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Mapping pareto fronts for efficient multi-objective materials discovery

Implementation of real-world problems
The datasets are first extracted from the relevant papers, and undergo a preliminary scoring for various
standard regressors from scikit-learn[1] with an 80/20 train-test split to determine the best model with the
highest R2 score and lowest MSE. Afterwards, the best model is then selected by retraining on 100% of
the data.

For thin film[2], RandomForestRegressor was selected. However, due to the stepped outputs for decision
tree-based regressors, we opted to perform a 2-level training. Since RF has been previously shown to
provide good interpolation ability for predictions, we assume that it models the underlying dataset well.
We took 1000 virtually generated samples through Latin Hypercube sampling, which is then fed into a
GaussianProcessRegressor to provide a more continuous response surface that can be used to benchmark
optimization.

Supplementary Figure 1. Scatter plot of actual versus predicted outputs for the models used in thin film.
There is only 1 modelled input (conductivity) since the other optimization objective is the input variable
for process temperature.

As for concrete slump[3], we opted to go with an ensemble of PyTorch[4] deep neural networks instead
due to better accuracy. For each objective, 10 separate neural networks with a similar architecture are
trained, and the mean and standard deviation of their predictions are taken as the output. We omitted the
3rd objective for flow due to it being similar to slump.
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Supplementary Figure 2. Scatter plot of actual versus predicted outputs for the models used in concrete
slump.

Constraint handling for real-world problems
As compared to optimization of synthetic benchmarks, feasibility is critical for real-world
experimentation since it is physically impossible to validate an unfeasible material or process. As such,
every single candidate proposed during the optimization must meet a feasibility constraint. This can be
done by ‘repairing’ the inputs. For example, in combinatorial screening where parameters must sum to
100% due to Molar/weight balances, we can implement a repair operator that enforces:

Σx’ = Σx / (Σx/100)

Alternatively, such rules can also be transformed into an inequality constraint following the tutorial on
pymoo website[5], for example:

Taking the base equality form g(x): Σx – 100 = 0
Converting into inequality form g(x): (x - 100)2 - ϵ ≤ 0

A good rule of thumb is to set ϵ as 0.1% of the base value to allow for some margin in rounding off errors.
The setting of constraints helps ensure that the optimization is actively achieving feasibility first, thereby
minimizing the need to repair inputs. This becomes particularly important for surrogate-based methods
like qNEHVI, as integrating constraints into the optimization mechanism is shown to have advantages in
producing feasible solutions[6].



Selecting reference point for hypervolume-based Bayesian optimization
a) b)

c) d)

e) f)
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Supplementary Figure 3. Optimization trajectory in objective space for a single optimization run of 100
iterations × 8 points per batch. (a-b) ZDT1. (c-d) ZDT2. (e-f) ZDT3. (g-h) MW7. The reference point is
changed from large to small, keeping all other hyperparameters constant. The red line represents the true
PF, while MW7 being a constrained problem has an additional blue line to show the unconstrained PF.
The color of each experiment refers to the number of iterations. Results here indicate a bias to extrema
for large reference points, which is consistent with literature.



For minimization problems in particular, the choice of reference point is crucial to the performance of
hypervolume-based optimization strategies[7]. Ishibushi et al.[8] recommend for minimization problems to
set the reference point to the nadir - 0.1 * range where 0.1 provides a robust scaling factor for most
problems. Empirically, it is found that a large reference point (towards infinity) biases extrema, and
conversely, a small reference point (close to PF) values knee points[9,10]. We corroborate their findings
here and show for ZDT1, ZDT2 and MW7 in Figures 1a, 1c and 1g that the larger reference point does
cause qNEHVI to propose many points at the extrema of f1 = x1, as well as at f2 for MW7, while the
smaller reference point in 1b, 1d and 1h provides better distribution of solutions. We hypothesize that
with a larger reference point that covers more of the objective space, any points which can ‘cover’ more
space (i.e., the extrema) provide greater HV improvement contribution. In contrast, a smaller reference
point near the PF would not have this problem, where knee points give greater cover. We illustrate in
Figure 2 our explanations for this.

Supplementary Figure 4. Illustration of different reference points in bi-objective space for a convex
minimization problem. Note the ratios of HV covered by the knee point in green versus the extreme point
in blue. As the reference point increases, the relative contribution of extrema increases in comparison to
that of the knee point.

Notably, for problem ZDT2, setting a small reference point, as shown in Figure 1d, could totally prevent
qNEHVI from reaching the PF. As discussed in the main text, qNEHVI relies heavily on QMC sampling
to generate candidates that are then evaluated for their expected HV improvement. If the bulk of
candidates is generated above the reference point, this effectively means that no points are able to
provide improvement, and qNEHVI thus fails to exploit the PF for the GP surrogate model to learn more.



Advancement of Pareto Front knowledge in Gaussian surrogate models
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Supplementary Figure 5. Pareto Front of GP surrogate model in objective space at each iteration for a
single optimization run of 24 iterations x 8 points per batch. (a) ZDT1. (b) ZDT2. (c) ZDT3. (d) MW7. (e)
Thin Film. (f) Concrete Slump. The updated GP surrogate model in qNEHVI at each iteration is
separately solved with U-NSGA-III, taking a population size of 100 and the number of generations at
100, and the final population is plotted in objective space to represent the model’s known PF. We limited
ourselves to the smaller evaluation budget due to long run times for solving the surrogate model every
iteration. Results here indicate that within a limited evaluation budget of 192 points (24 iterations × 8
points per batch), the underlying GP surrogate model fails to clearly model the true PF in red.

