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Abstract

Aim: The majority of preclinical studies investigating aberrant glial-neuroimmune actions underlying neuropathic 
pain have focused on male rodent models. Recently, studies have shown peripheral immune cells play a more 
prominent role than glial cells in mediating pathological pain in females. Here, we compared the onset and duration 
of allodynia in males and females, and the anti-allodynic action of a potentially novel therapeutic drug (BIRT377) 
that not only antagonizes the action of lymphocyte function-associated antigen-1 (LFA-1) to reduce cell migration in 
the periphery, but may also directly alter the cellular inflammatory bias. 

Methods: Male and female mice were subjected to peripheral nerve injury chronic constriction injury (CCI) applying 
two methods, using either 4-0 or 5-0 chromic gut suture material, to examine potential sex differences in the 



onset, magnitude and duration of allodynia. Hindpaw sensitivity before and after CCI and application of intravenous 
BIRT377 was assessed. Peripheral and spinal tissues were analyzed for protein (multiplex electrochemiluminescence 
technology) and mRNA expression (quantitative real-time PCR). The phenotype of peripheral T cells was determined 
using flow cytometry. 

Results: Sex differences in proinflammatory CCL2 and IL-1β and the anti-inflammatory IL-10 were observed from 
a set of cytokines analyzed. A profound proinflammatory T cell (Th17) response in the periphery and spinal cord 
was also observed in neuropathic females. BIRT377 reversed pain, reduced IL-1β and TNF, and increased IL-10 and 
transforming growth factor (TGF)-β1, also an anti-inflammatory cytokine, in both sexes. However, female-derived 
T cell cytokines are transcriptionally regulated by BIRT377, as demonstrated by reducing proinflammatory IL-17A 
production with concurrent increases in IL-10, TGF-β1 and the anti-inflammatory regulatory T cell-related factor, 
FOXP3. 

Conclusion: This study supports that divergent peripheral immune and neuroimmune responses during neuropathy 
exists between males and females. Moreover, the modulatory actions of BIRT377 on T cells during neuropathy are 
predominantly specific to females. These data highlight the necessity of including both sexes for studying drug 
efficacy and mechanisms of action in preclinical studies and clinical trials. 

Keywords: Neuropathic pain, glia, neuroimmune, peripheral immune, T cells

INTRODUCTION
While male and female rodent models of peripheral neuropathic pain generate similar clinical features 
such as pathological sensitivity to light touch referred to as allodynia, emerging evidence suggests that the 
biochemical and cellular aspects underlying allodynia are different between the sexes. Clinical evidence 
strongly implicates sex differences in pain sensitivity[1,2], and preclinical data supports these clinical 
findings by demonstrating that peripheral immune and glial cells exhibit sex differences in response 
to peripheral nerve injury leading to neuropathy[3-6]. Understanding sex divergent components of pain 
pathophysiology has drawn significant attention and is of paramount importance for identifying effective 
pain therapeutics in males and females. 

Chronic neuropathic pain following peripheral nerve injury involves dynamic neuroimmune interactions 
between peripheral immune cells that traffic to the injured nerve, the dorsal root ganglia (DRG), and 
the spinal cord, and the actions of glial cells within the spinal cord[7-9]. Peripheral nerve injury leads 
to alterations in proinf lammatory cytokines including interleukin (IL)-1β, IL-6, and TNF, and anti-
inflammatory cytokines such as IL-10 and transforming growth factor-β (TGF-β1) at anatomical sites of 
the pain pathway[10-16]. Spinal glia and DRG satellite glia contribute to persistent allodynia by responding 
to and releasing these proinflammatory cytokines and by reducing IL-10 expression[12,14,17-19]. Additionally, 
the chemokine CCL2 is elevated in DRG of injured nerves and facilitates leukocyte migration to DRG and 
spinal cord[19,20]. However, most of these reports were studied male models of neuropathy or the sex was 
unspecified, with few studies utilizing females[21-24], or compared sex differences underlying pathological 
pain[3-5,25-28]. 

