Energy Materials

Supplementary Material

Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications

Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications

Ke Fan^{1,2}, Yuen Hong Tsang^{1,3,*}, Haitao Huang^{1,2,*}

¹Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077 China.

²Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077 China.

³Photonic Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077 China.

*Correspondence to: Dr. Yuen Hong Tsang, Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong 999077 China. E-mail: yuen.tsang@polyu.edu.hk. Prof. Haitao Huang, Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong 999077 China. E-mail: aphhuang@polyu.edu.hk

MAIN TEXT

Additional computational details

The differential charge density of lithium adsorption as a function of space was obtained as the difference between the valence charge density before and after the bonding:

$$\Delta \rho(\vec{r}) = \rho_{M_7 S_{12} \text{Li}}(\vec{r}) - \rho_{M_7 S_{12}}(\vec{r}) - \rho_{Li}(\vec{r})$$
(S1)

where $\rho_{M_7S_{12}\text{Li}}(\vec{r})$, $\rho_{M_7S_{12}}(\vec{r})$, and $\rho_{Li}(\vec{r})$ represent the charge density distributions of Li adsorbed on M₇S₁₂ systems, bare M₇S₁₂ monolayer, and Li atom, respectively.

System	<i>a</i> (Å)	b (Å)	h (Å)	d_{l} (Å)	$d_2(\mathrm{\AA})$	d 3 (Å)
Ti_7S_{12}	5.92	5.92	8.68	2.40	2.48	2.46
$V_{7}S_{12}$	5.64	5.67	8.42	2.40	2.30	2.29
$Cr_{7}S_{12}$	5.79	5.77	8.28	2.34	2.39	2.39
Mn_7S_{12}	5.76	5.77	8.37	2.32	2.38	2.42
Fe_7S_{12}	5.56	5.56	7.46	2.40	2.26	2.33
C07S12	5.77	5.77	7.20	2.25	2.28	2.29
Ni_7S_{12}	5.83	5.83	7.58	2.27	2.28	2.37

Supplementary Table 1. DFT-optimized lattice constants a, b, heights h, and bond lengths d_1 , d_2 , and d_3 of seven stable ic-2D crystals.

Supplementary Table 2. DFT-calculated cohesive energies E_{coh} in eV/atom of 7 ic-2D crystals.

	Ti7S12	V7S12	Cr7S12	Mn7S12	Fe7S12	C07S12	Ni7S12
Ecoh	-6.44	-5.86	-6.45	-4.52	-4.70	-4.87	-4.08
(eV)							

Supplementary Table 3. In-plane elastic constants, Young's modulus Y and Poisson's ratio ν of 7 ic-2Ds.

	C11 ^a	C12 ^a	C66 (N/m)	Y (N/m)	ν
	(N/m)	(N/m)			
Ti ₇ S ₁₂	58.45	7.50	24.54	28.97	0.18
V_7S_{12}	56.55	10.03	23.19	27.17	0.19
Cr_7S_{12}	40.70	4.02	18.78	21.15	0.14
Mn_7S_{12}	4.92	-6.75	6.665	11.51	0.58
Fe_7S_{12}	62.64	9.96	27.61	32.05	0.18

Co_7S_{12}	46.15	14.63	16.49	20.77	0.24
Ni_7S_{12}	53.25	16.03	18.64	24.65	0.26

^aC₂₂=C₁₁; C₂₁=C₁₂. Young's moduli $Y=Yx = Yy = (C_{11}C_{22} - C_{12}C_{21})/C_{11}$; Poisson's ratio $\nu = C_{12}/C_{11}$

Supplementary Table 4. Total energy of Li atom adsorbed on 2×2×1 supercell of ic-2Ds (eV) at various adsorption sites from the same side of the materials. Some initial structures transform to a more stable geometry after DFT relaxation.

