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Abstract
Coronary microvascular dysfunction (CMD) is an under-diagnosed condition characterized by functional alteration 
of the small coronary arterioles and the cardiac capillary bed. The vessels do not dilate appropriately in response to 
changes in cardiac oxygen demand, leading to chest pain and symptoms of angina. These blood vessels contain 
two major cell types: the endothelial cells, which line the blood vessels and detect changes in oxygen demand, and 
smooth muscle cells (SMC) which respond to these changes by contracting or relaxing to provide an optimal blood 
supply to the cardiac tissue. Many CMD studies have focused on the endothelial cells as these cells secrete 
vasorelaxants and vasoconstrictors. However, comparably fewer studies have examined SMC despite their 
functional role in contracting and relaxing. A variety of health conditions and lifestyle choices, such as diabetes, 
hypertension and cigarette smoking, can promote the development of both CMD and macrovascular coronary 
artery disease; a condition where SMC have been studied extensively. This review article will consider the influence 
of CMD on SMC phenotype. It will discuss the structural, cellular and molecular changes in CMD, and will 
summarise how co-morbidities can have differing effects on micro- and macro-vascular SMC phenotype and 
function, which complicates the development of new therapeutic avenues for CMD.
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INTRODUCTION
Coronary microvascular dysfunction (CMD) manifests as functional decline of the arterioles and smaller 
vessels that supply the myocardium with blood. It is distinct from macrovascular atherosclerotic lesions that 
affect the coronary arteries [coronary artery disease (CAD)], although the two conditions are often present 
at the same time and can coexist on the same patient[1,2]. Indeed, > 30% of patients with CAD who have 
undergone percutaneous coronary intervention still present with angina post-surgery, which can be 
attributed to underlying CMD[3,4]. CMD is characterized by impaired coronary microvascular dilation 
resulting in insufficient blood, oxygen and nutrients reaching the cardiac tissue[2] and can ultimately lead to 
heart failure with preserved ejection fraction (HFpEF)[5]. CMD is much more difficult to diagnose than 
CAD as the symptoms of angina, fatigue and breathlessness can be caused by any number of different 
conditions, and definitive coronary provocative tests are not routinely conducted[6].

Conditions such as diabetes, hypertension and lifestyle choices (e.g., smoking) are known to predispose 
towards the development of CMD[5]. These risk factors also predispose individuals to CAD and 
atherosclerotic progression, so it is perhaps unsurprising that both macro- and micro-vascular coronary 
diseases often go hand-in-hand. However, epidemiological studies have revealed that CMD and HFpEF are 
more common in women, which are in direct contrast to population studies of CAD, where male gender is 
prevalent[5,7]. Thus, it is likely that the underlying cellular and molecular mechanisms leading to CAD and 
CMD, whilst having similar risk factors, are distinct from one another.

Coronary vasculature
Like all tissues in the body, the heart needs a robust blood supply to provide the oxygen and nutrients it 
needs to keep functioning. Myocardial tissue is perfused by a number of coronary arteries such as the right 
coronary, left main coronary, left anterior descending and left circumflex arteries. Coronary arteries have a 
typical diameter of 3-4 mm[8] and they are conductance vessels; their tone maintained by endothelial cell 
sensing and shear stress. They possess a thick muscular wall comprised of multiple layers of smooth muscle 
cells (SMC) and an adventitial outer layer [Figure 1]. These arteries feed pre-arterioles (100-400 μm in 
diameter) and arterioles (40-100 μm in diameter) which are resistance vessels and eventually give rise to the 
dense cardiac capillary bed. The tone of these microvascular arterioles is regulated principally by 
intralumenal pressure sensing by SMC[9] [Figure 1].

Whilst coronary microvessels possess a functional SMC layer, smaller microvessels/capillaries recruit 
pericytes instead of SMC. Pericytes and SMC share the same embryological precursors but differ in their 
functionality and expression patterns. Pericytes express chemoattractants and help to stabilize endothelial 
tubes to support blood vessel development, whereas SMC express contractile markers and comprise mature 
vascular walls, without supporting endothelial tube formation[10].