A substantial role of the adaptive immune response is now recognized as underlying aberrant 
neuroimmune actions following nerve injury. Activated CD4 T cells, specifically proinflammatory Th1 and 
Th17 cells, infiltrate the injured peripheral nerve and the lumbar spinal cord (LSC)[29-33], and are thought 
to contribute to glial activation[34]. Conversely, anti-inflammatory T regulatory (Treg) cells control spinal 
glial-immune proinflammatory activation and are protective against neuropathy[35]. A few studies have 
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implicated a T cell role by examining cell migration to the DRGs[27,36] or the spinal cord[30] in neuropathic 
females. However, it is critical to identify T cell subtypes present in these key anatomical regions because 
discrete subtypes exert a distinctly different impact on surrounding tissue during chronic pain. The critical 
roles of subtypes of T cells within discrete anatomical pain-related regions (peripheral or central) remain 
unclear.

We hypothesized that peripheral immune and glial responses following peripheral nerve damage are 
quantitatively and qualitatively (specific immune cells) different between sexes. If true, pain therapy that 
targets specific immune actions may require distinctly different mechanisms to exert efficacy. Lymphocyte 
function-associated antigen-1 (LFA-1) is an adhesion molecule expressed on myeloid and T cells and 
possibly spinal microglia and is critical for immune cell adhesion and migration[37]. In addition to the 
widely characterized role of LFA-1, emerging evidence suggests that LFA-1 regulates various macrophage 
proinflammatory functions as well as T cell activation and differentiation[38-43]. Based on existing gaps in 
understanding sex differences in glial, innate or adaptive immune cell function driving neuropathic pain 
and the related cytokine/chemokine repertoire, the current study examined whether: (1) the development, 
magnitude, and duration of mechanical allodynia were different between male and female mice subjected 
to a well-established peripheral nerve injury (CCI) model; (2) blocking immune cell migration and/or 
altering the proinf lammatory phenotype by preventing peripheral LFA-1 actions using a blood-spinal 
barrier impermeable small molecule antagonist, BIRT377[42,44,45], reduces allodynia in males and females; 
and (3) BIRT377 directly modulates myeloid/glial-derived and T cell-related pro- and anti-inflammatory 
cytokine expression. The results identified differences in the magnitude of immune factor expression 
contributing to neuropathy between males and females, and that BIRT337 reversed allodynia similarly 
between males and females, and altered the corresponding expression of sex-specific immune factors.

METHODS
Animals
Experiments were performed using 10-14 week-old C57BL/6 mice (wildtype; FFID: IMSR JAX:000664) 
purchased from Jackson Laboratories or were bred in-house with parent mice purchased from Jackson 
Laboratories (Bar Harbor, ME, USA). Age at the time of surgery ranged from 11-12 weeks for males and 
10-12 weeks for females. Mice were housed with their cage-mates in groups of 2-5, in temperature (23 °C ± 
2 °C) and light (12:12 light:dark; lights on at 6:00 am) controlled rooms, fed standard rodent chow and 
water ad libitum, and acclimated for 1-2 weeks prior to handling. All mice were routinely monitored by 
the animal care staff under the direction of the institutional veterinarian, with cages and bedding changed 
every 7 days. Mice were maintained in separate male or female mouse colonies and were behaviorally 
assessed in separate testing rooms at the University of New Mexico (UNM) Health Sciences Center (HSC) 
Animal Facility. Pilot studies of behavioral hindpaw threshold responses were conducted to determine 
whether different phases of the estrous cycle altered behavioral outcomes at baseline (BL) and after surgical 
manipulation. Despite female mice entering experiments at different phases of the estrous cycle, hindpaw 
responses remained stable and predictable. Consequently, the stage of the estrous cycle varied and was 
not considered a key factor influencing hindpaw sensory responses throughout the chronic neuropathy 
paradigm.

