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Abstract
The need for specialty powder composition limits the processing of a wide range of alloy products via the laser 
powder bed fusion (LPBF) technique. This work extends the adaptability of the LPBF technique by fabricating the 
first-ever Fe-30Mn-6Si (wt.%) product for potential use as a biodegradable shape memory alloy (SMA). Different 
LPBF processing parameters were assessed by varying the laser power, scan speed, and the laser re-scan strategy 
to achieve a fully dense part. The microstructure was found to respond to the processing conditions. For example, 
the microstructure of the parts produced by the high linear energy density (LED) had a columnar and strong 
crystallographic texture, while in the low LED, the parts were almost equiaxed and had a weak texture. To explain 
the evolved microstructure, the thermal history of the LPBF products was computed using the finite element 
analysis (FEA) of the melt pool gathered from a single-track laser scan experiment. The FEA results showed a 
varying temperature gradient, cooling and solidification rates, and temperature profile as a function of LED. Then, 
the relationship of hardness between grain size, phases present, and crystallographic misorientation of the LPBF-
built alloy was analysed with reference to a control alloy of similar composition but prepared by arc melting. This 
study validates the LPBF processability of Fe-Mn-Si SMA and provides a new insight into the influence of 
processing parameters on the formed microstructure and hardness.
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INTRODUCTION
Extensive research has been carried out on Fe-Mn-Si-based shape memory alloys (SMAs) since their first 
development in the 1980s[1]. Similarities with steels in terms of their compositions and production routes 
provide confidence for researchers in the quest for commercial applications[2]; these alloys are now finding 
their way into structural applications. Being more inexpensive than NiTi, the Fe-based and Cu-based SMAs 
were identified as viable options for applications requiring shape memory and pseudoelasticity[3]. For 
implant applications, the Fe-based SMAs, in particular, the Fe-Mn-Si alloy, are widely considered because it 
consists of essential and non-toxic elements[4-10], and was even reported to be biocompatible and 
noncytotoxic in vivo[11,12]. Therefore, there is a continuing investigation into its shape memory and 
biodegradable behaviour for implant applications[13-18].

Biodegradable implants have attractive properties because they can safely degrade to their elemental 
constituents over time, thus eliminating post-surgery removal. With this function in mind, the alloy 
composition would then be limited to biocompatible elements. A recent review of biodegradable SMAs 
identified Mg-Sc, Fe-Mn-Si, Fe-Pd, and Fe-Pt alloys as potential candidates[19], but the Fe-Mn-Si system is 
advantageous because of its widely available raw materials.

In contrast to the copious literature on conventionally processed Fe-based SMAs, research on the additive 
manufacturing of this alloy system is in its infancy[20-27]. To the best of the authors’ knowledge, alloy 
compositions of Fe-36Mn-7Al-9Ni (wt.%), Fe-17Mn-10Cr-5Si-4Ni (wt.%), and Fe-34Mn-8Al-7Ni (at.%) 
have been LPBF fabricated to date. In Fe-36Mn-7Al-9Ni alloy, a columnar and highly textured 
microstructure was noted in 0.5 mm sized parts built on a 200 °C preheated substrate[26], but the 
microstructure changed to equiaxed and columnar grains with a weak texture when the substrate was 
heated to 500 °C[21]. The conflicting trend in microstructural features was associated with the difference in 
substrate temperature that altered the temperature gradient and solidification rate[21]. Both Ferretto et al. 
and Kim et al. investigated the Fe-17Mn-10Cr-5Si-4Ni alloy and reported a change in microstructure as the 
laser power was varied[22,23,28]. A fully austenitic and equiaxed grain structure exhibiting a weak 
crystallographic texture was achieved at high laser power, but this changed to a highly elongated, weakly 
textured and δ-ferrite dominated structure at lower laser power. The authors suggested that the nucleation 
of the austenite grains from the δ-ferrite was possible at high laser power because of the low cooling rate in 
this setting. Lastly, Patriarca et al. fabricated a bulk and micro-lattice structured Fe-34Mn-8Al-7Ni alloys 
and heat treated the alloys to achieve a microstructure desirable for the pseudoelastic property[27].

The limited source of pre-alloyed powder may have restricted the research progress on the adaptability of 
the LPBF technique to Fe-based SMAs. Most of the studies on the additive manufacturing of Fe-based 
SMAs used pre-alloyed precursors. It is worth noting that Niendorf et al. and Wiesener et al. fabricated a 
Fe-based alloy with Ag for biomedical applications by mixing Ag powder with pre-alloyed high-manganese 
TWIP steel powder and Fe-Mn powder, respectively[29,30]. These studies achieved a microstructure with well-
dispersed Ag particles that accelerated the corrosion rate of the Fe-Mn alloy. Mixing of metallic powder 
would therefore enhance the potential of the technique. The LPBF of homogenised powder is however 
challenging due to the difference in the thermal and optical properties between the powders and chemical 
inhomogeneity in the product[31], and this warrants the careful selection of processing parameters.

This study demonstrates that a Fe-Mn-Si SMA, a potentially biodegradable alloy, can be prepared from a 
blended metallic powder and processed using the LPBF technique. The influence of laser power, scan speed, 
and laser re-scanning on the solidified microstructure of the built product was examined. Then the 
solidification mechanisms were explained based on the knowledge gained from both the microstructure and 
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the melt pool profile generated from a single laser scan track and the thermal profile of the melt pool region 
derived from a finite element analysis (FEA) method. The influence of grain size, composition of formed 
phases, and residual strain on the hardness of the as-built alloy were investigated according to the 
information gathered from XRD and EBSD analyses, and then compared with the reference as-cast alloy 
prepared using the arc-melting technique.

MATERIALS AND METHODS
Sample preparation
The Fe and Si powders used in the LPBF fabrication of Fe-Mn-Si alloy were gas atomised and provided by 
TLS Technik, Germany, while the Mn powder was from Merelex Corp, USA. Both the Fe and Si powders 
had a purity of > 99 wt.%, and the purity of Mn was > 98 wt.%, as estimated using the Malvern Panalytical 
Epsilon ED X-ray fluorescence spectroscopy (XRF), Supplementary Table 1. Figure 1A-C shows the 
scanning electron microscope (SEM) micrographs of the Fe, Mn, and Si powder. Their particle size and 
cumulative size distributions were measured using the Malvern Mastersizer 3000 and are shown in 
Figure 1D-F, respectively. A nominal powder composition of Fe-30Mn-6Si (wt.%) was homogenised for 4 h 
using the Turbula® T2F 3D mixer and then used as powder precursor. Meanwhile, the nominal 
concentration of Fe-30Mn-6Si reference as-cast alloy was prepared using the arc-melting technique from Fe, 
Mn, and Si high purity (> 99.9%) chips from Sigma-Aldrich. The arc-melted product was subsequently hot-
rolled at ~800 °C and then homogenised at 1100 °C for 14 h in an argon-purged furnace. Homogenisation 
was performed by loading the sample at room temperature, heating it at 5 °C/min to 1100 °C, and followed 
by furnace cooling. The resulting sample is referred to hereafter as reference as-cast alloy and its properties 
were treated as a reference in the following investigations.