Smooth muscle cells
SMC are the principal cell type in the vascular wall, comprising much of the cellular content of the medial 
layer. They maintain vascular tone through controlled contraction and relaxation in response to factors 
secreted from endothelial cells. Under healthy conditions, they exist in a contractile, differentiated 
phenotype. They adopt a spindle morphology, possess extensive contractile machinery [including alpha 
smooth muscle actin (α-SMA) and stress fibres], ion channels and calcium signalling proteins, and have a 
very low turnover rate[11,12].

In cases of disease (e.g., atherosclerosis) or injury (e.g., following revascularization surgery), SMC have an 
inherent ability to switch phenotype and dedifferentiate into a synthetic state. Here, the SMC loses its 
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Figure 1. Structure of the coronary vasculature. Coronary arteries are comprised of an inner endothelial cell lining (intima), internal 
elastic lamina, multiple layers of smooth muscle cells (media), external elastic lamina and an outer adventitia comprised of fibroblasts 
and connective tissue. Coronary arteries branch into pre-arterioles and arterioles which are much smaller. Whilst they retain the triple 
layering (intima, media and adventitia) and internal elastic lamina, the external elastic lamina is lost and the medial and adventitial 
layers are much thinner.

spindle morphology and becomes more rhomboid in shape. The contractile machinery is down-regulated 
and the cytoskeleton becomes disordered; signalling molecule expression changes from those that favour 
contraction to those that favour proliferation and migration. This phenotypic switching can be transient 
and is fully reversible, allowing the SMC to dynamically respond according to physiological and 
environmental demand[11,12]. SMC can also dedifferentiate into osteogenic[13] or macrophage-like 
phenotypes[14].

The phenotype of SMC possesses an extra level of complexity as it alters throughout the life course of an 
individual, and according to gender[15,16]. Relaxation, migration and ion channel responses decline with age, 
and SMC increasingly adopt a senescent and/or osteogenic phenotype and are no longer able to respond to 
signalling cues in the same way as younger SMC[17-20], which contributes to the age-related increase in 
cardiovascular diseases. A very recent study has demonstrated that SMC from atherosclerotic lesions in 
females have a distinct gene regulatory signature and phenotype compared to males, which contributes to 
atherosclerotic plaque stabilization[19]. Furthermore, female mice experience mineralocorticoid-specific 
vascular stiffening at much later ages than their male counterparts[21]. These findings are just the tip of the 
iceberg; a comprehensive analysis of SMC phenotype throughout the lifespan of males and females would 
be fascinating and may open up new avenues for personalized medicine with respect to CMD or CAD.

Given that both macrovascular coronary arteries and microvascular coronary arterioles possess a functional 
medial layer of SMC [Figure 1], one might expect that they are phenotypically comparable. However, a 
complex relationship exists between macrovascular and microvascular SMC; whereby the behaviour and 
phenotype of one can have diverse effects on the behaviour and phenotype of the other[22]. This article will 
review evidence pertaining to differential phenotypes between SMC from the coronary arteries and the 
coronary microcirculation. It will then discuss how these phenotypes contribute to CMD and how common 
underlying conditions such as diabetes, hypertension or smoking affect macro- and micro-vascular SMC in 
different ways.
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SMC PHENOTYPE IN MICRO- VS.  MACRO-VESSELS
Previous studies have highlighted phenotypic and behavioural differences in endothelial cells isolated from 
microvascular and macrovascular sources[23-25]. Furthermore, phenotypic differences have been observed 
between SMC from different macrovessels (internal mammary artery and saphenous vein) from the same 
patients[26]. Thus, it is entirely likely that SMC from the microcirculation will be phenotypically distinct from 
those from the macrocirculation.

Data regarding phenotypic differences between coronary microvascular and macrovascular SMC are 
remarkably scant. The few studies that have assessed this have focused on differences within the contractile 
phenotype. Human coronary arterial SMC are reportedly stiffer than their microvascular counterparts 
(elastic modulus > 7 kPa vs. < 4 kPa). However, these studies exploited differing experimental parameters 
and so cannot be definitively compared[27,28]. Nonetheless, given that arteries are conductance vessels and 
arterioles are resistance vessels, this is likely to be true. In addition to stiffness of both the cell and the 
extracellular matrix, SMC contractility is tightly interlinked with ionic flux (described in greater detail 
below). In a Yucatan swine model, spontaneous transient outwards K+ currents were much more frequent in 
coronary microvascular SMC vs. macrovascular SMC[29]. These spontaneous K+ currents have been 
associated with triggering vasorelaxation[30] and these observations fit with the concept of microvascular 
tone being controlled through SMC pressure detection.