All procedures were approved by the Institutional Animal Care and Use Committee of the UNM HSC, 
conducted in accordance to the NIH Guidelines for the Care and Use of Laboratory Animals, and closely 
adhered to recommendations from the International Association for the Study of Pain for the use of 
animals in research (Foundation for Biomedical Research, The Biomedical Investigator’s Handbook for 
Researchers Using Animal Models. Washington, D.C.: FBR, 1987. WWW: http://www.fbresearch.org/).
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Chronic constriction injury
A modification of Bennett and Xie’s[46] sciatic nerve (SCN) Chronic constriction injury (CCI) was used 
after BL hindpaw threshold assessment, as detailed previously[47]. Briefly, following isoflurane anesthesia 
(induction at 3.0 vol.% followed by 1.5 vol.%-2.0 vol.% in oxygen, 2.0 L/min), the dorsal left thigh was shaved 
and cleaned using 70% Ethanol (EtOH) that was air dried prior to surgery. Using aseptic procedures, the 
SCN was exposed using blunt dissection scissors through the muscular fascia. Sterile plastic probes were 
used to locate and lift the SCN from its position between the muscles. Three, 2 cm-length pieces of chromic 
gut suture (Ethicon: 4-0 or 5-0, Cat#635H and Cat#634G, respectively) were then snugly tied around the 
SCN proximal to the trifurcation with care to avoid pinching the nerve, with ~1.5 mm spacing between 
sutures. Throughout this process, the nerve was kept thoroughly irrigated using isotonic sterile saline 
(Hospira; Cat#NDC 0409-4888-03). Sham surgeries were performed identically, but without the chromic 
gut ligation. The nerve was then placed back into its position using the plastic probes, and the muscles were 
then closed using one 4-0 silk suture (Ethicon; Cat#83G). Skin was closed using two ReflexTM wound clips 
(Kent Scientific Corp; Cat#INS750344). Total time for the surgical procedure was ~20 min, followed by a ~10 
min recovery from anesthesia. Body weight was monitored prior to and after surgery to confirm healthy 
recovery [Supplementary Figure]. Following surgery, wound condition, hindpaw autotomia, activity levels 
and grooming appearance were checked routinely (each 1-2 days). Less than 1.0% of animals revealed 
abnormal recovery and were immediately euthanized when identified.

Behavioral assessment of hindpaw mechanical allodynia
Mechanical allodynia was chosen for investigation because pathological pain intensity (touch sensitivity) 
occurs clinically at much lower ranges of stimulus intensity compared to that observed when examining 
mechanical or thermal hyperalgesia. Thus, the impact of clinical allodynia is thought to be much greater[48]. 
Mice were habituated to the testing environment for ~45 min within the first 4 h of the light cycle, for four 
periods over the course of one week prior to BL hindpaw assessment. Hindpaw threshold responses to light 
mechanical stimuli were assessed by adopting principles of the von Frey fiber test originally developed for 
the rat[49], and modified for the mouse, as recently described in detail[47]. Hindpaw assessment occurred 
within the first 2 h of the light cycle in testing groups of 4-6, with testers blind to experimental conditions. 
Each group comprised a minimum of 1-4 mouse/mice per condition to ultimately reach n = 6 mice/
experimental condition. Time points for behavior assessments were chosen based on pilot studies and prior 
reports to capture potential subtle differences during the development of allodynia and BIRT377-mediated 
pain reversal.

The von Frey test was applied using nine calibrated monofilaments (touch-test sensory evaluator: North 
Coast Medical; Cat#NC12775) applied for a maximum of 3.0s to the plantar surface of both the left 
and right hindpaws, with laterality of hindpaw testing occurring randomly, with repeated stimulus 
presentations to a single animal using a minimum inter-trial stimulus period of 30s. The log intensity 
of the nine monofilaments used is defined as log10 (grams × 10,000) with the range of intensity being as 
follows, reported in log (grams): 2.36 (0.022 g), 2.44 (0.028 g), 2.83 (0.068 g), 3.22 (0.166 g), 3.61 (0.407 g), 
3.84 (0.692 g), 4.08 (1.202 g), 4.17 (1.479 g), and 4.31 (2.042 g). Testing began using the fiber marked 3.22 
with subsequent monofilaments used based on the response/non-response of the mouse to the previous 
monofilament tested: if no response was elicited by the monofilament stimulus presented (e.g., 3.22), 
the next “heavier” monofilament was tested (e.g., 3.61); if a response was elicited by the monofilament 
stimulus presented (e.g., 3.22), the next “lighter” monofilament was tested (e.g., 2.83). A maximum total of 
six stimulus presentations were applied to each paw. The total number of positive and negative responses 
were then entered into the computer software program, PsychoFit (http://psych.colorado.edu/~lharvey: 
RRID: SCR_015381) to determine the absolute withdrawal threshold (50% paw withdrawal threshold), 
as previously described[50]. The PsychoFit program fits a Gaussian integral psychometric function to the 
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observed withdrawal rates for each monofilament using a maximum-likelihood fitting method[47,51]. The 
interpolated 50% withdrawal thresholds were then used for statistical analysis. 

