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Abstract
With advancements in automation and high-throughput techniques, we can tackle more complex multi-objective 
materials discovery problems requiring a higher evaluation budget. Given that experimentation is greatly limited by 
evaluation budget, maximizing sample efficiency of optimization becomes crucial. We discuss the limitations of 
using hypervolume as a performance indicator and propose new metrics relevant to materials experimentation: 
such as the ability to perform well for complex high-dimensional problems, minimizing wastage of evaluations, 
consistency/robustness of optimization, and ability to scale well to high throughputs. With these metrics, we 
perform an empirical study of two conceptually different and state-of-the-art algorithms (Bayesian and 
Evolutionary) on synthetic and real-world datasets. We discuss the merits of both approaches with respect to 
exploration and exploitation, where fully resolving the Pareto Front provides more knowledge of the best material.
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INTRODUCTION
Innovation in materials science is being accelerated with machine learning and high-throughput
experimentation (HTE) capabilities[1]. Users not only save time on experimentation by virtue of automated
workflows with faster processing, but also leverage on equipment with larger batches of experiments to
increase throughput and thus minimize experimental time[2]. There have been many successful applications
of HTE, particularly in the single objective problem space alongside machine learning-assisted optimization
strategies[3-6]. However, many real-world problems are more complex, specifically with multiple conflicting
properties to be optimized, for example: strength vs. ductility in metal alloys[7], device thickness vs. fill factor
in photovoltaics[8], or selectivity vs. current density in catalysts[9]. In addition, such problems may include
constraints that restrict the space of feasible solutions. This drives the need to integrate multi-objective
optimization strategies with constraint handling capabilities into the HTE setups[10-12]. The first step could
consist of formulating complex material science problems as constrained multi-objective optimization
problems (CMOPs).

A CMOP with m objectives and (q + k) constraints can be defined as:

                                                                     min F(x) = (f1(x), ..., fm(x))T                                                                 (1)

                                                                       st gi(x) ≥ 0, i = 1, ..., q

                                                                          hj(x) = 0, j = 1, ..., k

                                                                         x ∈ Rn

where F(x) defines the multi-dimensional objectives to be optimized, and gi(x) and hj(x) define the
inequality and equality constraints, respectively. A solution x is an n-dimensional vector of decision
variables. To determine the objective value of a solution, a Pareto-optimal solution x1 dominates another
solution x2 if F(x1) ≤ F(x2) where they are feasible. A total set of all feasible and Pareto-optimal solutions can
then be defined as the Pareto Front (PF), which represents all solutions with the optimal trade-off between
objectives.

Discovery problem in a HTE platform  is  usually  of  combinatorial  nature  with  unexplored  regions  of
objective space, given some mixture of  chemicals, precursors, and other processparameters. This problem
can be formulated as a CMOP where the target  objective  space or PF  is  unexplored,  and  models
trained   on   existing   data   must   extrapolate  to[13-15].  This   is  achieved   through  the  selection  and
evaluation of available solutions x ∈ Rn, where each solution  represents  the  set  of  experimental
input parameters (chemicals, temperature settings, etc.) used in the screening. The number of data points  is
typically low, with most works generally limited to around 102-103 data  points  due  to  practical  bottlenecks 
such as time taken to synthesize and characterize, or simply due to a limited time/cost budget.

In addition, the PF can be discontinuous with multiple infeasible regions due to underlying property
limitations such as phase boundaries/solubility limits, or engineering rules, for example, summing mixtures
to 100%[16]. Such constraints can also be knowledge-based, where a domain expert with prior knowledge sets
them to pre-emptively “avoid” poor results and converge faster[17-19]. Figure 1 illustrates an example of such a
problem.
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Figure 1. Illustration of constrained multi-objectives for a convex minimization problem in bi-objective space. The addition of infeasible 
regions in grey shifts the original PF from solid red to blue.

CMOPs can be solved in various ways, but recently, two classes of algorithms have shown promise in 
solving such problems with a high level of success, namely: multi-objective evolutionary algorithms 
(MOEA) and multi-objective Bayesian optimization (MOBO).

MOEAs[20] work by maintaining and evolving a population of solutions across an optimization run. For 
example, Genetic Algorithms (GA) are a specific subset that utilizes genetic operators inspired by biological 
processes: members of the population are selected to become parents based on a specific selection criterion, 
and then undergo crossover and mutation to form a children population[21]. Within the field of MOEAs, 
various constraint handling techniques have been proposed[22-24], as well as extensions of MOEAs to many-
objective (m > 2) problems[25]. MOEAs are well suited to implementations where solutions can be tested in 
parallel, given their population-based approach, where each generation’s population can be treated as a 
batch. MOEAs have been successfully applied in materials-specific multi-objective problems: experimental 
data is used to construct a machine learning model which is then treated as a computation optimization 
problem to be solved, and the results evaluated physically[26-28]. The use of MOEAs relevant to materials 
science has seen computational and inverse design problems as well[29-31].