SMC phenotypic differences between macrovascular and microvascular beds represent an area that is 
greatly understudied. An examination of the contractile, proliferative and secretory ability of these cells in 
both settings would be valuable in assessing their influence on cardiovascular disease development, and may 
give insight into medication strategies that may be beneficial for CMD specifically, rather than 
cardiovascular disease as a whole.

SMC PHENOTYPE IN CORONARY MICROVASCULAR DYSFUNCTION
The principal feature of CMD is a failure of the cardiac microvasculature to respond appropriately to 
changes in myocardial oxygen demand. It can be caused by problems with vasodilation or by coronary 
microvascular spasm causing an acute reduction in blood flow[2]. To date, more emphasis has been given to 
researching how endothelial cells contribute to CMD, with comparably fewer studies conducted on SMC 
despite their crucial role in maintaining vascular tone.

Vasoconstriction and vasorelaxation
Ca2+ signalling is a major underlying cellular mechanism controlling SMC tone and contraction in the 
microvasculature. Activation of the Na2+/K+ ATPase pump and inwardly rectifying potassium (KIR) 
channels[31], and calcium-activated potassium (KCa) channels[32] induce membrane hyperpolarization and 
vasorelaxation. KCa channels are a family of three different classes; small-conductance Ca2+-activated 
potassium channels (SKCa), intermediate-conductance Ca2+-activated potassium channels (IKCa), and large-
conductance Ca2+-activated potassium channels (BKCa), the latter being prevalent in SMC. Hence, 
understanding the ion channel landscape of these cells is imperative for understanding SMC function. This 
has recently been extensively reviewed[17] and is summarized in Figure 2. It is clear that there is complex 
cross-talk between transient receptor potential (TRPC/TRPM) channels, voltage-gated calcium channels 
(CaV), KCa, voltage-gated potassium channels (KV), ATP-activated potassium channels (KATP) and KIR 
channels to control intracellular Ca2+ levels and K+ flux.

CMD is associated with a failure of the coronary microcirculation to relax appropriately in response to 
myocardial oxygen demand. Recently, Zhao et al.[33] have demonstrated that cardiomyocyte ATP depletion 
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Figure 2. Ion channel signalling in the microvasculature. Regulation of SMC contractility is dependent upon calcium signalling. 
Microvascular SMC express multiple ion channel subtypes that can influence the level of Ca2+ within the cell, and there is a complex 
interplay and balance between the channel sub-types. The balance of this signalling dictates whether the cell undergoes 
contraction/relaxation, proliferation or migration. Black arrow: stimulatory. Red arrow: inhibitory. Dashed arrow: indirect. KCa: Calcium-
activated potassium channel; CaV: voltage-gated calcium channel; IP3: inositol triphosphate; IP3R: inositol triphosphate receptor; KATP: 
ATP-activated potassium channel; KIR: inwardly-rectifying potassium channel; KV: voltage-gated potassium channel; NO: nitric oxide; 
PKA: protein kinase A; PKC: protein kinase C; RyR: ryanodine receptor; TRPC: transient receptor potential C; TRPM: transient receptor 
potential M.

directly leads to hyperpolarization of neighbouring microvascular SMC via gap junctions, reducing 
intracellular Ca2+ levels and causing vasorelaxation to increase myocardial blood flow. Whether gap 
junctions are inhibited in CMD in microvascular SMC has yet to be determined; however, gap junctions 
between cardiomyocytes and endothelial cells are depleted in CMD in a diabetes setting[34]. It is possible that 
a similar depletion occurs with SMC in CMD, leading to defects in vasorelaxation.

Proliferation and migration
Early studies into CMD identified SMC hypertrophy in coronary microvessels, with an abundance of 
contractile machinery. This, in combination with a thickened basement membrane and endothelial cell 
proliferation, resulted in marked reduction in lumenal space[35]. In contrast to this apparent acquisition of a 
hypercontractile differentiated SMC phenotype, later studies have identified increased coronary 
microvascular SMC proliferation in CMD patients which is indicative of a dedifferentiated, synthetic 
phenotype[36]. It is possible that in CMD, SMC adopt a “mixed” phenotype that has features of both 
contractile and synthetic cells. This is not without precedent, as a similarly mixed phenotype has been 
observed in macrovascular saphenous vein SMC from patients with T2DM, whereby they exhibit a 
combination of differentiated (increased expression of α-SMA, low proliferative rate) and dedifferentiated 
(rhomboid morphology, disorganized cytoskeleton) features[26,37,38].