The LPBF fabrication was carried out using the Mlab Cusing 200R from Concept Laser GmbH equipped 
with 200 W Yb:YAG fibre laser and the print chamber atmosphere was maintained up to 0.2 vol.% O2 using 
a high purity Ar gas. Only freshly homogenised powder was used, and all printed parts were built on a 
sandblasted stainless steel substrate. In identifying the optimum LBPF parameters, a 125 mm3 cube model 
was prepared using the Materialise Magics v24 software. The influence of both laser power and laser scan 
speed on the density of the built part was investigated by varying the laser power (P) from 100 W to 175 W 
and the laser scan speed (ν) from 400 mm/s to 600 mm/s while keeping a constant laser hatch spacing, layer 
thickness, and scan strategy at 45 μm, 50 μm, and island scan strategy, respectively. The scan strategy is 
unique to Concept Laser[32], where each island was maintained at 5 × 5 mm2 and was scanned by the laser in 
one direction. The laser scan direction was rotated by 90° between the neighbour islands, and finally, this 
whole pattern was rotated by 45° in the subsequent layer. A laser re-scan strategy was also included. This 
was done by scanning the solidified layer again at a varying percentage of laser power (0%, 50%, and 100%) 
that was applied in the first scan, laser scan speed from 400 mm/s to 600 mm/s, and a similar scan strategy 
to increase the laser linear energy density (LED). LED is a simplified energy parameter defined as the P/ν 
ratio and was considered when the layer thickness and laser space hatching were unchanged[33-35]. Table 1 
summarises the parameters that were investigated.

LPBF product quality assessment
The density of the LPBF built parts was measured by applying the Archimedes method and using the 
Mettler Toledo XS105 balance with a density kit. All surfaces of the samples were ground down to 1200 SiC 
paper and then dried. Measurements were done on three replicates. The measured density was then divided 
by the theoretical density (7.408 g/cm3) and reported as relative density. In addition, the surface of the 
LPBF-built parts along the build direction was viewed under the Hitachi TM4000Plus bench-top SEM 
coupled with a Bruker X-Flash 630Hc EDS detector to further evaluate the product quality.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5402-SupplementaryMaterials.pdf
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Table 1. LPBF processing parameters used for the fabrication of Fe-30Mn-6Si alloy

Processing parameters Values

Laser power (W) 100, 125, 150, 175

Scan speed (mm/s) 400, 500, 600

Re-scan (%) 0, 50, 100

Figure 1. SEM micrographs of (A) Fe, (B) Mn, and (C) Si powders. Their corresponding particle size frequency and cumulative 
distributions are shown in (D-F), respectively.

Microstructure characterisation
The crystallography and the phase volume fraction of both the reference alloy and the LPBF fabricated alloy 
were evaluated using the PANalytical Empyrean with a Co target (λ = 1.79 Å) and a scan range from 40 to 
130° 2θ at a step size of 0.02°. The volume fraction of the phases in the samples was computed by applying a 
Rietveld refinement[36,37] using the HighScore Plus v5.1 Suite[38,39]. Refinement parameters such as the 
expected profile R-value, profile R-value, weighted profile R-value, goodness of fit, Bragg R-value, and the 
difference plot between the experimental and calculated XRD pattern were closely monitored during the 
refinement process. Also, refinement was done at least three times to verify the results, and the γ-austenite 
and ε-martensite phase volume fractions were subsequently validated using the electron backscattered 
diffraction (EBSD) technique [Supplementary Figure 1].

The EBSD was carried out to characterise the microstructure, i.e., grain morphology, crystallographic 
texture, and grain characteristics, of the reference alloy and built products. The sample surfaces for EBSD 
analysis were final polished up to OPU finish and then ion milled using the Hitachi IM4000 at 30° and 6 kV 
for 1 h to remove any polishing artefacts. The Zeiss Auriga Crossbeam Field-emission SEM equipped with a 
NordlysF detector for EBSD and an Oxford Instruments X-Max 20 mm2 silicon drift detector for EDS was 
used for the simultaneous SEM-EDS/EBSD analysis. The EDS and EBSD data were gathered using the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5402-SupplementaryMaterials.pdf
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AZtec 3.3 and then analysed using the AZtecFlex software suite. For EBSD analysis, a 500 × 500 μm2 area 
was scanned at a step size of 1 μm and only the results with at least 90% hit rate were analysed. Data cleaning 
was done by removing the wild spikes, and then using the “zero solutions removal” tool from level 1 up to 
level 4 while preserving any defects, i.e., cracks and pores, on the cleaned dataset. The grain size and shape 
analysis were subsequently done on the computed prior austenite grains[40] using the Shoji-Nishiyama 
orientation relationship[41] to reveal the likely austenite grains.

Simulation of melt pool thermal properties 
Simulation of the 3D thermal profile during LPBF was conducted using the COMSOL™ Multiphysics 
software suite, in which a simplified finite element analysis (FEA) thermal model was developed. A 
tetrahedral mesh was used for the model geometry with a minimum and maximum mesh size of 2 μm and 
16 μm, respectively. A 1 × 6 × 1 mm3 smooth flat plate model with no powder was used to provide a heat 
sink effect sufficient for simulating the single line scan. Laser irradiation heat input is modelled as[42,43],

where Q is volumetric heat flux (W/m2), P is laser power, A is laser absorption coefficient, R is laser beam 
radius, δ is laser penetration depth[44,45], |z| is z-coordinate absolute value, and x and y are laser x- and y-
coordinates, respectively. The theoretical density was used as the material density for the simulation. 
Specific heat capacity and thermal conductivity at room temperature were taken from literature for the 
similar material Fe-28Mn-6Si-5Cr and are 544.2 J/(Kg∙K) and 8.37 W/(mK), respectively[46,47]. A single-track 
scan was first performed on a polished material surface of similar composition. Then, in the numerical 
simulation, the coordination of x and y scan speeds, as well as P and R, were the same as those used for the 
single-track scan. Determination of penetration depth δ and absorption coefficient A was conducted via an 
iterative process by matching the simulated melt  pool  with the observed melt  pool  
[Supplementary Figure 2]. Initial build platform and surrounding gas temperature were taken as 30 °C, 
surface emissivity was 0.3, and convective heat transfer coefficient was 10 W/m2∙K.

Hardness test
The resistance to localised plastic deformation of the LPBF built and reference alloy was measured using the 
Struers DuraScan hardness machine following a standard procedure[48]. The samples were resin mounted 
and then the surface was OPU polished. At least 10 indentations were made on each sample.