MOBOs leverage surrogate models to cheaply predict some black-box function, and then use an acquisition 
function to probabilistically compute a predictive function and return the best possible candidate where the 
gain is maximized[32]. The choice of surrogate model can depend on the user, but in recent literature, it has 
become synonymous with ‘kriging’ which refers specifically to the use of Gaussian Processes (GP) as the 
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surrogate model, taking advantage of its flexibility and robustness[33]. The extension of MOBOs to CMOPs is 
less mature, with relatively new implementations that cover parallelization, multi-objective and 
constraints[34-36]. On top of these, there are also hybrid variants such as TSEMO[37] or MOEA/D-EGO[38] 
which integrate the use of MOEAs to improve the prediction quality of the underlying surrogate models. In 
general, BO as an overarching optimization strategy has already been established as an attractive strategy for 
use in both computational design problems[39-41] and experimentation problems[42-45] due to its sample 
efficient approach.

As previously discussed, the PF defines the set of optimal solutions of a CMOP. For optimization of 
CMOPs, hypervolume (HV) is often used as a performance indicator. It defines the Euclidean distance 
bounded by a point, and the reference point in a single dimension, and a HV in multiple dimensions. It 
directly shows the quality of the solutions since a solution set with high HV is closer to the true PF and is 
diverse as it effectively dominates more objective space. An illustration of the HV measure for a multi-
objective (two dimensions for illustration) convex minimization problem is presented in Figure 2, where 
HV is computed by finding the area of non-dominated solutions, i.e., the solutions closest to PF without 
any competitor, bounded by a reference point.

Aside from being a performance metric to compare optimization strategies, HV can also be directly 
evaluated to guide the convergence of various algorithms. Hanaoka et al. showed that scalarization-based 
MOBOs may be best suited for clear exploitation and/or preferential optimization trajectory of objectives, 
whereas HV-based MOBOs are better for exploration of the entire search space[46]. Indeed, HV-based 
approaches empirically show a preference in proposed solutions towards the extrema of a PF[47,48] and thus 
can better showcase extrapolation. In contrast, scalarization approaches to reduce multi-objective problems 
to single-objective ones, such as hierarchically in Chimera[49] or any user-defined function[50], have 
limitations: (i) it is difficult to determine how to properly scalarize objectives; (ii) single-objective 
optimization methods cannot propose a set of solutions that explicitly consider the trade-off between 
objectives.

MATERIALS AND METHODS
Within the context of multi-objective optimization and material science implementation, two state-of-the-
art algorithms were compared in the present work: q-Noisy Expected Hypervolume Improvement 
(qNEHVI)[51] and Unified Non-dominated Sorting Genetic Algorithm III (U-NSGA-III)[52]. They are MOBO 
and MOEA-based algorithms, respectively, and were chosen based on their reported performance in solving 
complex CMOPs (with respect to HV score), and the fact that they are capable of highly parallel sampling, 
making them suitable for integration within an HTE framework. Furthermore, both algorithms are chosen 
from open-source Python libraries, making them easy to implement and enabling the reproducibility of 
results presented.

qNEHVI is a HV-based MOBO that utilizes expected HV improvement, which was shown to outperform 
other state-of-the-art approaches of different means, such as scalarization, entropy-based and even other 
HV-based approaches like TSEMO. It works by extending the classic Expected Improvement acquisition 
function[53] to HV as an objective[54], where randomized Quasi-Monte Carlo (QMC) samples from the model 
posterior are provided for evaluation to maximize acquisition value[55]. Our implementation here relies on 
the sample code provided by BoTorch for constrained multi-objective optimization, taking both base and 
raw sampling at 128 (following default settings) to improve computational run times.



Page 5 of Low et al. J Mater Inf 2023;3:11 https://dx.doi.org/10.20517/jmi.2023.02 21

Figure 2. Illustration of hypervolume for a convex minimization problem in bi-objective space. The red line represents the ground truth 
PF, while the blue points and region reflect the best-known solutions and their associated hypervolume, respectively. The green point 
and region are then used to illustrate the contribution of a newly evaluated solution. The computation of hypervolume in objective 
space is performed with respect to a lower bound with a reference point, shown by the red star. PF: Pareto Front.

U-NSGA-III is an updated implementation of NSGA-III[56,57] to be better generalizable for single and 
bi-objective problems, introducing a new tournament selection operator for stronger selection pressure, 
which they empirically show to improve convergence for certain single-, bi- and many-objective problems. 
U-NSGA-III is a suitable MOEA that performs robustly for CMOPs purely without surrogate modelling. 
We rely upon the implementation found in pymoo[58], setting population size µ, number of children λ and 
reference points H to be µ = λ ≈ H, and keeping all hyperparameters to default values. Having µ = λ is 
analogous to a pure search via U-NSGA-III with no underlying surrogate modelling, since the total number 
of proposed candidates is equal to the total sample batch size.

