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Abstract
For a non-stationary opponent in a multi-agent environment, traditional methods model the opponent through its
complex information to learn one or more optimal response policies. However, the response policy learned earlier is
prone to catastrophic forgetting due to data imbalance in the online-updated replay buffer for non-stationary changes
of opponent policies. This paper focuses on how to learn new response policies without forgetting old policies that
have been learned when the opponent policy is constantly changing. We extract the representation of opponent
policies and make explicit clustering distinctions through the contrastive learning autoencoder. With the idea of
balancing the replay buffer, we maintain continuous learning of the trajectory data of various opponent policies that
have appeared to avoid policy forgetting. Finally, we demonstrate the effectiveness of the method under a classical
opponent modeling environment (soccer) and show the clustering effect of different opponent policies.

Keywords: Non-stationary, opponent modeling, contrastive learning, trajectory representation, data balance

1. INTRODUCTION
In the field of multi-agent reinforcement learning (MARL) [1–3], the non-stationary problem [4,5] caused by
policy changes of other agents has always been challenging. Since the policy and behavior of other agents are
generally unknownwhen the policies of other agents change, the environment is no longer considermed to be a
stationary arkov decision process (MDP), and it cannot be solved by simply using a single-agent reinforcement
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learning algorithm [6–8]. A common class of ideas is to introduce additional information to aid training by
modeling other agents i.e. opponent modeling [4,9].

Opponentmodeling is a common idea in theMARL domain, which hasmany works of different points of view,
such as explicitly representing the opponent’s policies through neural networks to train some optimal response
policies [10–12] or implicitly learning the opponent policy’s representation to assist training [13–16]. Since the
goal of the agent under our control is to maximize its local reward, other agents are viewed collectively as an
opponent, although “opponent” does not always imply a fully competitive environment. However, existing
opponent modeling methods, whether explicitly or implicitly, set the opponent to use a fixed policy or switch
between fixed policies, which is not suitable for most real-world situations. Therefore, we further set the
opponent policy in the form of a probability distribution, so as to learn a general policy that can deal with all
kinds of opponents, which requires additional consideration of policy forgetting.

Specifically, when the opponent policy changes, the data in the replay buffer [17] are constantly replaced by the
interactive trajectory with the new opponent policy so that the agent’s response policy converges to deal with
the new opponent policy. However, at the same time, the agent may forget the response policy it has learned
before because of the loss of previous interaction data; therefore, it still needs to re-learn when some opponent
policies appear again, which greatly reduces the response efficiency.

We believe that the main reason for this type of policy forgetting problem is that there are not enough tra-
jectories of interactions with various opponent policies saved in the replay buffer. Thus, this paper uses the
idea of data balancing [18,19] to ensure the diversity of trajectories interacting with various opponent policies
in the replay buffer as much as possible. Data balancing is widely used in continuous learning [20] to solve
catastrophic forgetting problems. In contrast, in most continuous learning settings, task IDs are given to dis-
tinguish between different tasks, but we do not know the types of opponent policies. Thus, to distinguish vari-
ous trajectories, we self-supervise extracted policy representations from interactive trajectories by contrastive
learning [21–24] and clustering at the representational level. Our proposed method, trajectory representation
clustering (TRC), can be combined with any existing reinforcement learning (RL) algorithm, to avoid policy
forgetting in non-stationary multi-agent environments.

The contributions of this paper can be summarized as follows: (1) Interaction trajectories are self-supervised
encoded through a contrastive learning algorithm so that different opponent policies can be more accurately
represented and distinguished in the representation space. No additional information is required except the
opponent observation; (2) From the perspective of balancing data types, we artificially retain the types of data
that account for a small proportion in the replay buffer to avoid catastrophic policy forgetting.

The rest of this paper is organized as follows. The related work on opponent modeling and contrastive learning
is discussed in Section 2. Section 3 details the used network architecture, loss function, and algorithm flow.
Then, some experiments based on the classic environment of soccer are presented to verify the performance
of our method in Section 4. Finally, the conclusions and future work are introduced in Section 5.

2. RELATED WORK
2.1. Opponent modeling
Opponent modeling stems from a naive motivation that infers the opponent’s policy and behavior through
the information about the opponent to obtain a higher reward for itself. Early opponent modeling work [25,26]

mainly focused on simple game scenarios where the opponent policy is fixed. With the development of deep
reinforcement learning, scholars have begun to apply the idea of opponent modeling inmore complex environ-
ments and settings. The following introduces the opponent modeling work in recent years in terms of explicit
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modeling and implicit modeling.