RESULTS AND DISCUSSION
LPBF product quality
The interaction of the powder bed and the laser system in the LPBF fabrication of Fe-30Mn-6Si was assessed 
by looking into the influence of relative density as a function of LED, as shown in Figure 2A. The P/ν ratio is 
the LED of the laser system where a high P value and a low ν value translate to a large amount of LED, and 
this is similar to what is being used in conventional fusion welding techniques[49]. The lowest LED of 
0.17 J/mm returned the lowest density at 95%, and the density was found to increase linearly with LED until 
~0.30 J/mm. The relative density levelled at mostly above 99%, where the 0.44 J/mm LED recorded the 
highest value of 99.9%.

SEM micrographs of all samples built at different LBPF are analysed and their representative at low, mid, 
and high LEDs are shown in Figure 2B-D, respectively. These micrographs represent the LEDs labelled in 
Figure 2A. Pores of over 250 μm are seen at the low LED of 0.17 J/mm, and their morphologies are 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5402-SupplementaryMaterials.pdf
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Figure 2. (A) The relationship between relative density and LED, and the representative SEM micrographs at (B) low (0.17 J/mm), 
(C) mid (0.25 /mm), and (D) high (0.88 J/mm) LEDs. Arrows in black highlight the defects in the built parts, the build direction is from 
bottom to top, and the error bars in (A) represent the standard error of the mean.

irregularly shaped, as seen in Figure 2B. At the mid LED of 0.25 J/mm, the large pores are not apparent, but 
chemical inhomogeneity is noted by the difference in contrast in the backscattered electron (BSE) 
micrograph and they are highlighted by the black arrows in Figure 2C. The high LED of 0.88 J/mm has no 
observed chemical segregation; defects like cracks and spherical pores are however noted, and they are 
marked by the black arrows in Figure 2D. Densification of LPBF fabricated parts is directly associated with 
the reduction of defects at high LED, and this is shown by the SEM micrographs in Figure 2B-D. 
Nevertheless, the high relative density and relatively few defects in the high LED above 0.44 J/mm, i.e., the 
lack of large irregularly shaped pores [Figure 2D and Supplementary Figure 3], make these parameters ideal 
for the LPBF fabrication of Fe-30Mn-6Si from homogeneously blended powder.

The recommended LED for Fe-30Mn-6Si alloy (≥ 0.44 J/mm) is higher than the suggested for pure Fe 
(≥ 0.33J/mm)[50,51], 316 L (0.21 to 0.30 J/mm)[52,53] and 304 L (0.14 J/mm)[54] stainless steels that were fabricated 
from pre-alloyed powders. Much higher energy is needed for the homogenised powder than for pre-alloyed 
powder, as noted in Al-Si[55] and FeCoCrNi[56], because more energy and a slow melt pool solidification rate 
are needed for the melting and alloying of the homogenised powder. The recommended energy for the 
LPBF of Fe-30Mn-6Si alloy is, however, less than of the Fe-17Mn-5Si-10Cr-4Ni alloy (0.53 J/mm), and the 
difference may be due to the high melting requirement of Cr in the latter.

Chemical composition
LPBF uses a high energy laser for melting and alloying of the metallic powders. Such energy may evaporate 
volatile components and alter the final composition of the alloy. An EDS analysis of the major elements Fe, 
Mn, and Si as a function of LED in Fe-30Mn-6Si LPBF alloy is shown in Figure 3A-C, respectively. As the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5402-SupplementaryMaterials.pdf
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Figure 3. Chemical composition of (A) Fe, (B) Mn, and (C) Si in LPBF alloy as a function of LED.

LED is increased, the Fe content in the alloy is shown to increase, Mn is slightly decreased, and Si remains 
almost the same. The Mn element has the least melting point [Supplementary Table 2], high vapour 
pressure[57,58], and therefore more volatile than the other precursors[22,28]. Thus, its evaporation is expected 
during LPBF, resulting in a decrease in Mn concentration. Meanwhile, the slight increase in Fe likely 
influenced the relative density value. Fe had the highest density among the raw materials and the increase of 
its concentration likewise increased the alloy density. Therefore, careful selection of processing parameters 
and the adjustment of Mn concentration are necessary for the LPBF processing of homogenised powders.

Microstructure
The influence of LPBF processing parameters on the microstructure was investigated using the EBSD 
micrographs of the LPBF-built alloy surface parallel to the building direction. The LEDs at 0.25 J/mm and 
0.44 J/mm represent the low (100 W) and high (175 W) laser power, 0.29 J/mm and 0.44 J/mm for the low 
(400 mm/s) and high (600 mm/s) scan speed, and 0.44 J/mm and 0.88 J/mm for the 0% (175W, 400 mm/s) 
and 100% (175W, 400 mm/s and then 175 W, 400 mm/s) re-scan strategy, respectively. 
Figure 4A, D, G, and J show the prior austenite grains[40,41] EBSD IPF map of the surface parallel to the build 
direction that seems to respond to the changes in the LPBF processing parameters. In Figure 4C, F, I, and L, 
the grain size distribution and the area-weighted average are also shown, and their corresponding aspect 
ratios are presented in Supplementary Figure 4. At a scan speed of 400 mm/s and a low laser power of 100 
W (0.25 J/mm), the grain size was fine and nearly equiaxed [Figure 4A] with a size of 64 μm and an aspect 
ratio of 2.03. This changed to a coarse and columnar microstructure for the laser power of 175 W 
(0.44 J/mm), Figure 4G. Such an increase in laser power generated a grain size of almost three times and 
elongated the grains by ~90% compared to that of the low laser power. The microstructure was further 
modified for a constant laser power of 175 W when the scan speed was increased from 400 mm/s to 
600 mm/s. The subsequent grain size was rather coarse (105 μm), and the grains were nearly equiaxed 
(aspect ratio = 1.97), Figure 4D and F. The columnar grains generated at high LED (0.44 J/mm) are 
seemingly retained when the already solidified layer was re-scanned at 100% (175 W, 400 mm/s) to generate 
an LED of 0.88 J/mm [Figure 4J]. However, the coarse columnar grains in a non-re-scanned alloy 
[Figure 4G] are replaced with a fine columnar grain in a laser re-scanned alloy. In addition, the clustering of 
fine grains is observed in the laser re-scanned alloy, as seen in the marked areas in Figure 4J, and this 
effectively reduced the grain size from 242 to 191 μm and the aspect ratio from 3.83 to 2.88.