We perform a single optimization run for 24 iterations × 8 points per batch on all the synthetic and
real-world benchmarks for qNEHVI, taking the learned GP surrogate model at each iteration and finding
its solved PF, like the approach taken by TSEMO[11]. We find that in all cases, the underlying surrogate
model completely fails to properly model the true PF, which indicates that the gain in HV due to the



qNEHVI acquisition function is being mainly driven by the stochasticity of QMC sampling in providing
candidates, rather than clear knowledge of the function and objective space.

Notably, we also observe in Figure 3f for the Concrete Slump problem that the identified PF by the GP
model crosses the true PF at a specific region, which we observed is where the highest probability of
points is concentrated for the main text in Figure 8d. This is consistent with our conclusion for the other
benchmarks and problems, since the GP model is identifying mostly a false PF, with certain regions
being correct.

Optimization trajectories at different batch sizes for U-NSGA-III
a)

b)

c)

d)

e)
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Supplementary Figure 6. Optimization trajectory across objective space for different population sizes in
U-NSGA-III. a) ZDT1. b) ZDT2. c) ZDT3. d) MW7. e) Thin Film. f) Concrete Slump. We keep the same
total evaluation budget of 800 points, excluding initialization. Color bar was omitted to conserve space.

We also plot out the optimization trajectory for U-NSGA-III to better illustrate convergence for different
populations. While larger populations have better coverage, this is often at the expense of total iterations
to allow for the exploitation of the entire PF. This can be clearly illustrated by lower population sizes
having enough generations to exploit the near-optimal region, as seen by the trajectory of solutions for
smaller batch sizes in Figures 4a, 5b and 5d for ZDT1, ZDT2 and MW7, respectively.

Notably, we observe in Figure 4c for ZDT3 that a smaller population fails to maintain solutions across
the disconnected space, since there are only limited solutions that can drive evolution. This means that
entire subregions of objective space are completely missed out, and is a clear limitation of
population-based MOEAs which require maintaining the diversity of solutions[12,13].

We also note in Figure 4e and 4f that larger population sizes are required to converge towards PF for
real-world problems. We hypothesize that the more mathematically complex real-world problems contain
various local optima in which members of the population can be ‘trapped’ in, and are unable to evolve
towards the true PF effectively. It is unclear as to which population size is ideal for a specific problem,
although there is various literature that explores this in closer detail[14,15].

3-objective Optimization

Supplementary Figure 7. Probability density maps for both qNEHVI and U-NSGA-III on 3-objective
8-variable DTLZ2 problem with 24 iterations x 8 evaluations per batch.

We also performed optimization for a 3-objective problem to showcase that the metrics can be utilized,
although it is more difficult to analyze in 3D space. We recommend that users should instead plot these
onto orthogonal projections, looking at only 2 dimensions at a given time, or instead use the inline
plotting function in Jupyter to create interactive plots that can be rotated accordingly. The results shown
here are consistent with our conclusions regarding qNEHVI vs U-NSGA-III in the main text.



Log hypervolume difference at different output noise levels
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Supplementary Figure 8. Log hypervolume difference versus iterations for both algorithms at different
noise levels. a) ZDT1. b) ZDT2. c) ZDT3. d) MW7. e) Thin Film. f) Concrete Slump. Results indicate
robust performance from both algorithms up to 10%, with sharp drop in ZDT3.



Following the same restricted budget of 24 iterations x 8 per batch, we then compared amounts of white
noise added to objectives. We theorize that noise in observations does not significantly affect the
performance MOEAs, since the generation of new samples is done stochastically via crossover and
mutation, especially for larger population sizes. Conversely, noise has been directly accounted for within
qNEHVI as part of the probability distribution and uncertainty in sampling, which leads to robust
performance. We note in Figure 8c that the performance of both algorithms falls off sharply for ZDT3
with added noise, which can be attributed to the very disjointed PF being sensitive to noise. This
indicates that overly small feasible regions at the PF are likely to be negatively affected by noise, which
can easily shift the sample out of feasibility.

Supplementary Table 1. Wall time results in seconds

MOEA U-NSGA-III MOBO qNEHVI

96 by 2 48 by 4 24 by 8 12 by 8 96 by 2 48 by 4 24 by 8

ZDT1
0.75

+/-0.03

0.73

+/-0.05

0.78

+/-0.04

0.81

+/-0.12

277.19

+/-11.95

196.85

+/-6.67

191.53

+/-6.13

ZDT2
0.76

+/-0.06

0.72

+/-0.07

0.79

+/-0.06

0.81

+/-0.10

264.25

+/-16.19

195.91

+/-9.41

180.61

+/-8.89

ZDT3
0.77

+/-0.05

0.75

+/-0.02

0.81

+/-0.06

0.87

+/-0.12

339.13

+/-17.57

224.29

+/-14.93

270.71

+/-11.3

MW71
1.55

+/-1.06

1.04

+/-0.02

1.13

+/-0.03

1.13

+/-0.10

576.07

+/-52.88

542.58

+/-67.98

511.44

+/-31.91
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