Studies in hypothyroid rats have revealed that treatment with triiodothyronine (T3) induced rapid 
microvascular SMC remodelling through strengthening the contractile phenotype and switching the 
expression of angiopoietins to favour Angpt1 over Angpt2[39]. This would promote and stabilise 
microvascular angiogenesis[40] and could help to ameliorate the effects of CMD. Given that hypothyroidism 
is more common in women[41], this may be one of the underlying mechanisms contributing to CMD. 
Indeed, even subclinical hypothyroidism has been associated with impaired coronary microvascular 
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function[42]. Few studies have examined the impact of T3 on coronary artery SMC; however, it is reported to 
prevent calcification[13] and increase vasorelaxation in rodent coronary arteries[43].

EFFECT OF PREDISPOSING CONDITIONS ON SMC FUNCTION
There are a number of conditions that can predispose individuals to develop both CMD and CAD. These 
include medical conditions including diabetes and hypertension, and lifestyle choices such as smoking. 
However, given that CMD is more prevalent in young women and CAD is more prevalent in middle-aged 
men, it may be that these predisposing conditions have differential effects on coronary micro- and macro-
vascular SMC.

Diabetes and obesity
Obesity predisposes individuals to the development of metabolic syndrome and overt T2DM. In a porcine 
model of metabolic syndrome, microvascular coronary arterioles exhibit hyper-contractile responses via 
activation of phospholipase A (PLA). Although the authors did not examine whether the increased 
expression of PLA was in the endothelial cells or SMC, the fact that coronary microvascular SMC were 
hypercontractile remains[44]. In keeping with obesity being a precursor to diabetes and cardiovascular 
dysfunction, studies in rodents have shown that the coronary microvasculature initially enhances its 
responses to vasodilators such as NO by increasing BKCa channel activity and/or sensitivity as an adaptive 
mechanism to maintain cardiac perfusion[45]. In contrast, reduced expression of KV and parallel increased 
expression of CaV1.2 result in elevated intracellular Ca2+ levels and hypercontractility in a swine model of 
obesity[46]. Thus, it is very important to assess the experimental model that is being used to investigate the 
functional landscape of ion channels in microvascular SMC.

There is a large body of work examining the effect of T2DM on SMC phenotype and function across 
multiple vascular beds. The structure of small coronary resistance vessels is not affected by the presence of 
T2DM, with no obvious gross changes at the tissue level[47]. There are, however, changes apparent with 
T2DM with regards to microvascular SMC function. In a cell culture model, coronary microvascular SMC 
from T2DM patients had reduced stiffness, yet could generate a higher contractile force[27]. It is possible that 
this may explain how T2DM contributes to CMD by increasing the strength of microvascular vasospasm.

At the molecular level, T2DM causes changes in ion channel expression and activity that favour contraction 
over relaxation. Recent studies have identified that the expression and sensitivity of BKCa channels, and 
resultant SMC vasodilation are reduced in human coronary arteriolar SMC in T2DM patients[48]. 
Furthermore, a Yucatan swine model of diabetes has revealed impaired K+ currents and reduced Ca2+ sparks 
in the coronary microcirculation[29], strengthening the concept that diabetes is associated with decreased 
BKCa expression and function and dysregulation of SMC contractility. This appears to be specific to K+ 
channels as T2DM has no effect on the Na2+/K+ ATPase pump[31]. Altered KIR functionality in diabetes is 
complicated by the fact that activity is either unaffected or reduced dependent on the environmental factors 
that are stimulating the channel[31,49]. Furthermore, coronary microcirculation SMC from T2DM patients 
switch expression of integrins from the 1 subunit to 3 which affects their adhesion to components of the 
extracellular matrix[27]. Endothelial arteriogenesis is dependent on the β1 integrin subunit[50], so the 
transition to β3 in microvascular cells in diabetes could conceivably contribute to impaired collateral 
formation and cardiac ischaemia.