BIRT377 preparation
(R)-5-(4-bromobenzyl)-3-(3,5-dichlorophenyl)-1,5-dimethylimidazolidine-2,4-dione (BIRT377) was 
first reported and characterized by Kelly et al.[45]. BIRT377 is a small molecule that blocks the active 
conformational change of the transmembrane β2-integrin adhesion molecule, leukocyte function-associated 
antigen-1 (LFA-1), that is expressed on leukocytes (e.g., T cell and myeloid cells)[37]. Upon activation from 
chemotactic signaling, LFA-1 undergoes a series of conformational changes from a bent inactive position to 
a progressively straightened and active position, thus allowing binding of LFA-1 with the surface receptor, 
intercellular adhesion molecule-1 (ICAM-1) expressed on endothelial cells[52]. Upon LFA-1/ICAM-1 interaction, 
cells expressing LFA-1 (leukocytes) are capable of undergoing transendothelial migration, and subsequently 
traffic to regions where damage- or pathogen-associated tissue signals arise. Therefore, BIRT377 binding to 
LFA-1 inhibits LFA-1/ICAM-1 molecular interactions, and prevents circulating leukocyte cell adhesion and 
migration[44,45,53] to sites of inflammation. BIRT377 abolishes T cell and antigen presenting cell interactions 
(referred as immune synapse), which is crucial for T cell activation[54]. Moreover, BIRT377 is bioavailable and 
easier to formulate for oral administration than antibodies against LFA-1[44,45] and BIRT377 is impermeable 
to blood-spinal cord barrier[42]. Therefore, i.v. injection of BIFT377 is expected to impact: (1) leukocyte 
migration to peripheral sites and across spinal endothelial cells; (2) macrophage proinflammatory function 
and possibly T cell differentiation in the periphery; and (3) neuron-to-glial and immune communication in 
the LSC due to BIRT377-mediated modulation in the periphery during neuropathy.

In an initial experiment, BIRT377 was gifted by HTW and CRW (University of Minnesota, College of 
Pharmacy, MN, USA), with later experiments where BIRT377 was made commercially available (Tocris; 
Cat#4776). BIRT377 was initially reconstituted in 200 proof ethyl alcohol EtOH (Sigma-Aldrich; Cat#7023) 
as a stock solution (22.156 mg/mL), followed by creating aliquots (221.56 μg of BIRT377 in 10 μL), which 
were stored in a clean sealed container at 4 °C for later use. On the day of intravenous (i.v.) injection, 
one aliquot was diluted using sterile water (Hospira; Cat# NDC 0409-4887-10), such that each 50 µL i.v. 
injection contained 2.5 µg BIRT377 (113.089 μM), and vortexed for 2 min. This dose was chosen based on 
a pilot study of various doses (ranging from 100 ng to 5 µg) that 2.5 µg was the lowest reliably efficacious 
dose in rats (unpublished data and[42]). Vehicle contained 0.226% EtOH in sterile water. Animals were 
injected within the hour following BIRT377 dilution.

Intravenous BIRT377 injection
For all experiments characterizing BIRT377 efficacy, i.v. BIRT377 or equivolume vehicle injection into tail 
veins of unanesthetized mice occurred on Day 10 post-surgery within 2.5 h of the initiation of the light 
cycle. Using aseptic procedures, 50 µL of BIRT377 or vehicle was collected into individual 1 cc, 27-G 5/8 
insulin syringes (Becton Dickinson; Cat#329412). The weight of each mouse was recorded followed by 
placement for 30 s under a heat lamp with the mouse held in place by the tail and a soft, clean cloth placed 
over the body to avoid excessive heat to the body while leaving the tail exposed. Heating the tail facilitates 
tail vein dilation for ease of injection. Each mouse was moved immediately into a plastic restraint with 
a slit through the top and back so as to allow easy placement of the mouse into the restraint, and proper 
positioning of the tail. Held firmly in place, a 27-G sterile needle attached to a sterile 1 cc syringe was 
inserted into the lateral tail vein, followed by a small amount of blood efflux into the syringe hub, with a 
subsequent 5 s injection. Success of achieving accurate needle placement upon the first attempt was greater 
than 99%. Following injection, a small piece of sterile gauze was placed over the injection site to stem 
bleeding, and the mouse was removed from the restraint and placed back into its home cage. All mice 
appeared normal (e.g., moving, grooming, interacting) following injections. The total time required for 
handling and injection was less than 2 min without anesthesia. 
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Sciatic nerve biopsy
Following characterization of the timecourse of hindpaw sensory thresholds from sham or CCI treated 
mice using either 4-0 or 5-0 chromic gut, the presence of suture material and the condition of the SCN 
were carefully examined. Following complete return of sensory thresholds similar to BL levels, the 
ipsilateral SCN was dissected, and the degree of both suture absorption and nerve perturbation was noted. 
The appearance of each SCN at the time of dissection was documented by photograph.