We thus propose four different metrics.

1. Dimensional contour plots - 10 runs at a relatively large evaluation budget (100 iterations × 8 points per 
batch) are plotted for the number of dimensions versus total evaluations, colored by HV score. This is done 
for scalable synthetic problems only and allows us to illustrate performance when dimensionality is scaled 
up to represent more complex combinatorial problems.

2. Optimization trajectory - a single optimization run at a high evaluation budget (100 iterations × 8 points 
per batch) is plotted in objective space to illustrate the trajectory of proposed solutions at each iteration 
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towards the PF. This allows us to graphically analyze how either algorithm traverses the objective space or 
provides a different perspective in understanding the exploration-exploitation trade-off.

3. Probability density map - 10 runs at a lower evaluation budget (24 iterations × 8 points per batch) are 
plotted all together in objective space and colored according to their probability density function (PDF) 
value, which is computed via a Gaussian kernel density function (gaussian_kde from SciPy). This is an 
alternative to optimization trajectory, where we instead consider the consistency and robustness during 
optimization for different random starts.

4. Batch sizing - various batch sizes are compared using log HV difference to illustrate their HV 
improvement, and thus illustrate the performance of both algorithms when considering different 
throughputs, as well as whether more gradual optimization (smaller batches but higher iterations) or vice 
versa is appropriate.

In all cases, we initialized each optimization run with a Sobol sampling of 2*(variables + 1).

For synthetic benchmarks, we select two-objective scalable problems for comparison, as described in 
Table 1. The ZDT test suite[59] provides a range of PF shapes, while the MW test suite[60] provides constraints 
and uniquely shaped PFs to challenge the optimization algorithms. Both test suites rely on a similar 
construction method for minimization problems: taking a single variable function f1 against a shape 
function f2 as such:

                                                                           min f1(x) = x1                                                                                 (2)

                                                                           min f2(x) = g(x)h(f1(x), g(x))

The single variable function closely resembles certain real-life multi-objective problems where input is to be 
minimized against some other objective, for example, minimizing process temperature, while achieving a 
target output[42].

Additionally, we repeated our experiments on real-world multi-objective datasets. An unavoidable issue of 
empirically benchmarking optimization strategies on real-world problems is that some surrogate model 
must be used in lieu of a black box where new data is experimentally validated. Alternatively, a candidate 
selection problem can be used where optimization is limited to only proposing new candidates from a pre-
labeled dataset until, eventually, the ‘pool’ of samples is exhausted. The benefit of this method over 
surrogate-based methods is that only real data from the black box is used, rather than data extrapolated 
from a model approximating its behavior. However, the candidate selection approach assumes that the 
existing dataset contains all data points necessary to perfectly represent the search space and true PF. It is 
generally not possible to prove that this is the case unless the exact function mapping input to output of the 
black box is known, or the dataset contains all possible combinations of input/output pairs and is therefore 
a complete representation of the problem like that of inverse design.

Here, due to the relatively small size of the datasets (~102 data points), the candidate selection method was 
not implemented. Instead, we relied on training an appropriate regressor to model the dataset. The two real-
world benchmarks used in this paper are presented in Table 2, with details of implementation in 
Supplementary Figures 1 and 2. Materials datasets with constraints are hard to find from available HTE 
literature, asides from simple combinatorial setups that need to sum to 100%. Another example is from Cao 

5595-SupplementaryMaterials.pdf
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Table 1. List and details of synthetic problems

Name PF Geometry n_var n_obj n_constr ref_pt

ZDT1 Convex

ZDT2 Concave

ZDT3 Disconnected

0 [11, 11]

MW7 Disconnected (mixed)

Scalable 2

2 [1.2, 1.2]

Table 2. List and details of real-world problems

Name Problem Model n_var n_obj n_constr ref_pt

Thin film[61] Minimize process temperature and maximize conductivity of 
spray-coated palladium films

GP regressor 4 [1.019, -
0.048]

Concrete 
Slump[62]

Maximize slump and compressive strength in concrete 
formulations

Neural network 
ensemble

7

2 0

[0, 0]

GP: Gaussian Processes.

et al.[43], which included complex constraints in the form of solubility, although we were unable to attain 
their full dataset and solubility classifier.

RESULTS AND DISCUSSION
U-NSGA-III in Figure 3A and C showed a more gradual change in color and did not reach the maximum 
values for higher dimensions, indicating a slower rate of convergence and poorer HV improvement, 
respectively, which scale with dimensions. In contrast, results presented in Figure 3B and D for ZDT1 and 
ZDT2, respectively, indicate that qNEHVI converges fast with greater HV improvement, as illustrated by 
the bright yellow coloration which appears early and maintains this up to dim = 12 with little loss in initial 
performance. qNEHVI, while showing superiority in overall HV score for the ZDT3 and MW7 problem, 
had a lower rate of convergence and maximum HV improvement as dimensions increase, illustrated in 
Figure 3F and H by the color gradient. Although we note that in other literature, GP models tend to 
perform poorly at high dimensionalities[63,64], this was not observed here, our results here only consider up to 
12 dimensions.