2.1.1. Implicit opponent modeling
Implicit opponent modeling generally refers to extracting representations from opponent information to aid
training. He et al. first used the opponent’s observation and agent’s observation as merged input in a deep
network to train the agent end-to-end. They also pointed out that information such as the opponent’s policy
type can be used to assist the training of RL [13]. Subsequently, Hong et al. additionally used the information
of opponent action, fitted the opponent policy through the neural network, and then multiplied the output
of the hidden layer of the opponent’s policy network with the output of the hidden layer of the Q network
to calculate the Q value [14]. Considering that the opponent may also have learning behaviors, Foerster et al.
maximized the agent’s reward by estimating the parameters of the opponent policy network based on the idea
of recurrent reasoning [16]. Raileanu et al. considered the parameters of the opponent policy network from
another perspective and used the agent policy to make decisions based on the opponent observation, so as
to infer the opponent’s goal and achieve better performance [15]. Due to the different assumptions about the
opponent, the effects of different algorithms are also difficult to compare.

2.1.2. Explicit opponent modeling
Explicit opponentmodeling generally refers to explicitly modeling opponent policies, dividing opponent types,
and detecting and responding online during the interaction process. Rosman et al. first proposed Bayes policy
reuse (BPR) to be used in multi-task learning, maintaining a belief for each task through Bayesian formula,
judging the task type, and choosing the optimal response policy for unknown tasks [27]. Since then, Hernandez-
Leal et al. extended the environment to a multi-agent system, used MDP to model opponents, and added a
detectionmechanism for unknown opponent policies [10] . In the face ofmore complex environments, Zheng et
al. used neural networks tomodel opponents and the rectified beliefmodel (RBM) tomake opponent detection
more accurate and rapid, as well as policy distillation technology to reduce the scale of the network [11]. On
this basis, Yang et al. introduced the theory of mind [28] to defeat opponents with higher-level decision-making
methods for opponents who also use opponent modeling method [12].

2.2. Contrastive learning
Contrastive learning, as the most popular self-supervised learning algorithm in recent years, is different from
generative encoding algorithms. Contrastive learning focuses on learning common features between similar
instances and distinguishing differences between non-similar instances. van den Oord et al. first proposed
InfoNCE loss, which encodes time-series data. By separating positive and negative samples, it can extract
data-specific representations [21]. Based on similar ideas, He et al. achieved high performance in the field of
image classification, by improving the similarity between the query vector and its corresponding key vector
while reducing the similarity with the key vector of other images [23]. From the perspective of data augmenta-
tion, Chen et al. performed random cropping, inversion, grayscale, and other transformations on the image
and extracted the invariant representation behind the image through contrastive learning [22]. The subsequent
series of works [29–31] continued with a series of improvements, and the performance on some tasks is close to
that of supervised learning algorithms.

From the above works, we can see that most of the previous opponent modeling work is to additionally input
representations into neural networks for policy training. This paper provides another perspective on training
a general policy to respond to various opponents by balancing the data in the replay buffer interacting with
different opponent policies. Through the powerful representation extraction ability of contrastive learning, we
distinguish various opponent policies at the representation level. It is worth noting that we only additionally
use opponent observations, which is a looser setting compared to other work in multi-agent settings.
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3.1. Problem formulation
We describe the problem as a partially-observable stochastic game (POSG) [32] composed of a finite set I =
{1, 2, . . . , 𝑁}, a state space S, the joint action space A = A1 × . . . × A𝑁 , the joint observation space O =
O1 × . . . × O𝑁 , a transition function P : S × A × S → [0, 1] denoting the transition probabilities between
two states when given a joint action, and a reward function R𝑖 : S × A × S → R for each agent 𝑖 ∈ I. Since
we only focus on the performance of the agent under our control, we denote this agent by 1 and other agents
are denoted by −1 with joint observation 𝑜−1 and joint action 𝑎−1.

We design a set of 𝐾 fixed policies for agent −1 Π =
{
𝜋−1,𝑘 | 𝑘 = 1, . . . , 𝐾

}
, which can be rule-based (artificial)

or network (pre-trained). Assume that an opponent policy 𝜋𝑤 is a probability distribution on Π, 𝑤 ∈ Δ(Π),
which means at the beginning of each episode, the agent −1 samples a policy from Π with probability distribu-
tion 𝑤 and executes this policy throughout the episode. Different from the setting of only switching between
fixed policies in previous work, we allow more complex opponent policy changes, making the setting looser
and more general.

