Energy Materials

1	Supplementary Materials
2	
3	A potential hydrogen isotope storage material Zr ₂ Fe: deep exploration on phase
4	transition behaviors and disproportionation mechanism
5	
6	Zhiyi Yang ^{1,#} , Yuxiao Jia ^{1,#} , Yang Liu ¹ , Xuezhang Xiao ^{1,*} , Tiao Ying ¹ , Xingwen
7	Feng ^{3,*} , Yan Shi ³ , Changan Chen ³ , Wenhua Luo ³ , Lixin Chen ^{1,2,*}
8	
9	¹ State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of
10	Materials Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang,
11	China.
12	² Key Laboratory of Hydrogen Storage and Transportation Technology of Zhejiang
13	Province, Hangzhou 310027, Zhejiang, China.
14	³ Institute of Materials, China Academy of Engineering Physics, Mianyang 621700,
15	Sichuan, China.
16	[#] The authors contributed equally to this work.
17	
18	*Correspondence to: Prof./Dr. Lixin Chen, State Key Laboratory of Silicon and
19	Advanced Semiconductor Materials, School of Materials Science and Engineering,
20	Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China.
21	E- mail: lxchen@zju.edu.cn; Dr. Xuezhang Xiao, State Key Laboratory of Silicon and
22	Advanced Semiconductor Materials, School of Materials Science and Engineering,
23	Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China.
24	E-mail: xzxiao@zju.edu.cn; Dr. Xingwen Feng, Institute of Materials, China
25	Academy of Engineering Physics, 9 Huafeng New Village, Mianyang 621700,
26	Sichuan, China. E-mail: fengxingwen@caep.cn
27	

Figure 1. XRD patterns of dehydrogenated Zr₂Fe samples after dehydrogenation at

30 different conditions.

Figure 2. The relationship between the hydrogen capacity (initial pressure: 1 bar) of

Zr₂Fe, the surge temperature and sample loading.

Figure 3. Hydriding disproportionation PCT curves of Zr₂Fe samples at 600, 625,

- 40 650°C (A) and their corresponding Van't Hoff plots (B).

Figure 4. DSC curve of the Zr₂FeH₅ at ramping rate of 3 °C/min.

47

48 Figure 5. XRD patterns of Zr_2FeH_5 after being kept at a specific high temperature and

- 49 pressure for 2 h.
- 50

51 Table 1. Lattice parameters of Zr₂Fe, Zr₂FeH₂ and Zr₂FeH₅

	L	attice paramet		Average	
Phase	a	b	c	— Volume (Å ³)	Expansion rate per H
Zr ₂ Fe	6.266	6.266	5.738	225.3	4.12% 3.37%
Zr_2FeH_2	6.640	6.677	5.502	243.9	
Zr ₂ FeH ₅	6.903	6.903	5.637	268.6	

52