In contrast to the absence of structural changes in microvessels in T2DM, the coronary arteries of these 
patients demonstrate gross structural changes, namely, they are narrower than those from patients without 
diabetes. This is even in the absence of atherosclerotic lesions[51] (which are known to be more widespread 
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and diffuse in T2DM arteries compared to non-diabetes patients[52]) and is due to excessive SMC 
proliferation and migration into the intimal space. Hyperglycaemia bestows protection from apoptosis and 
triggers the mitogenic ERK p42/44 MAPK pathway[53]. This demonstrates the acquisition of a 
dedifferentiated, synthetic phenotype in macrovascular SMC in diabetes, as opposed to the differentiated 
contractile phenotype observed in the microvasculature. The molecular changes underpinning why diabetes 
can affect the phenotype of SMC in such diverse ways, potentially even within the same patient, are not fully 
understood.

Interestingly, the impairment of BKCa channel expression appears ubiquitous across vascular beds with 
T2DM, with reduced expression and function being reported in coronary artery SMC from rodent 
models[54] and human coronary artery SMC cultured in the presence of high glucose concentrations[55]. 
However, the influence of diabetes on other K+ mediators such as the Na+/K+ ATPase pump and KIR 
channels within coronary arteries has not been examined. Evidence from diabetic aortic SMC suggests that 
the Kir subunits of the channel are not affected by diabetes, yet expression of the SUR2B subunit is 
markedly inhibited[56]. Unfortunately, the influence of diabetes and/or hyperglycaemia on Na+/K+ ATPase 
activity varies according to species and vascular bed[57-59], thus extrapolating a hypothesis on whether this 
pump is affected in coronary artery SMC is impossible. In terms of proliferation and adhesion to the 
extracellular matrix, recent studies have found marked reductions in the development of atherosclerosis in a 
diabetic porcine model when the animals are treated with an integrin αVβ3 blocking antibody. Here, the 
authors suggest that the atheroprotective mechanism of action of the antibody is via blocking the pro-
proliferative influence of αVβ3[60].

Type 1 diabetes (T1DM) accounts for up to 8% of all diagnosed diabetes cases (www.diabetes.org.uk). It is 
associated with microvascular dysfunction contributing to diabetes-related cardiomyopathy, where the 
myocardium becomes fibrotic and there is a reduction in both microvascular endothelial cell and SMC 
number. What causes this loss of cells is unclear - is it a result of apoptosis, necrosis or proliferative defects? 
However, in vivo models have shown that application of SMC with endothelial progenitor cells to the 
myocardium of T1DM rodents is sufficient to at least partially reverse the cardiomyopathy[61]. Similarly to 
T2DM, T1DM is associated with a reduction in BKCa channel expression and function in the coronary 
macrovasculature[62], and an increase in adenosine A2A receptor expression[63]. Interestingly, this receptor is 
associated with a reduction in neointimal hyperplasia and could conceivably contribute to coronary artery 
SMC being maintained in a contractile phenotype[64]. However, A2A receptors activate both KV and KATP 
channels[65], and these potassium channels promote vasorelaxation (reviewed in[66]). The ultimate phenotypic 
change observed in T1DM coronary vessels is therefore likely a cumulative response to the delicate balance 
between signalling pathways that are activated in each SMC.

Hypertension
The influence of essential hypertension on microvascular structure is contentious. Whilst some studies have 
demonstrated no effect of hypertension on the structure of small coronary resistance vessels[47], others have 
shown that hypertension increases arteriolar wall thickening through hyaline arteriosclerosis[67]. This 
discrepancy may be due to the different models used - whilst Chen et al.[67] performed their experiments on 
hypertensive rabbits, Lynch et al.[47] used human coronary arterioles for their work. Furthermore, human 
coronary resistance microvessels were stiffer than their normotensive counterparts[47], and, in a mini-pig 
model, exhibited impaired vasodilation to adenosine independently of nitric oxide inhibition[68]. These 
functional alterations could conceivably directly contribute to CMD by reducing vasodilation and 
increasing vasoconstriction and/or spasm.
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Hypertension is intimately linked with the RhoA-ROCK signalling axis (reviewed in[69]). Information 
regarding RhoA activity in coronary microvascular SMC, particularly in hypertension, is lacking. However, 
RhoA is known to be increased in pulmonary microvascular SMC during the development of pulmonary 
hypertension[70], so it is probable that RhoA is elevated in coronary microvascular SMC. GRAF3 is a negative 
regulator of RhoA activity, and SNPs resulting in reduced GRAF3 expression are common in hypertensive 
patients. This results in elevated RhoA activity and contractile gene expression in human coronary artery 
SMC[71]. Indeed, treatment of patients suffering coronary artery spasm with fasudil, a Rho kinase inhibitor, 
improves vasodilation and ameliorates chest pain[72], confirming the critical role that the RhoA-Rho kinase 
pathway plays in both micro- and macro-vascular cardiac disease.