To accomplish biopsies, animals were euthanized just prior to biopsy using 2% CO2 in a closed container 
followed by cervical dislocation. An incision was then made on the ipsilateral skin overlaying the CCI 
manipulation, and the skin was retracted to expose the underlying muscle and surrounding area, 
which appeared to be healthy. Blunt dissection scissors were used to re-expose the underlying SCN. 
The surrounding muscle and remaining sutures and encapsulating sheath were removed, followed by 
dissection of an approximately 1 cm length of SCN. The nerve segment was then placed next to a ruler (in 
centimeters), on a clean black surface for documentation.

Tissue collection for RNA and protein analysis
Tissue collection was conducted in six cohorts of mice (8 mice in each cohort, N of 1 from each 
experimental condition) as previously described[47,51] and modified as described here. Immediately following 
behavioral analysis on Day 13 post-surgery (Day 3 post-injection), mice were deeply anesthetized under 
isoflurane (10 min in 5% isoflurane and in oxygen at 2 L/min), followed by rapid transcardial perfusion 
with ice cold 0.1 M phosphate buffered saline (PBS; pH = 7.4; flow rate 10 mL/min). Following collection 
of the spleen, mice were placed on a frozen gel refrigerant pack (Glacier Ice, Pelton Shepherd Industries), 
and the LSC (L3-L6) was dissected, with the dorsal spinal cord ipsilateral and contralateral to the sciatic 
ligation stored separately. Additionally, lumbar DRG (L4-L6) ipsilateral to the sciatic ligation, and the SCN 
were dissected. All tissues were immediately placed in DNase/RNase/Protease-free 1.5 mL disposable pellet 
mixer microtubes (VWR International; Cat#47747-358), briefly spun down, frozen on dry ice, and stored at 
-80 °C for future analysis.

Total RNA isolation
Total RNA was extracted as described previously[47], with minor modifications as briefly described here. 
Extraction was performed using the miRNeasy Micro Kit (Qiagen; Cat#217084) per manufacturer’s 
instructions except where noted. Homogenization was performed using a motormlized VWR disposable 
pellet mixer and cordless motor pestle system (VWR; cordless pestle motor: Cat#47747-370; 1.5 mL 
microtubes: Cat#47747-362; 1.5 mL pestle: Cat#47747-358; and 1.5 pestle and microtube combo: Cat#47747-
366: DRGs only) followed by addition of Qiazol Lysis Reagent (Qiazol; Qiagen; Cat#79306). DRGs were 
then transferred into microtubes prior to homogenization. Samples were homogenized in Qiazol with the 
motorized pestle for 60 s, and used for RNA extraction (Qiagen; miRNeasy Micro Kit). SCN and LSC were 
homogenized prior to aliquoting the tissue into two microtubes for protein or RNA extraction. 100 µL of 
chilled 1 × phosphate buffered saline (PBS; 10 × PBS diluted to 1 × with DNase/RNase free water; Sigma-
Aldrich; Cat#P7059; Cat#W4502 respectively) was added to the tube containing the tissue. The SCN was 
chopped quickly using scissors for 30 s. Both SCN and LSC were then homogenized with the motorized 
pestle for 15 s. After initial homogenization, 40 µL of the homogenized solution was removed and placed 
into a separate 1.5 microtube containing 150 µL of chilled Qiazol and homogenized for an additional 15 s 
for LSC, or 30 s for SCN, prior to using the miRNeasy Micro Kit for RNA extraction.