The LPBF parameters also strongly influenced the crystallographic texture of the alloy. The predominance 
of a single colour in the EBSD IPF map indicated a substantially preferred orientation or strong texture. 
Figure 4G and J show that most of the cubic grains are aligned with their <001> direction parallel to the 
build direction in the 0.44 J/mm and 0.88 J/mm, whereas the texture was weak (broad range of colours) in 
0.25 J/mm and 0.29 J/mm, Figure 4A and D, respectively. Therefore, the high LED and laser re-scan strategy 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5402-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5402-SupplementaryMaterials.pdf
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Figure 4. EBSD parent grain reconstructed IPF map, HCP ε-martensite IPF map, and the grain size distribution of Fe-30Mn-6Si LPBF-
built alloy from LED of (A-C) 0.25 J/mm (100 W, 400 mm/s), (D-F) 0.29 J/mm (175 W, 600 mm/s), (G-I) 0.44 J/mm 
(175 W, 400 mm/s), and (J-L) 0.88 J/mm (175 W, 400 mm/s, and 100% re-scan), respectively, and the IPF colour key for (M) FCC 
and (N) HCP. The build direction is from right to left and the grain boundaries are outlined in black.
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generated prior austenite columnar grains that grow in their <001> direction parallel to the building 
direction. Meanwhile, Figure 4B, E, H, and K display the randomly orientated HCP martensite phase within 
the austenite grains.

The X-ray spectra of the Fe-30Mn-6Si reference alloy and the LPBF alloy made from different processing 
parameters were gathered and quantified using the Rietveld refinement method. The results are then shown 
in Figure 5 and Table 2. The major phases identified in the LPBF alloy are γ-austenite and ε-martensite 
because of their intense XRD peaks and composition that is ≥ 19 wt.%, as seen in Table 2. A dual-phased 
microstructure is expected in the Fe-30Mn-6Si alloy that underwent post-process treatment[59], while the 
homogenised alloy may be single-phase austenite[60], and such is observed in Figure 5. The existence of the γ 
and ε phases in the LPBF alloy is due to the far-from-equilibrium process conditions of the technique. 
Table 2 also reveals three other phases in the LPBF alloy; α-FeMn, α-FeSi, and FeO. The presence and 
composition of these phases are observed to vary in the LPBF alloy prepared for different parameters. For 
example, FeO was identified at 0.25 J/mm and 0.44 J/mm but not at 0.29 J/mm and 0.88 J/mm. Upon close 
inspection at 54.3° 2θ in the 0.29 J/mm, its 10  peak is visible. Several trials were made to include the low-
intensity peaks from those three phases for a detailed analysis, but the quality of the resulting Rietveld 
refinement was unsatisfactory. A more detailed XRD scan is therefore necessary for a comprehensive 
analysis of those three phases.

Key microstructural features associated with LPBF processing, such as the types and volume fraction of 
phases present, solidified grain size, morphology, and texture of the processed samples, were strongly 
influenced by the laser power, scan speed, and re-scan strategy. This shows that the desired microstructure 
is tailored by controlling laser power and scan speed to change the LED. The information on the thermal 
history of the resultant product is, however, necessary to completely understand the development of the 
microstructure.

Melt pool of single laser track scan 
A polished surface of the reference alloy was subjected to single track laser scans at various LEDs. This 
resulted in the melting and subsequent solidification along the laser tracks, which generated a certain melt 
pool morphology for a given LED, when viewing a cross section perpendicular to the laser track. The effect 
of LED on the cross section of melt pool morphology is shown in Figure 6. Figure 6C and D show that a 
high LED creates both a deep and wide melt pool that penetrates at least 120 μm below the polished surface. 
In contrast, a low LED generates a relatively shallow melt pool of 50 μm deep [Figure 6A]. In Figure 6B, the 
melt pool became wide and deep when the LED was slightly increased from 0.25 J/mm to 0.29 J/mm by 
increasing the laser power from 100 W to 175 W and scan speed from 400 mm/s to 600 mm/s. Overall, there 
is sufficient lateral overlap of the melt pool tracks because the width of the melt pool is wider than the 
0.45 μm distance of the parallel laser tracks.

The melting mode at low LED (0.25 J/mm), as defined by Tenbrock et al., is conduction mode, and the rest, 
0.29 J/mm to 0.88 J/mm, are in keyhole mode[61]. In the authors’ single laser track investigation on 316 L 
stainless steel, the group used the melt pool depth-to-width ratio threshold of less than 0.8 as the 
conduction mode; above 0.8, the keyhole mode of melting transpired. Conduction mode of melting was 
observed at low LED, where the underlying regions are heated through the energy conducted from the 
surface[62]. In the keyhole mode of melting, the high LED evaporated the metal and left a vapor cavity in the 
melt pool that enhanced laser absorption and enabled a deeper melt pool than in conduction mode[63].
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Table 2. Derived crystal structure, lattice parameters, phase compositions, Bragg R-value (RBragg), and goodness of fit (GOF) of the 
LPBF parts built at 0.44 J/mm and 0.88 J/mm energy parameter and then homogenised and HIP treated and reference as-cast alloy 
using the Rietveld refinement of the XRD patterns.

Lattice parameterLED 
(J/mm) Phase Space group

a (Å) c (Å)
Content (vol.%) RBragg GOF

0.25 γ-austenite Fm m 3.600 - 74.6 1.72 4

ε-martensite P63/mmc 2.535 4.133 19 1.99

α-FeMn Im m 2.867 - 2.3 1.39

α-FeSi Im m 2.840 - 2.2 2.19

FeO R m 2.648 7.585 1.9 1.76

0.29 γ-austenite Fm m 3.600 - 68.5 2.76 3.518

ε-martensite P63/mmc 2.537 4.125 23.9 1.37

α-FeMn Im m 2.868 2.8 1.33

α-FeSi Im m 2.843 4.9 0.39

0.44 γ-austenite Fm m 3.600 62.1 1.07 2.196

ε-martensite P63/mmc 2.535 4.141 31.2 0.79

α-FeSi Im m 2.847 6.3 0.44

FeO R m 2.535 0.4 1.71

0.88 γ-austenite Fm m 3.598 52.5 2.31 3.928

ε-martensite P63/mmc 2.540 4.123 45.8 1.72

α-FeMn Im m 2.868 1.4 0.84

α-FeSi Im m 2.837 0.2 1.01

As-cast γ-austenite Fm m 3.602 100 - -

Figure 5. The XRD patterns of the Fe-30Mn-6Si reference alloy and the LPBF alloy prepared at different process settings.

Simulated melt pool thermal profile 
Using the melt pool profiles and a finite element analysis technique[64] on the LPBF of Fe-30Mn-6Si alloy, 
the thermal profiles through the penetration distance of the melt pools were calculated as a function of laser 
scan strategy. The derived thermal conditions at different LPBF process settings as a function of melt pool 
depth are presented in Figure 7. It is known that the solidified microstructure prepared using the LPBF 
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Figure 6. The single laser scan melt pool profile on the polished Fe-30Mn-6Si reference alloy at varying LEDs of (A) 0.25 J/mm, (B) 
0.29 J/mm, (C) 0.44 J/mm, and (D) 0.88 J/mm.

technique follows the solidification theory[65-67], where the morphology is affected by the extent and direction 
of the temperature gradient and the solidification rate of the melt pool[68]. Likewise, the cooling rate, a 
product of temperature gradient and the solidification rate[69], dictates the size of the solidified structure[70]. 
Therefore, the temperature gradient and the solidification and cooling rates are computed, and the 
temperature profiles are also derived.