It should be noted that in Figure 3E, U-NSGA-III’s HV score on the ZDT3 problem scales inconsistently 
with dimensionality: dim = 5 shows better HV improvement (brighter color) compared to dim = 2 to 4. We 
attribute this to the disconnected PF being strongly affected by differences in initialization, where entire 
regions can be lost as the evolutionary process fails to extrapolate and explore sufficiently. Lastly, we observe 
in Figure 3G for MW7 that U-NSGA-III performs significantly worst as compared to qNEHVI, regardless 
of dimensionality. The presence of more complex constraints in the problem means that many solutions are 
likely to be infeasible and require more iterations to evolve to feasibility according to the evolution 
mechanism. Infeasible solutions do not contribute to HV improvement at all, and we note that this is one of 
the limitations of plotting using HV as a metric, where feasibility management is not clearly reflected.

In order to investigate why qNEHVI presented a greater HV improvement for qNEHVI, we then proceeded 
to plot the optimization trajectory to observe solutions in objective space, as shown in Figure 4. We set the 
number of dimensions to 8. This is representative of a range of experimental parameters that materials 
scientists would consider practical. We first performed a single run of 100 iterations × 8 points per batch. 
The evaluated solutions are plotted onto the objective space and colored by their respective iteration from 
dark to bright.
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Figure 3. Contour plots for dimension vs evaluation budget. (A and B) ZDT1; (Cand D) ZDT2; (E and F) ZDT3; (G and H) MW7. The 
color bar illustrates the mean cumulative HV score with respect to cumulative evaluations, over a total evaluation budget of 100 
iterations × 8 points per batch. Results are averaged over only 5 runs due to the high computational cost of searching over many 
dimensions. The results here show that qNEHVI is a far superior method when looking at only HV as a performance metric. HV: 
hypervolume; MOBO: multi-objective Bayesian optimization; MOEA: multi-objective evolutionary algorithms; qNEHVI: q-Noisy 
Expected Hypervolume Improvement; U-NSGA-III: Unified Non-dominated Sorting Genetic Algorithm III.

The general observations in Figure 4A-H comparing qNEHVI to U-NSGA-III are consistent with results 
previously reported in Figure 3, specifically in terms of HV scores and convergence rate. In all subfigures, 
qNEHVI was able to propose solutions at the PF within the first 20 iterations, as shown by the darker color 
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Figure 4. Optimization trajectory in objective space for a single run of 100 iterations × 8 points per batch. (A and B) ZDT1; (C and D) 
ZDT2; (E and F) ZDT3; (G and H) MW7. The red line represents the true PF, while MW7 being a constrained problem has an additional 
blue line to show the unconstrained PF. The color of each experiment refers to the number of iterations. All problems clearly show a 
more gradual evolution of results as the number of iterations progresses in U-NSGA-III, whereas qNEHVI rapidly approaches PF and 
then fails to converge further. HV: hypervolume; MOBO: multi-objective Bayesian optimization; MOEA: multi-objective evolutionary 
algorithms; qNEHVI: q-Noisy Expected Hypervolume Improvement; U-NSGA-III: Unified Non-dominated Sorting Genetic Algorithm III.

of points along the red line (true PF). This suggests that it is very sample efficient. However, it was unable to 
fully exploit the region of objective space close to the PF, and solutions in later iterations are non-optimal. 
In fact, in Figure 4B and D, ZDT1 and ZDT2, respectively, a large portion of solutions lie along the f1 = x1 = 
0 line. This is explained by the choice of reference point, which we explore in more detail in Supplementary 
Figures 3 and 4.

5595-SupplementaryMaterials.pdf
5595-SupplementaryMaterials.pdf
5595-SupplementaryMaterials.pdf


Page 10 of Low et al. J Mater Inf 2023;3:11 https://dx.doi.org/10.20517/jmi.2023.0221

We hypothesize that qNEHVI is unable to identify multiple bi-objective points along the PF because the 
underlying GP surrogate model did not accurately model the PF for ZDT1-3. As for MW7, despite the 
algorithm being able to propose many solutions near the unconstrained PF, it failed to overcome the 
constraints, as seen by the failure to adjust to the new dotted red line. Similarly, qNEHVI’s superior HV 
score could be attributed to the stochasticity of QMC sampling providing good solutions, rather than 
accurate model predictions. This hypothesis is supported by results reported in Supplementary Figure 5, 
where it can be observed that the GP model did not fully learn the objective function.