Ideally, our goal is to find a general response policy 𝜋𝜃 parameterized by 𝜃, which can maximize the reward of
agent 1 against each opponent policy 𝜋𝑤 . However, considering the reality, we maximize the minimum reward
of 𝜋𝜃 against 𝜋𝑤 :

max
𝜃

min
𝑤∈Δ(Π)

E𝜋𝜃 ,𝜋𝑤

[
𝐻−1∑
𝑡=0

𝛾𝑡𝑟1
𝑡

]
(1)

where 𝑟1
𝑡 is the reward of agent 1 at step 𝑡 after performing the action 𝑎1

𝑡 determined by 𝜋𝜃 , 𝐻 is the horizon
of episode, and 𝛾 ∈ (0, 1) is a discount factor. It is also important to note that at any time the agent 1 knows
neither the policy type 𝑘 of opponent nor the distribution 𝑤. This gives us the motivation to infer the type of
opponent policy.

3.2. Representation extraction module
Different from previous opponent modelingmethods that model opponent policies, we use a contrastive learn-
ing approach to self-supervised distinguish trajectories against different opponent policies, so that we only use
the opponent’s observations. We denote trajectory as 𝜏 = {𝑜1

𝑡 , 𝑜
−1
𝑡 }𝑡=𝐻−1

𝑡=0 where 𝑜1
𝑡 and 𝑜−1

𝑡 are the obser-
vations of agent 1 and agent −1 at step t, respectively. Given a set of trajectories T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 }, the
representation of each trajectory is self-supervised extracted by the CPC [21] algorithm.

Figure 1 shows the architecture of the contrastive predictive coding algorithm. First, we encode the observa-
tions by a multi-layer perceptron (MLP) to get a sequence of latent representation 𝑧𝑡 :

𝑧𝑡 = 𝑓MLP(𝑜1
𝑡 , 𝑜
−1
𝑡 ) (2)

Then, use a gated recurrent unit (GRU) to extract the context information for the first t steps:

𝑐𝑡 = 𝑓GRU(𝑧:𝑡) (3)

In addition, we also need to define the similarity function 𝑓𝑘 . To unify the dimensions, we use a bilinear
product function:

𝑓𝑘 (𝑧𝑡+𝑘 , 𝑐𝑡) = 𝑧𝑇𝑡+𝑘𝑊𝑘𝑐𝑡 (4)

where 𝑘 = 1, . . . , 𝐻 − 𝑡 − 1 and𝑊𝑘 is different for each k. For given set of trajectory T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 }, 𝑐𝑖𝑡
and 𝑧𝑖𝑡+𝑘 are calculated from 𝜏𝑖 . Since representations extracted from the same trajectory have similarities, we

3. METHOD
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Figure 1. Overview of contrastive predictive coding (CPC), a representation extraction algorithm by contrasting positive and negative sam-
ples.The context 𝑐𝑡 and subsequent state embeddings {𝑧𝑡+1 , 𝑧𝑡+2 , . . . , 𝑧𝐻−1 } are regarded as positive samples when they come from the same
trajectory; otherwise, they are regarded as negative samples. By increasing the similarity between positive samples and reducing the simi-
larity between negative samples, we obtain trajectory representations to distinguish different opponent policies.

maximize 𝑓𝑘 (𝑧𝑖𝑡+𝑘 , 𝑐
𝑗
𝑡 ) when 𝑖 = 𝑗 and minimize 𝑓𝑘 (𝑧𝑖𝑡+𝑘 , 𝑐

𝑗
𝑡 ) when 𝑖 ≠ 𝑗 . The InfoNCE loss is:

LInfoNCE = − 1
𝑀 (𝐻 − 𝑡 − 1)

𝐻−𝑡−1∑
𝑘=1

𝑀∑
𝑖=1


log

𝑒𝑥𝑝( 𝑓𝑘 (𝑧𝑖𝑡+𝑘 , 𝑐
𝑖
𝑡))

𝑀∑
𝑗=1
𝑒𝑥𝑝( 𝑓𝑘 (𝑧 𝑗𝑡+𝑘 , 𝑐

𝑖
𝑡))


(5)

where 𝑡 is random sampling within a suitable range, M is the size of the trajectory set (batch size), and H is
the horizon. Optimizing this loss will extract a unique representation of each trajectory that is different from
others.