Figure 7A shows the variation in the temperature gradient within the melt pool for different LEDs. A low 
temperature gradient is initially observed from the surface of the melt pool, and it increases as solidification 
proceeds, leaving the bottom layer with the highest temperature gradient values of over 104 K/m. The LPBF 
process has a typical temperature gradient range of 104 to 107 K/m[71]. Temperature gradients between 104 to 
105 K/m were associated with large melt pools[72], and such were observed in the melt pool profile 
[Figure 6C and D]. The 0.25 J/mm has the highest temperature gradient at the surface at 2.32 × 103 K/m as 
compared to the 1.03 × 103 K/m, 9.83 × 102 K/m, and 7.72 × 102 K/m for 0.29 J/mm, 0.44 J/mm, and 0.88 
J/mm, respectively. Moreover, the 0.25 J/mm has the steepest slope in the temperature gradient, followed by 
0.29 J/mm. The temperature gradient of 0.44 J/mm and 0.88 J/mm are almost constant up to 50 μm melt 
pool depth and it increased gradually afterwards. The low temperature gradient for 0.44 J/mm and 
0.88 J/mm at 0-50 μm was caused by their comparatively wide melt pool size in this area. Therefore, the 
temperature of the surrounding material is high, and the heat sink effect is low. As the distance from the top 
of the melt pool is increased, the melt pool achieves a lower width and lower surrounding temperature.
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Figure 7. Computed thermal profile of the LPBF fabricated Fe-30Mn-6Si alloy. (A) temperature gradient, (B) solidification rate, 
(C) cooling rate, and (D) maximum temperature as a function of melt pool depth at different LEDs. (E) Temperature profile for 0% 
(0.44 J/mm) and 100% re-scan (0.88 J/mm) at varying melt pool depths and processing time.

The solidification and cooling rates were numerically evaluated and remarked to be significantly influenced 
by scan speed than by laser power[73,74]; hence, their influence at varying LED was evaluated. In the LPBF 
process, the solidification of the molten melt pool proceeds as the laser track leaves the melt pool. The rate 
of solidification at varying LED was presented in Figure 7B, where the rate at the surface of the melt pool 
was similar to the applied scan speed. The 0.29 J/mm LED had a faster solidification rate at the surface 
compared to the rest of the LEDs because a scan speed of 600 mm/s was applied. All the solidification rates 
decreased sharply from the surface of the melt pool until the 50 μm depth, but the slope was noticeably 
steeper at 0.25 J/mm and 0.29 J/mm LEDs than at 0.44 J/mm and 0.88 J/mm LEDs. After the 50 μm depth, 
the solidification rate for 0.29 J/mm LED decreased slowly. For 0.44 J/mm and 0.88 J/mm LEDs, the slope of 
the solidification rate only changed after ~90 μm and then became stable at 50 mm/s.

The fast-moving laser in LPBF imparts a high cooling rate of 104 to 106 K/s[75-77]. Presently, a cooling rate of 
105 K/s was noted in the Fe-30Mn-6Si LPBF-built alloy. The relationship between LED and the cooling rate 
was observed in Figure 7C. From the surface of the melt pool, at 0 μm melt pool depth, the cooling rate was 
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constant and then dropped at a particular depth depending on the LED. Its magnitude was also dependent 
on LED. The low LED (0.25 J/mm) had a stable cooling rate of 9.28 × 105 K/s up to ~30 μm melt pool depth, 
and for 0.29 J/mm LED, it was stable at 6.21 × 105 K/s until ~60 μm deep. For the LEDs of 0.44 J/mm and 
0.88 J/mm, the cooling rates were rather stable until ~120 μm deep at 3.93 × 105 K/s and 3.09 × 105 K/s, 
respectively. Moreover, the percentage change in the cooling rates after varying the laser power and scan 
speed was the same at ~58%. When the laser power was raised from 100 W to 175 W, the cooling rate 
dropped from 9.28 × 105 K/s to 3.93 × 105 K/s, while the increase in scan speed from 400 mm/s to 600 mm/s 
increased the cooling rate from 3.93 × 105 K/s to 6.21 × 105 K/s.

The maximum calculated temperature in the melt pool as a function of melt pool depth for different LEDs 
derived from the FEA analysis is shown in Figure 7D. The melt pool temperature responds positively to the 
increase in LED, and it is observed to decrease within the melt pool. For example, at the melt pool surface, a 
temperature of roughly 2081 °C, 2173 °C, 3019 °C, and 3256 °C was computed for 0.25 J/mm, 0.29 J/mm, 
0.44 J/mm, and 0.88 J/mm LEDs, and it decreased to 1360 °C, 1755 °C, 2484 °C, and 2716 °C at 50 μm melt 
pool depth, respectively. As a guide for the melting of the powder, the melting points of the constituent 
elements (Fe = 1535 °C, Si = 1410 °C, and Mn = 1245 °C) in the blended powder are likewise inscribed in 
Figure 7D. The observed temperatures at the melt pool surface are beyond the melting temperature of the 
powder, which may have likely evaporated some elements. In particular, the loss of manganese is expected 
when an LED over 0.25 J/mm is applied because of its relatively low boiling temperature (Fe = 2750 °C, 
Si = 2357 °C, and Mn = 2062 °C), Figure 3B.

The solidified surface of the LPBF-built alloy fabricated at 0.44 J/mm LED was re-scanned at 175 W and 
400 mm/s (100% re-scan) to further promote the alloying of the blended powders. The added step doubled 
the LED from 0.44 J/mm to 0.88 J/mm at each layer and consequently raised the temperature in the melt 
pool, as shown in Figure 7E. At the surface, the maximum temperature for 0.44 J/mm LED reached 3019 °C, 
and this was similar for 0.88 J/mm LED, as depicted by the first peak in the temperature profile on the 
surface of the laser re-scanned LPBF-built alloy. The alloy was expected to have solidified after the first scan 
because the temperature dropped to almost 270 °C. However, the additional re-scan step reached a much 
higher temperature of 3256 °C, as seen in the second peak, than in the first scan because the re-scan started 
at a relatively high temperature of 270 °C, and there is a difference in the thermal conductivity of the 
powder and the alloy[78,79]. A similar pattern showing the two temperature peaks was observed at different 
melt pool depths when the re-scan strategy was applied.

Microstructure evolution
Both the highly directional heat flow conditions and large temperature gradients generated during laser 
melting of an outermost layer of metal powder, which usually also resulted in the partial remelting of the 
already solidified grains of the underlying built substrate, favour epitaxial growth of these existing grains in 
certain crystallographic directions towards the heat source (i.e., they grow antiparallel to the direction of 
heat flow into the underlying substrate). For certain laser input conditions, a highly directional columnar 
morphology and strong texture were frequently observed in LPBF-built alloys[80,81]. However, the EBSD 
maps shown in Figure 4 revealed a gradual change in the microstructure from a nearly equiaxed to 
columnar grain structure as the LED was increased.