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
Ti ₇ S ₁₂ Li	-538.29	-538.28	-538.26	-537.32	-538.46	-537.32
$V_7S_{12}Li$	-536.52	-536.34	-536.30	-536.63	-536.83	-536.83
Cr ₇ S ₁₂ Li	-529.99	-529.61	-529.72	-529.91	-529.76	-529.85
$Mn_7S_{12}Li$	-510.14	-509.94	-509.12	-509.65	-510.77	-510.10
Fe ₇ S ₁₂ Li	-476.47	-476.47	-475.51	-474.64	-475.40	-473.72
Co ₇ S ₁₂ Li	-439.08	-438.96	-438.96	-438.16	-438.97	-438.99
Ni ₇ S ₁₂ Li	-386.43	-386.28	-386.28	-386.72	-386.73	-385.81

Supplementary Table 5. Adsorption energy of hydrogen atom (eV) at various adsorption sites of ic-2Ds from the same side of the materials. Certain initial sites transform to a more stable geometry after relaxation.

	Site 1	Site 2	Site 3
Ti ₇ S ₁₂ H	-2.81	-2.81	-3.06
$V_7S_{12}H$	-3.74	-3.31	-3.75
$Cr_7S_{12}H$	-3.79	-3.48	-1.79
$Mn_7S_{12}H$	-1.47	-1.46	-2.46
$Fe_7S_{12}H$	-4.05	-4.15	-4.05
$Co_7S_{12}H$	-4.00	-3.06	-4.00
$Ni_7S_{12}H$	-3.63	-3.63	-3.63

Supplementary Figure 1. Total energy and temperature as a function of time during the AIMD simulations at 300 K for ic-2D crystals.

Supplementary Figure 2. Optimized structures of seven representative stable ic-2D crystals: (a) Ti_7S_{12} , (b) V_7S_{12} , (c) Cr_7S_{12} , (d) Mn_7S_{12} , (e) Fe_7S_{12} , (f) Co_7S_{12} , and (g) Ni_7S_{12} .

Supplementary Figure 3. Differential charge density distributions of Ti₇S₁₂, V₇S₁₂, Cr₇S₁₂, Mn₇S₁₂, Fe₇S₁₂, and Ni₇S₁₂.

Supplementary Figure 4. Electron localization function (ELF) maps of Ti₇S₁₂, V₇S₁₂,

 Cr_7S_{12} , Mn_7S_{12} , Fe_7S_{12} , and Ni_7S_{12} .

Supplementary Figure 5. Electronic band structures (left panel) and total and projected density-of-states (DOS) plots (right panel) of ic-2Ds. Fermi level is set at 0 eV.

Supplementary Figure 6. Variation of the Bader charge in Co and S atoms in CoS_2 and Co_7S_{12} .

Supplementary Figure 7. Six possible high-symmetry adsorption sites on the surface of ic-2D crystals.

Supplementary Figure 8. OCV as a function of the number of adsorbed Li atoms for ic-2D crystals.

Supplementary Figure 9. Optimized structures of different Li-intercalated ic-2Ds (2×2 supercell) with the maximum lithium intercalation content. (a) Ti₇S₁₂, (b) V₇S₁₂, (c) Cr₇S₁₂, (d) Mn₇S₁₂, (e) Fe₇S₁₂, (f) Co₇S₁₂, and (g) Ni₇S₁₂.

Here, we consider the adsorption of lithium on the single side and determined that lithium adsorbs unilaterally on the substrate up to a maximum of two layers above ic-2D (Layer 2 and Layer 4 in **Figure 4A**). If it continues to adsorb onto the third layer on the single side, due to the larger distance between the adsorbed ions, there is no significant chemical interaction between them. As a result, the theoretical capacities of the ic-2D materials were calculated based on seven lithium layers, including four layers above and below the ic-2D (two layers per side) and three interlayers (Layer 1, Layer 3 in Figure 4A, and the equivalent layer of Layer 3 below Layer 1). The optimized structures of different Li-intercalated ic-2Ds (2×2 supercell) with the maximum lithium intercalation content are shown in Supplementary Figure 9, where the seven-layer adsorption pattern can be observed for Ti₇S₁₂ and V₇S₁₂.

Supplementary Figure 10. Density of states of pure ic-2Ds and Li-intercalated ic-2Ds.

Supplementary Figure 11. Optimized structure for H on ic-2Ds at 8.3% coverage.

Supplementary Figure 12. Density of states (DOS) after H adsorption on ic-2Ds.

Supplementary Figure 13. HER performance evaluated by ΔG_{*H} under various H coverages.