As described above, we self-supervise the extraction of policy representations from trajectories through con-
trastive learning, which can discriminate different opponent policies in representation space. Especially the
contrast between positive and negative samples makes the representation highlight the differences between
trajectories, which is beneficial for subsequent clustering operations.

3.3. Experience replay module
In Section 3.2, we introduce how to extract the representations of opponent policies from the trajectories that
interact with opponents. Different from the previous approaches of directly using representations to assist
training, we focus on another aspect, that is, the impact of non-stationary opponents on the experience replay.
Experience replay is a commonly used method in reinforcement learning whose purpose is to improve the
sample efficiency. When the replay buffer is full, the data are usually processed in a first-in, first-out (FIFO)
manner. When the opponent uses a fixed policy, the environment can be treated as a deterministic MDP, and
FIFO is feasible. When the opponent is non-stationary, the replay buffer will pass through data that interacts
with different types of opponent policies. The decrease in the proportion of certain types of data will affect the
effectiveness against such an opponent, and the loss of old data may lead to the forgetting of learned strategies.
Therefore, we design new data in and out, a mechanism to keep as many types of trajectory data as possible in
the replay buffer.

http://dx.doi.org/10.20517/ir.2022.09
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We cluster the trajectory data in the replay buffer in the representation space, and, for the representation, 𝑧𝑖:𝐻
and 𝑧 𝑗:𝐻 of the trajectories 𝜏𝑖 and 𝜏𝑗 , we use the average Euclidean distance to measure the distance between
them:

𝑑𝑖, 𝑗 =
1
𝐻

𝐻−1∑
ℎ=0
| |𝑧𝑖ℎ, 𝑧

𝑗
ℎ | | (6)

For all trajectories in the replay buffer, we can calculate the representation distance matrix 𝐷 by Equation
(6). Additionally, the truncation method can be used for trajectory representations of different lengths, or the
dynamic time warping (DTW) can be used instead of the Euclidean distance.

Since the number of opponent policies is unknown, some clustering methods such as K-means are not suitable
for use. We use agglomerative clustering to distinguish trajectory representations in the replay buffer, which is
implemented in the standard algorithm library scikit-learn, and the clustering threshold is set as the average
distance of all trajectory representations. Then, the labels of the trajectories that interact with the opponents
are obtained in a self-supervised manner.

To balance the proportion of different types of data in the replay buffer, we no longer pop the oldest data when
the replay buffer is full, but pop the oldest data from the largest class based on the clustering results. This
ensures the dynamic balance of various types of data to a certain extent. Even if a certain type of opponent
policy has a very low probability of appearing in a period, the data interacting with it can maintain a certain
proportion in the replay buffer, thereby avoiding policy forgetting. However, this approach will lead to some
useless old data existing in the replay buffer for a long time, reducing the training effect of reinforcement
learning. We introduce a probability threshold 𝜌, where the replay buffer pops the oldest data from the largest
class with the probability of 𝜌 and pops the oldest data from the entire replay buffer with the probability of
1 − 𝜌. This allows the data that hinder training to be popped. In this paper, we set 𝜌 = 0.9.

3.4. Combine with reinforcement learning
This section describes the overall algorithm flow in combination with the classic reinforcement learning algo-
rithm soft actor–critic (SAC) whose optimization goal is:

𝐽 (𝜋) =
𝑇∑
𝑡=0
E(s𝑡 ,a𝑡 )∼𝜌𝜋 [𝑟 (s𝑡 ,a𝑡) + 𝛼H (𝜋 (· | s𝑡))] (7)

whereH (𝜋 (· | s𝑡)) is the additional policy entropy added to encourage exploration and 𝛼 is the temperature
parameter determines the relative importance of the entropy term. However, our method can be combined
with any off-policy reinforcement learning algorithm.

Since the training speed of representation learning ismuch faster than that of reinforcement learning, we set the
training frequency 𝐹𝑐 for it to balance their learning rate. In addition, this also considers that the flow of data in
the replay buffer in the short term will not change the data distribution in it. Considering that the introduction
of the clustering requires a large amount of extra computation, and the data that newly entered replay buffer
will not be popped in the short term, we update the labels of trajectory representations by clustering every 𝐹𝑙
episode.