Minor changes were incorporated for mRNA extraction using the miRNeasy kits as follows. An initial 
homogenization in 150-200 µL of Qiazol occurred, with the final volume increased to 700 µL following 
homogenization. Samples were vortexed and incubated at room temperature (RT) for 7 min, followed by 
the addition of 140 µL of chloroform (Sigma-Aldrich; Cat#C2432). The samples were then hand-shaken 
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vigorously for 15 s, incubated for 4 min at RT, hand-shaken vigorously for 10 s, and then centrifuged in 4 
°C at 12,000 × g for 15 min. A portion, 300 µL, of the aqueous layer was extracted and placed into a clean 
RNase/DNase/Protease free 1.5 mL tube and 1.5 × aqueous layer (450 µL) of 200 proof EtOH (Sigma-Aldrich; 
Cat#E7023) was added to tube, pipetted 4-6 × to mix, moved to collection columns, and centrifuged in 
~20 °C at 9,000 × g for 30 s. This was followed by a wash of 700 µL of RWT (provided with Qiagen kit) 
and centrifuged (~20 °C at 9,000 × g, 30 s), washed 2 × with 500 µL RPE (provided with Qiagen kit) and 
centrifuged (~20 °C at 9,000 × g, 30 s) after each, and washed 2 × with 500 µL 80% EtOH (100% EtOH diluted 
with sterile RNase/DNase/Protease free water; Sigma-Aldrich; Cat#W4502), and centrifuged (~20 °C at 9,000 × g, 
2 min) after each. Caps were cut from columns and samples were dried by centrifugation (~20 °C at 20,627 × 
g, 12 min), and placed into RNA collection tubes with 14 µL sterile water (provided with Qiagen kit) added 
directly to the column filter, and centrifuged (~20 °C at 20,627 × g, 1 min). The concentration and quality of 
the total RNA was assessed by NanoDrop (Thermo Scientific, MA, USA).

mRNA Analysis by Quantitative Real-Time PCR
Total RNA samples were diluted to a standardized RNA concentration: 90 ng/μL for SCN, 70 ng/μL for 
lumbar dorsal horn, and 100 ng/μL for DRG. Total RNA (0.9-1.2 μg) was used to synthesize cDNA. For 
reverse transcription (cDNA), SuperScriptTM IV VILOTM cDNA Synthesis Kit (Invitrogen) was used per 
manufacturer’s instructions. Levels of mRNA transcripts were measured and analyzed, as previously 
described[47,55]. The following dilution factors (indicated in parentheses) were applied to cDNA samples for 
assessment of transcripts of interest in given tissues: ipsilateral and contralateral LSC (1:2.2), ipsilateral 
SCN (1:2.5), and ipsilateral DRG (1:3). The 1:200 dilutions of cDNA were used for assessment of the 
normalizer transcripts (18s RNA) for each of the tissue samples. Levels of mRNAs as well as 18s rRNA 
(Rn18s) were assayed in triplicate via quantitative real-time PCR (qRT-PCR) with Taqman Gene Expression 
Assays (cat# 4351370, ThermoFisher Scientific). In cases of triplicates with standard deviation of more than 
0.1, the average value of the two closest replicates were included. All selected gene expression assays were 
identified by the manufacturer to be the “best coverage” assays, unless otherwise noted, and designed to 
exclude detection of genomic DNA. mRNA levels were analyzed with the formula: C = 2CTNormalizer

/2CTTarget

, as 
previously described[55,56]. 

To test whether BIRT377 treatment influenced the inflammatory milieu in collected tissues, the following 
pain-relevant proinflammatory and anti-inflammatory factors were assessed: C-C motif chemokine ligand 
2 (CCL2, Ccl2), interleukin-1β (IL-1β, il1b), (TNF, TNFα, Tnf), interleukin-10 (IL-10, Il-10), TGF-β1, Tgfb1. 
Monocyte and T cell-specific cytokines and cellular markers were analyzed: integrin alpha M (CD11b, 
Itgam, a common monocyte/macrophage marker), cluster of differentiation 3 (CD3; expressed on all T 
cells), forkhead box P3 (FOXP3, Foxp3) which is expressed by Treg cells, and Interleukin-17a (IL-17A, Il-17a, 
expressed by proinflammatory Th17 cells)[57-60]. To assess whether BIRT377 treatment may lead to allodynia 
reversal by modulating glial activation in the LSC, the transcript levels of the microglial specific marker, 
transmembrane protein 119 (TMEM119, Tmem119)[47,61], and the astrocyte activation marker, glial fibrillary 
acidic protein (GFAP) were evaluated. All 48 samples (96 for ipsilateral and contralateral LSC) and a “no 
template control” sample for each tissue type was processed for the cDNA preparation or real-time PCRs 
simultaneously.