Hayenga et al.[68] conducted an elegant study on hypertensive mini-pigs that revealed that hypertension did 
not induce global changes in macrovascular structure. Specifically, cerebral arteries had no discernible 
structural changes after 8 weeks of hypertension. However, both coronary arteries and the aorta exhibited 
increased wall thickening as soon as 2 weeks after the introduction to hypertension and this was mirrored 
by a parallel increase in the number of medial cells present. This suggests an increase in SMC proliferation 
but interestingly, the expression of α-SMA was also increased with hypertension[68]. It is therefore possible 
that, in hypertension, coronary arterial SMC adopt a mixed phenotype which, in combination with the 
mixed SMC phenotypes present in CAD, will make pharmaceutical intervention problematic.

Smoking
Smoking is known to predispose individuals to a plethora of cardiovascular pathologies including CMD and 
CAD. A very recent study has demonstrated that exposure to nicotine during pregnancy and early life 
conveys an increased risk of vascular dysfunction in adulthood. This is through an epigenetic mechanism 
whereby early nicotine exposure leads to persistent up-regulation of microRNA-181a and consistent, 
prolonged down-regulation of its target, BKCa, in coronary vessels[73], which could contribute to both the 
aberrant vasorelaxation observed in CMD and the dysfunctional SMC phenotype in CAD.

Exposure of human coronary artery SMC to cigarette smoke in vitro up-regulates the expression of 
ADAMTS7[74]. This protein is involved in degradation of the extracellular matrix and is associated with 
characteristics of vulnerable plaques including chest pain, low SMC content and enhanced lipid 
accumulation[75], and with SMC de-differentiation[76]. The expression of ADMATS7 in microvascular SMC 
has not yet been assessed. However, given that ADAMTS7 is associated with dedifferentiation and 
migration, one may hypothesise it would be reduced in hypercontractile CMD. Whether cigarette smoking 
modulates this remains to be seen.

In vivo, exposure to nicotine particles increases the expression of endothelin (ET-1) A and B receptors via 
ERK and the pro-inflammatory NFκB pathway, leading to enhanced coronary artery vasoconstriction[77,78]. 
Interestingly, the effect of ET-1 on coronary vessels is dependent on vessel size - in a canine model, ET-1 
induced vasoconstriction of the coronary arteries but a dilation of the coronary arterioles[79]. The underlying 
molecular mechanisms leading to this are unclear, but are likely due to alterations in the expression of ET-1 
A and B receptors and signalling intermediaries (such as RhoA-Rho kinase[80]) between the macro- and 
micro-vascular SMC.

One of the most intriguing questions surrounding CMD is why it is more prevalent in females. 
Dinardo et al.[81] (2015) examined macrovascular SMC from the internal thoracic artery, and discovered the 
female gender and smoking were both independently associated with increased SMC stiffness. Enhanced 
SMC stiffness would contribute to CMD if it was evident in the coronary microcirculation. However, it 
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would not necessarily explain why women are less likely to develop CAD.

It is clear from the information presented above that predisposing conditions can have diverse effects on 
SMC phenotype that can differ across the micro- and macro-vessels [Table 1]. It is likely that it is a 
cumulative effect of multiple competing molecular triggers from different co-morbidities that define the 
eventual SMC phenotype in CMD and CAD.