In contrast, U-NSGA-III, while requiring a significantly larger number of iterations to reach the PF, had a 
more consistent optimization trajectory towards the PF, as seen by the gradual color gradient in Figure 4A, 
C, E, and G. This suggests that there are fewer wasted evaluations for MOEAs, as the latter iterations are 
targeted towards the PF. However, despite having more solutions near the PF, the HV score is lower for 
U-NSGA-III than qNEHVI. This is a limitation of using HV as a performance metric: it strictly rewards 
non-dominated solutions across the entire search space, i.e. a handful of solutions at the PF extrema are 
preferred, rather than consider the optimizer performance over the entire run with respect to time/iteration, 
as shown previously in Figure 3 where U-NSGA-III showed poorer HV improvement compared to 
qNEHVI for ZDT1, ZDT3, and MW7.

Notably, we observe in Figure 4E and G that the disconnected PFs for ZDT3 and MW7 can lead to entire 
regions of objective space being omitted. This is clearly seen in both subfigures where solutions only have a 
single trajectory towards the nearest PF region. We previously made the statement, based on results 
reported in Figure 3C and D, for the same synthetic problems, that the disconnected spaces are strongly 
influenced by initialization, where U-NSGA-III’s mechanism of tournament selection rewards immediate 
gain over coverage, i.e. exploitation over exploration. This is both a strength and weakness of U-NSGA-III 
in comparison to qNEHVI, where QMC sampling enables greater exploration of the overall search space as 
it attempts to maximize coverage across the entire objective space, but not the PF.

Results reported in Figure 5 further reinforce the observation that qNEHVI produces a large pool of non-
optimal solutions for all benchmark problems, where many points exist away from the PF. Additionally, the 
darker coloration for qNEHVI in Figure 5B, D, F and H indicates a much lower probability of occurrence, 
which reinforces our hypothesis that HV improvement can be partially attributed to QMC sampling. 
Additionally, Figure 5B and D for ZDT1 and ZDT2, respectively, also show that there were many solutions 
being proposed at the extrema of f1 = x1.

This is the same behavior as that observed for a single run in Figure 4B and D, and we further elaborate 
upon it in Supplementary Figure 5. In contrast, the heuristic nature of U-NSGA-III provides more 
consistency between runs, since selection pressure will always ensure the same set of best parents, as shown 
by the brighter regions of points near the PF in Figure 5A, C, E and G indicating a higher probability 
density. Notably, the bright regions are not spread across objective space evenly. There appears to be a 
preference for the lower range of f1 = x1, i.e. it is simple to derive improvement by simply decreasing x1. This 
is in line with our previous discussions based on results reported in Figure 4, where U-NSGA-III prefers 
solutions with immediate improvement. Furthermore, we observe that the bright regions are concentrated 
near the PF, which indicates that U-NSGA-III was able to consistently approach the PF and maintain a 
larger pool of near-Pareto solutions over various runs, despite the limited evaluation budget.

In contrast, qNEHVI had relatively few points, although they are lying directly on the PF, which is then 
shown as a higher mean HV compared to U-NSGA-III. In a real-world context, the larger pool of near-

5595-SupplementaryMaterials.pdf
5595-SupplementaryMaterials.pdf
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Figure 5. Probability density maps in objective space for 10 runs of 24 iterations × 8 points per batch. (A and B) ZDT1; (C and D) ZDT2; 
(E and F) ZDT3; (G and H) MW7. The evaluated data points are plotted with a Gaussian kernel density estimate using SciPy to 
illustrate the distribution of points across objective space. The color bar represents the numerical value of probability density. Results 
are averaged over the 10 runs and highlight the lower diversity of points and consistency in optimization trajectory for qNEHVI 
compared to U-NSGA-III. HV: hypervolume; MOBO: multi-objective Bayesian optimization; MOEA: multi-objective evolutionary 
algorithms; qNEHVI: q-Noisy Expected Hypervolume Improvement; U-NSGA-III: Unified Non-dominated Sorting Genetic Algorithm III.

Pareto solutions could have scientific value, especially for users looking to build a materials library and 
further understand the PF. However, this is not reflected by the HV performance indicator.
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The choice of batch size is another important parameter to consider for materials scientists. It can be tuned 
when attempting to scale up for HTE. A larger batch size is usually ideal since it provides higher throughput 
and, thus, more time savings since lesser iterations are required. We thus perform optimization on the same 
synthetic problems for different batch sizes, keeping dimensionality at dim = 8 and with the same evaluation 
budget of 192 points and 10 runs, as mentioned earlier.

The authors of qNEHVI hypothesized that it operates better at small batch sizes by providing a smoother 
gradient descent in sequential optimization. Results reported in Figure 6A, B and D for ZDT1, ZDT2 and 
MW7, respectively, support this hypothesis, and we clearly observe that the lowest batch size setting of 2, as 
represented by the pink line, has the best performance overall. Interestingly, this is also the case for U-
NSGA-III, where the minimum batch size of 2 tends to give better HV for ZDT1-3, as seen by the blue line. 
This is also empirically shown in literature where, given a total budget, higher populations may impede 
convergence as it effectively limits the number of iterations[65-67]. Our observations suggest that larger batch 
sampling may lead to non-optimal candidate solutions being evaluated, especially when the model presents 
high uncertainty and/or poor accuracy where only a few candidates from the model posterior return a high 
acquisition value.