The equiaxed-to-columnar transition in the grain structure was commonly observed within the melt pool, 
and this transition depends on the alloy chemistry and the heat transfer conditions according to the LPBF 
processing conditions[64,82-86]. A near-homogeneous grain structure with weak texture was achieved when 
Attard et al. applied the island scan strategy or checkerboard style[87], a standard parameter unique to the 
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setup[32], and when Ewald et al. heated the build platform to 500 °C[21]. Attard’s group associated this with 
the even distribution of heat in the island scan strategy. Meanwhile, the heated build platform in the 0.5 mm 
sized product reduced the temperature gradient in Ewald et al.’s LPBF product, which also reduced the 
temperature gradient and promoted a nearly homogeneous and equiaxed microstructure[21]. The lack of 
grain morphology transition in the melt pool in the present Fe-30Mn-6Si LPBF alloy may have been caused 
by the island scan strategy with 45° scan rotation in the subsequent layers, leading to a homogeneous grain 
morphology in each parameter setting.

The similar microstructures of LPBF processed parts and conventionally welded components make it 
convenient to describe the solidified LPBF microstructure in terms of the well-established physical 
metallurgy principles associated with fusion welding[69]. Grain shape and scale were defined by the 
solidification theory, and may be controlled by the temperature gradient G, solidification velocity R, the 
temperature solidification range of an alloy ∆T, and the liquid diffusion coefficient DL[65,67]. The 
relationships between these key solidification parameters are given below[66]:

where the G/R ratio and the G·R product, which is the cooling rate, can predict the morphology and 
dimensions of the solidified microstructure, respectively. For example, a low G/R value correlates to 
equiaxed grains, with the morphology transitioning to columnar dendritic, cellular, and then to planar for 
increasing values of G/R, and the high cooling rate resulted in a fine solidified grain structure[70]. 
Investigation of the thermal history of LPBF-processed alloy was necessary for understanding its expected 
final microstructure, and in Figures 4 and 7, the select parameters showed that the different thermal profiles 
affected both the morphology and dimensions of the solidified grains.

The solidification of grains in LPBF-processed alloys follows the well-established nucleation and growth 
processes in solidified metals and alloys. Li and Tan[88] provided the general grain characteristics of LPBF 
alloys and summarised two possible nucleation mechanisms: (i) bulk nucleation; and (ii) epitaxial or surface 
nucleation. Bulk nucleation occurs on the top side of the melt pool and at the head of a solidification 
front[88]. Nuclei also form from the partially melted powder in the melt pool[89], and they can survive given a 
sufficient volume of surrounding undercooled liquid metal[90]. These formed grains then assume an 
equiaxed morphology due to the low G/R ratio on the top side of the melt pool[91]. Epitaxial nucleation 
occurs at the interface of the melt pool and the substrate, or at the previously solidified layer[92]. A high LED 
and a low solidification rate in the melt pool encouraged grains to grow in a preferred crystallographic 
orientation[93], which was <100> for cubic and <1010> for hexagonal metals, respectively[69]. Grains 
possessing these favoured orientations outgrew grains with less favourable orientations[65], eventually 
generating a highly textured, columnar microstructure[94].

The prevalence of a highly textured and columnar grain morphology at the high LED settings [Figure 4G] 
suggested an epitaxial mechanism. Without an added and known potent nucleating particle in the elemental 
mixture and because of the steep temperature gradient on melting and solidification, the previously 
solidified layer would act as a suitable substrate for continued growth into the melt pool, whereby the partly 
melted grains propagate by epitaxial “nucleation” towards the heat source. Equiaxed grains may form on the 
top surface of the melt pool when the melt pool trail ended because of the low G/R ratio in this region, and 
such was seen on the last fabricated layer in NiTi[86]. In the Fe-30Mn-6Si, at 0.44 J/mm LED, a temperature 
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gradient = 9.83 × 102 K/m, cooling rate = 4 × 105 K/s, the slow solidification rate of R = 3.98 × 102 mm/s, and 
the melt pool temperature of ~1300 °C at 140 μm melt pool depth were sufficient to melt the solidified 
equiaxed grains in the previous laser scan and then subsequently re-solidify into columnar grains. A similar 
grain morphology holds for the laser re-scanned LPBF alloy, albeit grains were relatively fine and less 
columnar when laser re-scanning was applied.

The re-scan strategy had been reported to improve surface quality[66], increase density[95], and reduce residual 
stress[96] in AM components. This additional step was included in this study to enhance the alloying of the 
blended powders, and this resulted in a notably different microstructure from that of a non-re-scanned 
alloy. The melt pool width, depth and overall area associated with the re-scan strategy [Figure 6D] were 
considerably larger than after single scanning [Figure 6C], and this is caused by the higher thermal 
conductivity of the solidified layer than the powder material[97]. Hence, the enhanced heat transfer in the 
solidified layer resulted in a more pronounced melt pool, which was reflected in the calculated thermal 
profile. A coarse and columnar grain structure was still expected in the laser re-scanned LPBF alloy because 
the parent grains in the non-re-scanned alloy have solidified into columnar grains. The relatively gentle 
slope of solidification for 0.88 J/mm LED [Figure 7B] and its low cooling rate (3 × 105 K/s) promoted the 
epitaxial growth of columnar grains, but its temperature profile shown in Figure 7D suggested that 
remelting of the previously solidified layer had occurred.

Completely remelting an alloy reshapes its microstructure, and such was evident in this work by the 
decrease in the average grain size and aspect ratio in the remelted LPBF alloy. A region of coarse and refined 
grains was apparent on close inspection in the re-solidified structure (marked areas in Figure 4J). 
Xiong et al. reported a similar observation in pure tungsten[79]. During re-scanning, the laser irradiated heat 
initially remelted the surface and the convection current in the melt pool[98] engulfed and remelted the 
remaining solid within the melt pool. This caused some of the initially formed columnar grains to be 
separated and these freed grains became the nuclei for growth[66]. The fast-moving laser that drives the rapid 
cooling rate (105 K/s) in the LPBF process curbs the growth of the newly nucleated grains and freezes them 
into a fine microstructure[99], thereby forming regions of non-uniform microstructure.

For the low LED (0.25 J/mm), the melt pool temperature at 50 μm pool depth was 1360 °C which was 
enough to melt the blended powders and potentially melt the surface of the previously solidified layer. 
However, the high cooling rate of 9 × 105 K/s and the high solidification rate at this setting resulted in the 
retention of the equiaxed grain morphology. Moreover, the chemical segregation [Figure 2C] preserved in 
this LED suggests the presence of partially alloyed powder both in the melt pool and the solidified layer 
when the next layer was melted. The bulk nucleation mechanism was favoured in the presence of partially 
alloyed powder since they can act as heterogeneous nucleation sites and impede the epitaxial growth of the 
previously solidified equiaxed grains at the bottom of the melt pool[100].