The complete algorithm is described inAlgorithm 1. The training of representation learning and reinforcement
learning process alternately. Since the FIFO rule is still followed in the class, ourmethodwill not have toomuch
influence on the training of reinforcement learning; at the same time, the diversity of the data in the replay
buffer is guaranteed as much as possible, so that the policy forgetting caused by the non-stationary of the
opponent policy is avoided.
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Algorithm 1 SAC with TRC.

Require: Initialize SAC parameter vector 𝜃, CPC parameter vector 𝜑, total episode 𝑇 , episode horizon 𝐻,
batch size 𝑀 , CPC training frequency 𝐹𝑐 , labels update frequency 𝐹𝑙 , and threshold 𝜌.

1: for episode 𝑖 = 0 . . . 𝑇 − 1 do
2: opponent choose policy 𝜋−1

3: for step 𝑡 = 0 . . . 𝐻 − 1 do
4: 𝑎1

𝑡 ∼ 𝜋𝜃
(
𝑎1
𝑡 | 𝑜1

𝑡 , 𝑜
−1
𝑡

)
5: 𝑎−1

𝑡 ∼ 𝜋−1 (𝑎−1
𝑡 | 𝑜1

𝑡 , 𝑜
−1
𝑡

)
6: 𝑜1

𝑡+1, 𝑜
−1
𝑡+1 ∼ 𝑝

(
𝑜1
𝑡+1, 𝑜

−1
𝑡+1, | 𝑜1

𝑡 , 𝑜
−1
𝑡 , 𝑎

1
𝑡 , 𝑎
−1
𝑡

)
7: 𝜏𝑖 ← 𝜏𝑖 ∪ {(𝑜1

𝑡 , 𝑜
−1
𝑡 , 𝑎

1
𝑡 , 𝑟 (𝑜1

𝑡 , 𝑜
−1
𝑡 , 𝑎

1
𝑡 , 𝑎
−1
𝑡 ), 𝑜1

𝑡+1, 𝑜
−1
𝑡+1)}

8: end for
9: 𝐷 ← 𝐷 ∪ 𝜏𝑖
10: if 𝑖 mod 𝐹𝑐 == 0 then
11: Sample trajectory batch T from 𝐷

12: Update 𝜑 by Equation (5)
13: end if
14: if |𝐷 | == 𝑀 then
15: if random sample a probability value greater than 𝜌 then
16: Pop the oldest trajectory from 𝐷

17: else
18: if 𝑖 mod 𝐹𝑙 == 0 then
19: Compute 𝑧:𝐻 = 𝑓𝜑 (𝜏) for each 𝜏 in 𝐷
20: Compute distance matrix of trajectory representations by Equation (6)
21: Cluster trajectory representations by agglomerative clustering
22: end if
23: Pop the oldest trajectory from the largest class
24: end if
25: end if
26: Update 𝜃 by SAC algorithm.
27: end for

4. RESULTS
We evaluate our approach in a more complex soccer environment and compare the average returns during RL
training against three baselines. We also discuss the impact of the proportion of data in the replay buffer on
reinforcement learning training and the improvement of our approach to the diversity of trajectories in the re-
play buffer. In addition, we analyze representational clustering by t-distributed stochastic neighbor embedding
(t-SNE) to analyze the properties of different adversary policies at the representational level.

4.1. Game description
Soccer is a classic competitive environment that has been used by many opponent modeling approaches [11,13]

to verify their performance. We extend the rules based on the classic soccer environment and design more
complex rule-based opponent policies based on this. As shown in Figure 2, the environment is a 15 × 15 grid
world, and there are two goals on each end line. At the beginning of the episode, the two agents are in the
center of their respective end lines with 0 energy, and one random agent holds the ball. Each agent has 13
optional actions, moving to any of the 12 grid points within a two-grid range around itself or staying in place,
but moving 2 grids requires 2 energy. The agent with the ball recovers 0.5 energy per step, while the agent
without the ball recovers 1 energy per step, and the upper limit of energy is 2. When both agents are about
to enter the same grid, they stop in place and exchange the ball possession. When the agent dribbles the ball
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Figure 2. The configuration of soccer. The goal of each agent is to drive the ball into the opponent’s goal.