It is suggested that the same did not apply for MW7 since the disconnected PF was often not fully explored 
due to differences in initialization, which we discussed previously for Figures 4 and 5. Instead, a larger batch 
size, i.e., a larger population, is beneficial in learning all disconnected regions of objective space, as seen by 
the red line in Figure 6D. We also explain why this did not apply to ZDT3: since the initial sampling was 
generally able to cover the search space well, there are relatively few “lost” regions, as seen in Figure 4C. 
Additionally, we provide optimization trajectory plots for U-NSGA-III at different batch sizes in 
Supplementary Figure 6 to illustrate this.

Furthermore, we also observe that qNEHVI has greater variance in log HV difference compared to U-
NSGA-III.  This further reinforces our hypothesis that the performance of qNEHVI is in part due to the 
stochastic QMC sampling, while the heuristic nature of U-NSGA-III means that the evolution of solutions 
is more consistent.

Figure 7 further supports our conclusions drawn from the results reported in Figure 4. As seen in Figure 7B 
and D, qNEHVI is highly sample efficient, with points at or near the PF within the first 20 iterations or so, 
indicated by the darker points lying on the red line. However, qNEHVI shows a large random distribution 
of non-optimal points away from PF across the entire run, as seen by both dark and bright points.  U-
NSGA-III performs a gradual evolution of points towards the PF, as seen in Figure 7A and C, as well as 
maintaining a large pool of near-optimal solutions. This is reflected by the lower HV scores for U-NSGA-III 
compared to those of qNEHVI.

At a smaller evaluation budget, we observe that U-NSGA-III consistently maintains a large pool of near-
optimal solutions, as the bright region is seen nearer to the PF, while reporting a lower mean HV compared 
to qNEHVI in Figure 8A and E. Figure 8B for the Thin Film problem also corroborates our findings that 
qNEHVI proposes many non-optimal solutions, as seen by the bright region away from PF, which indicates 
a higher probability of occurrence.

Interestingly, in Figure 8D for Concrete Slump problem, we observe that qNEHVI is consistently 
converging to a specific region in objective space, while in Figure 8C, the U-NSGA-III search follows that of 
Figure 8B with the concentration of solutions at the near-optimal region close to PF. We hypothesize that 

5595-SupplementaryMaterials.pdf
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Figure 6. Convergence at different batch sizes with the same total evaluation budget of 24 × 8. (A) ZDT1; (B) ZDT2; (C) ZDT3; (D) 
MW7. We omitted qNEHVI for a batch of 16 due to the prohibitively high computation cost when scaling up. Plots are taken with mean 
and 95% confidence interval of log10(HVmax - HVcurrent), with HVmax being computed from known PF in pymoo. We follow the same 
details as for Figure 5. Results suggest that qNEHVI works better with low batching on disconnected PF. HV: hypervolume; PF: Pareto 
Front; qNEHVI: q-Noisy Expected Hypervolume Improvement; U-NSGA-III: Unified Non-dominated Sorting Genetic Algorithm III.

qNEHVI’s performance for this problem is influenced by how the underlying GP surrogate model learns 
the function and strongly biases solutions to that specific region. We show further proof in Supplementary 
Figure 5, where we illustrate the expected PF given by the GP surrogate model.

In contrast, both problems here indicated that U-NSGA-III benefited more from larger batch sizes, as seen 
by the green line, which is different from what we observed in Figure 6 for synthetic problems. Our 
hypothesis is that the modeled datasets present a more mathematically difficult optimization problem, with 
various “obstacles” that inhibit the evolution of solutions towards the PF. We support this by referring to 
our discussions for Figure 7C and D on Concrete Slump regarding local optima, as well as observing a 
notable blank region of objective space which U-NSGA-III fails to flesh out in Figure 7A for Thin Film 
problem. Overall, the results reported here suggest that given state-of-the-art implementations in HT 
experiments, a small batch size with MOBO is the right strategy to converge rapidly.

Finally, we also studied the effect of batch size on convergence in Figure 9. Results present both similarities 
and differences with what we observe for synthetic benchmarks in Figure 6. A smaller batch size in qNEHVI 
was better for both problems, as seen by the purple line, which is consistent with our findings for Figure 6.

5595-SupplementaryMaterials.pdf
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Figure 7. Optimization trajectory in objective space for a single run of 100 iterations × 8 points per batch. (A and B) Thin Film; (C and D) 
Concrete Slump. Across objective space for a single run of 100 iterations × 8 points per batch. The red line represents the PF. PFs for 
real-world datasets were virtually generated using NSGA-II for 500 generations with a population size of 100. The color of each 
experiment refers to the number of iterations. The results here corroborate the “wastage” of solutions in qNEHVI, although which 
algorithm is superior appears to be problem dependent. HV: hypervolume; MOBO: multi-objective Bayesian optimization; MOEA: multi-
objective evolutionary algorithms; PF: Pareto Front; qNEHVI: q-Noisy Expected Hypervolume Improvement; U-NSGA-III: Unified Non-
dominated Sorting Genetic Algorithm III.

