more prominent effect in Hispanics/Latinos compared to NHWs [169–171]. As
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described above, several genetic variants and high-risk cytogenetic features are more prevalent in

Hispanics/Latinos and are correlated with Indigenous American ancestry. More studies are

needed to investigate the joint effects of both genetic and environmental risk factors and their

potential interactions, particularly in Hispanics/Latinos.

Socioeconomic status and ALL risk and survival

Socioeconomic status (SES) also correlates with the racial/ethnic disparities in ALL risk. For

example, in a recent study, when adjusting for percent foreign-born in areas, neighborhood SES

was inversely associated with the AAIR of ALL among NHWs and Blacks, but was positively

associated with ALL AAIR in Hispanics/Latinos across all age groups [66]. This observed

racial/ethnic difference in the relationship between SES and the risk of ALL was reported to be

largely driven by data from California [66], where there was an excessive ALL risk in Los

Angeles County and a highly diverse population in which Hispanics/Latinos are of an elevated

Indigenous American Ancestry. This contrasts with another study conducted in children without

adjusting for percent foreign-born, in which they found a higher incidence of ALL among lower

SES populations for Hispanics/Latinos, but among higher SES populations for other

races/ethnicities [172]. One potential reason that leads to this difference is that the former study

additionally controlled for percent foreign-born, which is a crucial indicator of the “Hispanic

paradox” [100,101], and represents a variety of potential underlying risk factors that may differ by

individual and racial/ethnic group.

On the other hand, low SES is consistently associated with poor outcomes in ALL patients.

Living in high poverty areas has been associated with high rates of relapse in childhood ALL

patients [173]. Children with ALL in the US residing in neighborhoods with the highest poverty

rate have been found to have an almost two-fold increase in mortality compared with those in

neighborhoods with the lowest poverty rate (HR=1.8 [95% CI, 1.41-2.30]), when adjusting for

sex, age at diagnosis, race/ethnicity, and treatment era [174]. Moreover, the difference in 5-year

overall survival comparing NHW children with ALL residing in the lowest poverty

neighborhoods versus Black patients residing in the highest poverty neighborhoods can be as

high as 22% [174]. Furthermore, in SEER data, SES as measured at the neighborhood level

significantly mediated the association between race/ethnicity and childhood ALL survival,
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leading to a 44% reduction from the total to the direct effect of the Black-NHW survival

disparity and 31% reduction of the Hispanic/Latino-White disparity in survival [175]. The inferior

outcomes in high poverty neighborhoods might be attributable to multiple elements, including a

poor adherence to therapy (e.g. long-term oral administration of antimetabolites) [176,177], lack of

insurance, and the discontinuous coverage of insurance [178–180].

Access to care

Previous studies have shown that older age was associated with less treatment adherence [80], and

that compliance with therapy was more problematic for AYAs than for other age groups [181–183];

however, the heterogeneity by race/ethnicity has been investigated mostly in childhood ALL

patients. Lower exposure to mercaptopurine increases the risk of relapse in ALL, and thus the

increased risk of relapse in Hispanic/Latino children with ALL compared with NHW children

with ALL may in part result from a lower compliance to oral mercaptopurine therapy [184]. In a 6-

month adherence monitoring program of 327 patients with ALL, Hispanic/Latino children had a

significantly lower level of adherence along with lower SES compared to NHW children [177]. In

another 5-month follow-up study among children with ALL from COG, adherence rates for oral

6-mercaptopurine were significantly lower in Blacks (87%) and Asian Americans (90%), as

compared to NHWs (95%), after adjusting for SES [185]. These suggest that compliance to

therapy could be explained by factors other than SES. In addition, the type of insurance payer is

a significant predictor of adherence among ALL patients. It has been found that ALL patients

with commercial insurance payers had significantly higher levels of adherence compared to those

with Medicaid [186]. Compared to other age groups, the AYA group is less likely to have

insurance, with around 40% of individuals between 19 and 29 years old being uninsured [187].

Hispanic/Latino and Black adult patients with cancer are more likely to be uninsured or

Medicaid-insured than NHW adult patients [180]. A pediatric cancer study has also demonstrated

that Hispanic/Latino patients were less likely to have insurance [188]. Notably, despite that Black

children with ALL were significantly more likely to have high-risk prognostic profiles compared

to NHW children, it has been found that with equal access to effective antileukemic therapy,

Blacks and NHWs had the same high rate of cure [189].

Recruitment to clinical trials
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In addition to the elevated incidence of Ph-like ALL in AYA ALL patients [96–99], potential

factors that contribute to the AYA “survival cliff” also include the transition from pediatric to

adult treatment regimens [110] and the low recruitment rate of AYA patients into clinical trials [190].

For instance, a drop off in clinical trial accruals for ALL has been identified during age 16-24,

where the estimated treatment trial accrual proportion decreased dramatically from 50% at age

16 to below 10% at age 24 during 2000-2014 [190]. This pattern strongly suggests that the AYA

survival cliff could be in fact largely due to an “accrual cliff”, as survival has been found to

strongly correlate with trial accrual [190]. Moreover, there was a lack of improvement in ALL

survival in patients aged 20-29 years since 1989 (APC = 0.33, p = 0.39), corresponding to the

negligible increase of trial accrual in AYAs during 2000-2015 [190]. In addition to AYAs, elderly

ALL patients are rarely eligible for clinical trials and are underrepresented in trials of new cancer

therapy [191,192], and the underrepresentation in clinical trials for cancer therapies has been found

to underlie the poor outcomes of elderly patients [192]. In addition to age disparities, Black AYA

cancer patients are less likely to be enrolled on a clinical trial compared to NHW AYAs [193], and

NHWs continue to comprise the majority of participants in these trials [194].

CONCLUSIONS AND FUTURE DIRECTIONS

In this review, we described racial/ethnic disparities in ALL risk and survival; evaluated how

these vary across the age spectrum; and examined the potential causes of these disparities,

including genetic and non-genetic risk factors. Genetic risk factors certainly play a significant

role in contributing to these disparities, as several ALL risk loci are associated with genetic

ancestry, and have demonstrated different risk allele frequencies and/or effect sizes across

population groups. In particular, multiple studies have shown that Ph-like ALL is associated with

poor survival in both children and adults, and the risk of Ph-like ALL is associated with specific

GATA3 risk alleles that occur more frequently in Hispanics/Latinos with elevated Indigenous

American ancestry. A variety of genomic aberrations have been discovered underlying Ph-like

ALL and are likely to be drivers of leukemogenesis [195], which offers a great opportunity for

precision medicine approaches to use molecule inhibitors targeted at these lesions. Racial/ethnic

categories in epidemiologic studies also capture, albeit imperfectly, the influence from bias,

racial discrimination, culture, socioeconomic status, access to care, and environmental factors [60].
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In this review, we recognize that these non-genetic factors are associated with the disparities in

ALL risk and survival. Improving survival in Hispanic/Latino and Black patients with ALL will

require both improved access to care and inclusion of more diverse populations in future clinical

trials and genetic studies.
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