For the high laser power and fast scan speed (175 W, 600 mm/s, 0.29 J/mm), the melt pool depth of 110 μm 
could get through an equivalent of two powder layers and had enough heat to sufficiently remelt the 
previously solidified layer and re-solidify them into a full-columnar structure. However, the solidified grains 
shown in Figure 4D were equiaxed and rather coarse (105 μm) compared to the finer grains (64 μm) 
associated with the low LED (0.25 J/mm) in Figure 4A. The partially melted powder observed at this setting 
could have induced the bulk nucleation of the grains and interrupted the epitaxial growth of grains.

The significant influence of the studied processing parameters on the resultant LPBF microstructure 
presents an opportunity to control the microstructure and texture, and therefore the properties of any given 
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component. For instance, a columnar and textured grain structure is ideal for the pseudoelastic behaviour 
seen in Fe-Mn-Al SMAs[101,102] and the unrestricted martensitic phase transformation for shape memory in 
Cu-based SMAs[103].

Possible factors influencing hardness
Effect of grain size 
Figure 8 shows the hardness of the LPBF-built alloy prepared as a function of LED. The two low LEDs (0.25 
and 0.29 J/mm) have a close hardness value (278 ± 7.6 and 273 ± 3.9 HV2, respectively). The hardness in the 
two high LEDs (0.44 and 0.88 J/mm) is also close (287 ± 5.5 and 292 ± 3.6 HV2, respectively.) Meanwhile, 
the reference as-cast alloy had the lowest hardness (226 ± 6.7 HV2). The hardness of the material varies with 
grain size according to the classic Hall-Petch relation[104,105]. Also, in Figure 8, the grain size increases with an 
increase in LED up to 0.44 J/mm, and then drops when the laser re-scanning step was added to achieve 
0.88 J/mm LED. This change was associated with the thermal history of the LPBF alloy [Figure 7]. The 
reference alloy has a lower hardness than each of the LPBF-fabricated alloys. This is due to the coarse, 
equiaxed grains generated in the reference alloy by hot working and the 14-h homogenisation[17,106,107]. In the 
LPBF alloy, the hardness is seen to increase together with the grain size, thereby negating the established 
influence of grain size on hardness. This suggests that some other factor affects the hardness of the LPBF-
fabricated alloys.

Effect of phase types 
Figure 9 shows the relationship between the volume fraction of phases and hardness as the LED is 
increased. This parameter was also found to influence the relative volume fractions of austenite and 
ε-martensite in the LPBF alloy, whereby austenite decreases while ε-martensite increases with increasing 
LED. Martensite is formed from austenite by either a stress or thermally induced transformation[41,108-110], 
which results in the observed inverse relationship between the two phases. The effect of LED on the volume 
fractions of the phases was associated with the grain size, and that is, fine grains are detrimental to the 
formation of the ε-martensite phase[111,112]. The increase in ε-martensite volume fraction may also be caused 
by the decrease in Mn concentration at high LED [Figures 3B and 9][113]. Hardness as a function of phase 
volume fraction is also given in Figure 9, where it appears that hardness directly correlates with the amount 
of ε-martensite in the microstructure. This confirms that both the type and volume of phases present in the 
LPBF-fabricated alloy have a very strong effect on hardness.

Boundaries exist between the phases in a multi-phased material, and each phase has a distinct 
characteristic[114]. The reference alloy was fully austenitic, whereas the LPBF alloy contains both austenite 
and ε-martensite, and other minor phases [Figure 5 and Table 2]. Since austenite is much softer than ε-
martensite[115], this resulted in the low hardness of the reference alloy. In comparison, the amount of 
austenite and the pre-existing ε-martensite in the LPBF alloy, for example, in 0.44 J/mm LED, were 62% and 
31%, respectively. The relationship between hardness and the volume fraction of ε-martensite has also been 
reported in a powder metallurgy fabricated Fe-30Mn-6Si alloy[116]. A high hardness was found in the as-
sintered condition, but it decreased after heat treatment because of the corresponding decrease in ε-
martensite. The addition of 5 wt.% Cr, an austenite stabiliser[117,118], in an as-cast Fe-30Mn-6Si alloy also 
resulted in a soft alloy due to the absence of ε-martensite[119].

Pre-existing ε-martensite has been reported to block plastic flow, which leads to high work hardening[120]. 
The impeding action of pre-existing ε plates was observed by Sato et al. using TEM, and they also reported a 
hardened Fe-30Mn-1Si alloy[1]. The group likened the ε plate phase boundary to a grain boundary. In the 
Fe-30Mn-6Si reference and LPBF alloys, ε plates may have nucleated and grown in the austenite grains 
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Figure 8. Relationship between grain size and hardness for both the reference alloy and the LPBF alloy fabricated at different LEDs.

Figure 9. The relationship between γ-austenite and ε-martensite phase fractions and hardness for both the reference alloy and the LPBF 
alloy fabricated at different LEDs.

during the hardness test to accommodate strain. But the thick pre-existing ε-martensite plates 
[Figure 4B, E, H and K] may have restricted the nucleation and growth of the stress-induced ε plates. This is 
a contributing factor to the higher hardness found in the LPBF alloy than in the reference alloy and suggests 
that an increase in hardness is strongly related to the increase in the amount of ε-martensite in the 
microstructure.
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Effect of residual strain 
The far-from-equilibrium processing conditions in LPBF introduce residual strains that may also influence 
hardness. Since residual strain is associated with crystal misorientation[121-124], the relationship between 
crystal misorientation and hardness is presented in Figure 10. Comparing the reference alloy and the LPBF 
alloy prepared at 0.44 J/mm LED, the hardness of the former was significantly lower (227 HV2) than the 
latter (287 HV2). The corresponding average Kernel average misorientation (KAM) in the reference alloy is 
also lower (0.44°) than in the LPBF alloy (0.64°). A high residual strain has been associated with a high 
density of low-angle grain boundaries[125] and, as such, the density of these boundaries (2° to 10° 
misorientation) in both the reference and LPBF alloys were measured by EBSD to be 3% and 7%, 
respectively. Hu et al. reported that in pure Ti sheet, the hardening effect due to low-angle boundaries was 
dependent on the level of strain[126]. At strains up to 30%, the high-angle boundaries (HAGB) contributed to 
the hardness, but for strains above 30%, the density of the low-angle boundaries (LAGB) increased. The 
latter was suggested to be the biggest contributor to hardness. This was also noted in both 304 L stainless 
steel and Ni-Co alloys, whereby the hardness increased with increasing residual strain[127], and in a Fe-Ni 
alloy, the hardness decreased when the residual strain was relieved[128]. A dislocation has to overcome the 
grain boundary energy, both high- and low-angle, for it to move through the boundary, and the magnitude 
of the LAGB interfacial energy is a function of the degree of crystallographic misalignment[114]. Thus, the 
high hardness in the LPBF alloys as compared to the reference alloy was also caused by the inherent residual 
strain that resisted the localised deformation.