CONCLUSION
SMC are the principal cell type of the vascular wall. They are highly plastic and can respond to different 
cues - both physiological and pathophysiological - to alter their phenotype and behaviour. Whilst 
differentiated, contractile SMC are prevalent in healthy vessels, CMD is characterized by a hyper-contractile 
phenotype that results in microvascular spasm, impaired vasorelaxation and consequently chest pain. Many 
factors predispose individuals to developing CMD; these include gender, age, co-morbidities such as 
diabetes and high blood pressure, and lifestyle choices such as smoking.

Given the key role that SMC play in the regulation of vascular tone, it is surprising that so few mechanistic 
studies have been performed on this cell type, and coronary microvascular SMC remain an under-
developed area of research. An examination of the molecular changes in microvascular SMC with 
predisposing conditions is still in its infancy. Altered molecular and phenotypic signatures in coronary 
artery SMC have received much greater recognition, yet it is clear that microvascular and macrovascular 
SMC can respond differently to the same challenges (for example, vasorelaxation or vasoconstriction in 
response to ET-1). This review has highlighted a number of knowledge gaps in the literature that are worthy 
of further study:

1. What are the phenotypic differences between microvascular and macrovascular SMC from the same 
individual, and how are the molecular signatures underpinning this affected by age and gender?

2. How does the ion channel landscape change in human coronary microvascular SMC during the 
development of CMD?

3. SMC defects are evident in CMD, but there remain species- and vascular bed-specific alterations in 
protein expression and cell function. How can we generate a model of SMC that specifically examines 
human CMD, without invasive cardiac biopsies?

4. A reduction in BKCa expression and/or activity appears to be a ubiquitous feature of a number of 
disorders that predispose an individual to CMD. Can we design therapeutics that restore BKCa in these 
circumstances to ameliorate CMD?

In summary, a comprehensive examination of SMC phenotypic differences between the coronary 
microvasculature and the coronary arteries may help to identify new therapeutic targets for CMD that 
would be amenable to manipulation to restore SMC functionality particularly within these tiny, yet crucially 
important, vessels.
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Table 1. SMC phenotype in response to different predisposing conditions. Hypertension, obesity, smoking and diabetes all 
predispose individuals to developing CMD and/or CAD through changing molecular expression pattern in microvascular or 
macrovascular SMC

Predisposing 
condition CMD SMC phenotype CAD SMC phenotype Ref.

Hypertension Pro-contractile (differentiated) 
↑ RhoA 
? α-SMA

Mixed phenotype (both de-
/differentiated) 
↑ RhoA 
↑ α-SMA

[71-73]

Obesity Mixed phenotype (both de-
/differentiated) 
↑ PLA 
↑ BKCa 
↓ KV 
↑ CaV1.2

Unknown phenotype 
Studies yet to be completed

[45-47]

Smoking Anti-contractile (dedifferentiated) 
↓ BKCa expression 
? ADAMTS7 
↓ ET-1 vasoconstriction

Mixed phenotype (both de-
/differentiated) 
↓ BKCa expression 
↑ ADAMTS7 
↑ ET-1 vasoconstriction

[74-75,78-80]

Type 1 diabetes mellitus Synthetic (dedifferentiated) 
↑ Fibrosis 
? Ion channel expression

Mixed phenotype (both de-
/differentiated) 
↓ BKCa 
↑ KV 
↑ KATP 
↑ A2A receptor

[62-64,66]

Type 2 diabetes mellitus Pro-contractile (differentiated) 
↓ BKCa expression 
↔ Na2+/K+ expression 
↔ KIR expression 
↑ Integrin β3

Pro-proliferative (de-differentiated) 
↓ BKCa expression 
? Na2+/K+ expression 
?/↓ KIR expression 
↑ Integrin β3

[28,32,49-50,54-55,57-61]

CMD: Coronary microvascular dysfunction; CAD: coronary artery disease; SMC: smooth muscle cell; PLA: phospholipase A; BKCa: large 
conductance calcium-activated potassium channel; KV: voltage-gated potassium channel; CaV1.2: voltage-gated calcium channel 1.2; KIR: inwardly 
rectifying calcium channel; α-SMA: alpha smooth muscle actin; ADAMTS7: a disentegrin and metalloproteinase with thrombospondin motifs 7; 
ET-1: endothelin 1; KATP: ATP-activated potassium channel; A2A: adenosine 2A receptor. ↑: increased; ↓: reduced; ↔: no change; ?: unknown effect 
in CMD or CAD
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