Further discussion
We have compared qNEHVI and U-NSGA-III using both synthetic and real-world benchmarks, 
considering experimental parameters such as dimensionality and batch size, which materials scientists may 
face when implementing optimization. Our results suggest that qNEHVI is comparatively more sample 
efficient in arriving at the PF to maximize HV gain but fails to exploit it. In contrast, we report that U-
NSGA-III has a consistent optimization trajectory, and better exploits the PF while maintaining more near-
optimal solutions, but only if there are sufficient evaluations to do so. Materials experimentation is usually 
limited to < 100 evaluations due to physical constraints such as time/material depletion. We chose a larger 
evaluation budget of 192 as we observed that U-NSGA-III was unable to converge to the PF within 100 
evaluations, making analysis of results difficult when discussing exploration/exploitation at the PF. Thus, 
MOEAs may be considered when improvements in automated high-throughput setups enable larger 
evaluation budgets of ~103 or more. For example, Jiang et al.[68] recently demonstrated seed-mediated 
synthesis of nanoparticles with ~1,000 experiments. We thus make a case for MOEAs for materials 
experimentation besides computational design. We present in Table 3 a summary of our discussion.

We also argue that such implementations would be best when the objective space is mildly discontinuous 
(such as structural problems in alloys) since small changes in inputs can cause outputs to vary wildly in 
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Table 3. Summary of both algorithms

BO - qNEHVI EA - U-NSGA-III

Features Stochastic candidates are selected to maximize 
HV improvement predicted by the GP surrogate 
model

Tournament selection is incorporated to increase selection pressure, where 
parents are selected based on reference vectors to maximize diversity and 
exploitation on the PF

Advantages - Sample efficiency to reach PF 
- Converges rapidly for up to 10 dimensions

- Maintains good diversity along PF 
- Computationally cheap

Disadvantages - Computationally expensive, scales poorly to a 
higher number of objectives 
- Poor exploitation of PF (high wastage of 
evaluations)

- Slow convergence that scales with dimensionality 

Choice of 
Experiments

- Works well for limited evaluation budgets of < 
100 with small (2-4) batch sizes

- Works well for short experimental run times with large evaluation 
budgets with large batch sizes (6 and above)

BO: Bayesian optimization; EA: evolutionary algorithms; PF: Pareto Front.

Figure 8. Probability density maps in objective space for 10 runs of 24 iterations × 8 points per batch. (A and B) Thin film; (C and D) 
concrete slump. The evaluated data points are plotted with a Gaussian kernel density estimate using SciPy to illustrate the distribution of 
points across objective space, with a color bar to represent the numerical value of probability density. Results are averaged over 10 runs, 
taking a smaller evaluation budget of 24 iterations × 8 points = 192. The results here reinforce the finding that qNEHVI has a more 
random distribution of points, but still outperforms U-NSGA-III for a low evaluation budget. HV: hypervolume; MOBO: multi-objective 
Bayesian optimization; MOEA: multi-objective evolutionary algorithms; U-NSGA-III: Unified Non-dominated Sorting Genetic Algorithm 
III.

objective space, where an evolutionary-based strategy can navigate with better granularity. This is consistent 
with work by Liang et al.[69] on single-objective problems, which noted that having “multiple well-
performing candidates allows one to not only observe regions in design space that frequently yield high-
performing samples but also have backup options for further evaluation should the most optimal candidate 
fail in subsequent evaluations”. 



Page 16 of Low et al. J Mater Inf 2023;3:11 https://dx.doi.org/10.20517/jmi.2023.0221

Figure 9. Convergence at different batch sizes with the same total evaluation budget of 24 × 8. (A) Thin film; (B) concrete slump. We 
omitted qNEHVI for a batch of 16 due to the prohibitively high computation cost when scaling up. Plots are taken with mean and 95% 
confidence interval of log10(HVmax - HVcurrent), with HVmax being computed from known PF in pymoo. The results shown here support our 
conclusions for qNEHVI in Figure 6 but have marked differences for U-NSGA-III. HV: hypervolume; PF: Pareto Front; qNEHVI: q-Noisy 
Expected Hypervolume Improvement;  U-NSGA-III: Unified Non-dominated Sorting Genetic Algorithm III.

MOEAs also scale better in terms of computational cost[70] as they perform simple calculations to select/
recombine/mutate. In comparison, MOBOs train surrogate models and compute acquisition values which 
are orders of magnitude more expensive compared to EA. Depending on the experiment setup, the ML 
component may not be able to leverage powerful cluster computing for computationally intensive 
problems/models. In scenarios where the physical experiment time (synthesis and characterization) is 
sufficiently short, MOEAs with lower computation overhead, such as U-NSGA-III, could be a better choice 
to eliminate dead time. We include in Supplementary Table 1 a breakdown of the computing times for both 
algorithms at different batch sizes.