Figure 10 shows a positive correlation between the average crystal misorientation from EBSD analysis and 
the computed temperature gradient using the FEA of the melt pool as a function of LED at differing depths 
from the melt pool surface. On the top surface of the melt pool, the highest temperature gradient 
(2.32 × 103 K/m) was computed for 0.25 J/mm LED. It then decreased as the LED increased, with 0.88 J/mm 
LED having the lowest temperature gradient (7.72 × 102 K/m). At 50 μm depth from the melt pool surface, 
the temperature gradient in 0.25 J/mm LED increased substantially to 1.90 × 104 K/m (~7× increase) while it 
remained almost constant in 0.88 J/mm LED at 1.15 × 103 K/m (~0.5× increase). This then corresponds to 
an average misorientation of 0.65° and 0.49°, respectively, and suggests that a high average KAM indeed 
correlates with a high temperature gradient.

The residual strain in the LPBF alloy is caused by the local heat application of the laser, which introduces 
tensile stress in the molten layer and compressive stress in the solidified lateral and underlying layers[129]. 
These stresses, if not released, result in residual plastic strains. Several authors looked into minimising 
thermal stress in the LPBF-fabricated alloy. Vrancken et al., Lu et al., and Liu et al. agreed that a short laser 
scan length introduced less thermal stress, while Mishurova et al. emphasised the importance of large melt 
pool volume to lessen thermal stress[130-133]. The scan strategy was maintained during the LPBF of 
Fe-30Mn-6Si alloy, but the melt pool for 0.88 J/mm LED was comparably large than for the other LEDs 
[Figure 6D]. However, Liu et al. added that a low LED is necessary for a small thermal stress, and these 
workers pointed out that a low thermal stress in short laser scan length was caused by the release of stress 
through cracking[132]. A low average misorientation (0.49°) and a high hardness [Figure 10] in the highest 
LED (0.88 J/mm) suggest otherwise. More so, the ε-martensite formation in 0.88 J/mm LED may be stress 
induced and its volume fraction was high (45.8%). This entirely suggests that the residual strain may have 
been released through the formation of cracks since the LPBF alloy fabricated at 0.88 J/mm LED had 
comparably more cracks than the 0.25 J/mm LED (Figure 2C and D, respectively). A more thorough 
investigation is, however, warranted to understand the residual strain in the LPBF alloy fabricated from a 
homogeneously mixed Fe-30Mn-6Si powder.
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Figure 10. The relationship between residual strain (average KAM value) and hardness for both the reference alloy and the LPBF alloy 
fabricated at different LEDs.

The residual strain in the LPBF alloy, according to the average crystal misorientation data, was also shown 
in Figure 10 to decrease with increasing LED. This was reported to increase the hardness[127], and when the 
residual strain was relieved, the hardness decreased[128]. For this reason, the relationship between the average 
KAM value and hardness in both the reference alloy and LPBF alloy at different processing conditions was 
investigated. However, the decrease in residual strain corresponded to an increase in hardness, as seen in 
Figure 10, which differed from the previous reports[126-128]. Therefore, the residual strain may have indeed 
been relieved from the LPBF alloy through the formation of cracks, particularly in 0.88 J/mm LED.

The influence of grain size, presence and volume of phases, and residual strain was analysed to identify the 
possible factor affecting the hardness of the LPBF-fabricated Fe-30Mn-6Si alloy. Hardness is known to 
increase as the grain size decreases, ε-martensite volume fraction increases, and residual strain increases. It 
was observed that the increase in hardness was mainly influenced by ε-martensite at high LEDs of 
0.44 J/mm and 0.88 J/mm [Figure 9], while grain size and residual stress were not seen to influence their 
hardness according to the accepted theories[104,105] and observations[126-128]. The sub-grain phase boundaries 
between the different variants of ε-martensite increased the hardness in those large-grained microstructures. 
Also, high hardness value was found in the LPBF alloy with low residual strain [Figure 11]. This suggests 
that the residual strain at the high LED was relieved after cracks were formed. At 0.25 J/mm LED, hardness 
has increased relative to the reference alloy because of the low grain size and high vol.% martensite 
(Figures 8 and 9, respectively). However, the hardness for 0.29 J/mm LED slightly decreased (2%) despite 
the increase in martensite vol.% (26%) as compared to that of 0.25 J/mm LED. Concurrently, the grain size 
of the former increased by 65%. From the given correlations, the increase in grain size was likely the main 
mechanism for the slight decrease in hardness from 0.25 to 0.29 J/mm LED.

CONCLUSIONS
A LPBF technique is normally carried out using pre-alloyed powder, but the supply of pre-alloyed powder is 
limited, thereby confining this technique’s adaptability to readily available raw materials. It was 



Page 20 of Dela Cruz et al. Microstructures 2023;3:2023012 https://dx.doi.org/10.20517/microstructures.2022.3325

Figure 11. The relationship between crystal misorientation (average KAM) and temperature gradient derived from the simulated 
thermal profile of the melt pool as a function of LED at differing depths from the melt pool.

demonstrated for the first time that a Fe-30Mn-6Si alloy with a known combination of biodegradable and 
SMA properties can be built using the LPBF technique from a homogenised metal powder. The LPBF 
parameters were investigated by varying the laser power, scan speed, and re-scan strategy. A density of over 
99% was achieved at a range of LED from 0.30 J/mm to 0.88 J/mm, with 0.44 J/mm as the recommended 
LED for a high-density product. The resultant microstructure was shown to respond with the laser power 
and scan speed settings, and the changes in microstructure were explained using the FEA analysis of the 
melt pool profile derived from the single laser track scan. For example, the microstructure transitioned from 
one that was highly columnar and textured at high laser power to one that was fine and nearly equiaxed 
with weak texture at low laser power. Increasing the scan speed at high laser power setting eliminated the 
strong texture and increased the grain size. However, laser re-scanning of the solidified layer remelted the 
columnar grains and re-solidified them into non-uniform microstructure.

The hardness of the as-built LPBF alloys was also systematically assessed. The relationships between grain 
size, types and amounts of phases, and crystal misorientation on the hardness of both the reference and the 
LPBF alloys at different process settings were investigated. The hardness of the single-phase austenitic 
reference alloy was found to be affected by the grain size and residual strain. In the LPBF alloy, the fraction 
of ε phase strongly influenced the hardness. The pre-existing, thick ε plates may have blocked the nucleation 
and growth of the stress-induced ε plates in the LPBF alloy, which effectively hardened the LPBF alloy. 
Overall, this study expanded the processing capability of the LPBF technique by fabricating a Fe-Mn-Si alloy 
from a homogenised powder and elucidated the influence of processing parameters on the microstructure 
and the hardness of the product.
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