(a) (b)

Figure 3. (a) The average reward curve of interacting with opponent policy 𝜋−1
1 ; and (b) the proportion change curve of opponent 𝜋−1

1

trajectory in replay buffer.

into the opponent’s goal, it gets a +5 reward, while the opponent gets a −5 reward, and then ends this episode.
If the interaction exceeds 50 steps, the episode will also be terminated and each agent will get 0 rewards. The
position, energy, and ball possession are fed back to the agent as observation.

The opponent policies are designed to be random policies based on given rules, which makes it more complex.
Specifically, we design two base opponent policies 𝜋−1

1 and 𝜋−1
2 with different styles. 𝜋−1

1 : Keep away from
the opponent while attacking the upper goal when holding the ball, and get close to the opponent when not
holding the ball. 𝜋−1

2 : Keep away from the opponent while attacking the lower goal when holding the ball, and
defend near its end line when not holding the ball. As described in Section 3.1, we define 𝑤 ∈ [0, 1] as a class
of opponent policies, and, at the beginning of the episode, the opponent chooses a policy from {𝜋−1

1 , 𝜋−1
2 } with

probability distribution {𝑤, 1 − 𝑤}.

4.2. Nonstationary opponent
Wemake the opponent policy switch from 𝑤 = 0.5 to 𝑤 = 0.05 at step 100k to observe the performance of the
agent training by different algorithms in a non-stationary environment. Figure 3a shows the comparison of
the reward curves of our algorithm and three baselines against opponent policy 𝜋−1

1 . In these baselines, vanilla

http://dx.doi.org/10.20517/ir.2022.09
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Figure 4. The average reward curve of interacting with opponent policy 𝜋−1
1 when 𝑤 change from 0.5 to 0, 0.02, 0.04, 0.06, 0.08, and 0.1.

SAC uses no opponent information and performs the worst. DRON uses the opponent’s observation as an
additional input, while DPIQN further uses the opponent’s actions to obtain the representations of opponent
policy to aid training. However, they both perform worse than our work due to a lack of consideration of data
balance. Figure 3b shows the change in the proportion of interaction trajectories with opponent strategy 𝜋−1

1
in the replay buffer. It can be seen that, when the probability of an opponent policy decreases, only our method
can maintain a relatively high proportion of the data obtained by interacting with it in the replay buffer. This
improves responsiveness to such an opponent policy and avoids forgetting the learned policy.

To explain the impact of data ratio on policy forgetting in more detail, we make the opponent policy change
from 𝑤 = 0.5 to 𝑤 = 0, 0.02, 0.04, 0.06, 0.08, 0.1 at step 100k and use SAC for training with the other condi-
tions remaining the same. As shown in Figure 4, when a certain opponent policy appears very infrequently,
a small proportional increase in the replay buffer can bring about higher performance improvement, but, for
data that already exist in significant proportions, the impact of adjusting the data ratio is minimal. This also
explains our motivation to balance the proportion of various data.

4.3. Analysis of clustering
In Section 4.2, we show the performance of the algorithm and analyze the rationale behind data balancing. In
this section, from the perspective of policy representation, we analyze the clustering properties of the policy
representations obtained by contrastive learning in the representation space. Figure 5 shows the visualization
of trajectory encoding after dimensionality reduction by t-SNE. Self-supervised contrastive learning is not
very accurate in distinguishing two types of opponent policies. Because policies may have similar parts, a
type of policy can also be decomposed into several more refined sub-policies. Self-supervised learning of
policy representations only with trajectory information can only be used for coarse clustering. However, our
algorithm does not rely on extremely accurate trajectory clustering and strategy identification but balances the
proportion of various trajectory data generally. This also makes the algorithm have certain robustness.

5. CONCLUSION
This paper constructs a general sampling algorithm based on data balance formulti-agent non-stationary prob-
lems. The trajectory representation of the interaction with the opponent is extracted by comparative learning,
and then the representation is distinguished by hierarchical clustering. Finally, the data balance in the replay
buffer is realized by changing the order of in and out of the replay buffer. We get better performance against
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(a) (b)

Figure 5. t-SNE projection of the embeddings in the soccer environment: (a) the two colors represent the two base opponent policies 𝜋−1
1

and 𝜋−1
2 ; and (b) the different colors represent the classes of trajectory representations encoded by the contrastive learning.

a non-stationary opponent. In particular, we only use the observation information of the opponent, and the
setting is looser than other opponent modeling algorithms. In the future, we would like to combine multi-task
learning algorithms to learn different opponent policies as different tasks and explore more efficient ways to
distinguish opponent policies.
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