The choice of batch size to balance optimization performance while minimizing experimental cycles is also 
important. Empirically, our results obtained suggest that a smaller batch size of around 4 is ideal for the 
limited evaluation budget of 192 points, although larger batch sizes are preferred for more complex 
problems (with added difficulty from disconnected regions in objective space, or perhaps the presence of 
local optima).

A caveat of our work here is that the synthetic problems we chose are a generalization of bi-objective spaces 
with specific PF geometries that may not translate well for real-life experimentation, especially for many-
objective (M > 3) problems. Existing publications for applying optimization to materials discovery generally 
have no more than 3 objectives. The practicality of optimizing problems with > 3 objectives is still 
questionable due to the difficulty of defining non-dominance[71], making it difficult to find the PF. 
Furthermore, the computational cost for hypervolume scales super-polynomially which makes it 
impractical for optimization. In the source publication for qNEHVI (under supplementary H.8)[51], the 
authors demonstrate that their implementation is the first to practically implement HV-based optimization 
up to 5 objectives. We also refer to Tables 8 and 9 in the source publication for NSGA-III[56], which studies 
its performance for scaling the number of objectives, up to 10. We include results for 3-objective 
optimization on DTLZ2 under Supplementary Figure 7.

5595-SupplementaryMaterials.pdf
5595-SupplementaryMaterials.pdf


Page 17 of Low et al. J Mater Inf 2023;3:11 https://dx.doi.org/10.20517/jmi.2023.02 21

Newer benchmarks with greater difficulties and complex geometries/PFs are tailored towards challenging 
MOEAs with massive evaluation budgets of up to 107 total observations. An example would be MW5 from 
the MW test suite, which has narrow tunnel-like feasible regions that are practically impossible for GPs to 
model, resulting in MOBOs failing to converge. Such benchmarks are unsuitable for drawing conclusions 
for materials optimization as they assume much larger evaluation budgets of up to 107 observations, and the 
objective spaces may be unrealistic.Indeed, Epps et al.[45] noted that it is “difficult to impose complex 
structure on the GPs, which often simply encode continuity, smoothness, or periodicity”.

Furthermore, materials experimentation is usually afflicted with real-world imperfections and deviations 
during synthesis, or uncertainty due to characterization equipment resolution. For example, MacLeod et al. 
noted that “the tendency of drop-casted samples to exhibit a wide range of downwards deviations in the 
apparent conductivity due to the poor sample morphology”[42]. The effect of noise causes deviations in 
objective values from the “true” ground truth, and although unclear, it is an unavoidable aspect of 
optimization and should be tackled[72,73]. In Supplementary Figure 8, we perform a comparison of qNEHVI 
and U-NSGA-III on varying amounts of white noise on outputs.

We also highlight that optimization of both continuous and categorical variables is necessary to unlock a 
wider decision space for materials discovery, such as when choosing between different catalysts or different 
synthesis routes towards a desired product. Molecules could have similar physical, chemical, and structural 
properties within classes/groups/types, and it would be productive to leverage this information as 
categorical variables. For example, hybrid inorganic-organic perovskites[74] could have different 
permutations of cations and anions, which report different descriptors. Inorganics incorporate atomic 
information like electron affinity and electronegativity, while organics could include geometric and 
electronic information such as molecular weight or dipole moment.

Many high-throughput setups such as flow reactors, specifically leverage only continuous inputs[43]. If 
categorical variables necessarily need to be considered, a possible approach would be to encode categorical 
variables into numerical quantities. However, this may lead to information loss since the relationship 
between different categories is not explicitly encapsulated. We refer to the work by Hase et al.[75] for such an 
algorithm that maps categorical variables to a continuous latent space and can incorporate relevance 
weights for each descriptor to the respective variables.

CONCLUSIONS
In conclusion, our results illustrate that existing performance metrics such as HV may not really reflect the 
goal of fleshing out the PF region. This reflects an aspect of optimization that  might be neglected in the 
purview of multi-objective materials discovery: which is to identify the entire set of optimal solutions that 
can adequately convey the trade-offs between conflicting objectives for scientific understanding. We thus 
present alternative illustrative means, such as probability density maps, to better benchmark the 
performance of optimization strategies for such purposes. We performed an empirical study of two 
conceptually different optimizers, qNEHVI and U-NSGA-III, using our proposed metrics by which to 
analyze their performance. Through this, we derive certain conclusions that help us better understand the 
mechanisms by which constrained multi-objective optimization occurs. Moving ahead, we hope that this 
can spur further improvement for MOBOs as well as a stronger consideration for the use of MOEAs for 
materials problems in exploiting the PF.
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