Multiplex determination of splenic cytokine and chemokine expression
Frozen spleens were homogenized for 60 s in a buffer with protease inhibitors (MesoScale Discovery) 
while kept on ice, and subsequently sonicated (settings: 5 pulses, at 50%, Fisher Scientific). Tissue samples 
were then centrifuged at 4200 × g at 4 °C for 10 min to pellet cellular debris. Cellular lysates (supernatant) 
were collected in a new set of tubes, and protein concentrations were measured by QuickstartTM Bradford 
Protein Assay Kit (Biorad, CA, USA). Splenic cytokine and chemokine levels were determined using 
V-PlexTM multiplex immunoassays (MesoScale Discovery), as described previously[47,51,62,63]. Brief ly, 
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calibrators (provided by the kit) or samples (100 μg protein from each experimental sample per well) were 
loaded onto a “multi-spot” plate in duplicates. Each plate-well is pre-coated with antigen-specific “capture” 
antibodies on independent, spatially well-defined “spots” that are in turn connected to a working electrode 
surface. Following incubation with protein lysates, immobilized proteins were recognized by SULFO-
TAGTM-conjugated antigen-specific “detection” antibodies. Samples were read using a Quickplex SQ120 
Imager (MesoScale Discovery).

Preparation of Naïve CD4 T cell suspension
To further investigate whether LFA-1 contributes to T cell differentiation and their functional responses, 
CD4 T cells were cultured with or without BIRT377 (500 ng/mL). A total of 20 mice (wildtype, FFID: IMSR_
JAX:000664; 10 females and 10 males, 8-10 week-old) were compared in this study. In each experiment, 
5 male and 5 female mice were used, with two repeat experiments (total of 10 male and 10 female mice). 
No handling occurred with these mice. Mice were sacrificed with CO2 asphyxiation, followed by cervical 
dislocation. Under sterile conditions, spleens and lymph nodes (cervical, inguinal and brachial) were 
collected in tubes containing ice-cold PBS with 2% fetal bovine serum (FBS; Gibco, Thermofisher Scientific, 
MA, USA). Spleens and lymph nodes were disrupted using a micro-plunger to press the tissues through a 
70 µm nylon mesh. Cells were centrifuged at 300 × g for 10 min at 4 °C and resuspended at 1 × 108 nucleated 
cells/mL in PBS with 2% FBS and 1mM EDTA (ethylene diaminetetraacetic acid). Naïve CD4 T cells 
(CD4+CD44lowCD62Lhigh) were isolated using EasySepTM Naïve CD4 T Cell Isolation Kit, per manufacturer’s 
instructions (Stemcell Technologies, BC, Canada). In this technique, non-naïve T cells were labeled with 
biotinylated antibodies and magnetic particles, allowing for the collection of desired naïve T cells using an 
EasySepTM magnet (Stemcell Technologies, BC, Canada). Live cells were counted on a hemocytometer.

CD4 T cell culture with BIRT377
Our prior data demonstrated that BIRT377 (500 ng/mL) induces a switch of stimulated macrophage 
(RAW264.7) from a proinflammatory bias to an anti-inflammatory state[42]. To examine effects of blocking 
LFA-1 actions on T cells in vitro, isolated male or female derived CD4 T cells were resuspended with 
complete RPMI media[51] and treated with BIRT377 (500 ng/mL). A 24-well tissue culture plate was pre-
coated with anti-CD3 antibody (10 µg/mL in sterile PBS; R&D systems), and stored overnight at 4 °C. The 
tissue culture plate was pre-warmed and washed 3 × with sterile PBS before use. One million CD4 T cells 
were plated per well, with 2-3 well-replicates per experimental condition. Cells were cultured with either 
Th17 or Treg differentiation conditions, as described previously[64,65], with minor modifications. Brief ly, 
in the presence of TCR (T cell receptor) stimulation by anti-CD3 antibody, a cocktail of Th17 polarizing 
cytokines was applied as follows: anti-mouse CD28 (5 µg/mL), TGF-β1 (2.25 ng/mL), IL-1β (20 ng/mL), 
IL-6 (30 ng/mL), IL-23 (30 ng/mL), anti- IFNγ (10 µg/mL). For Treg differentiation, a cocktail containing 
CD28 (2 µg/mL), IL-2 (20 ng/mL), and TGF-β1 (5 ng/mL) was added to the cells. BIRT377 treatment 
(500 ng/mL) was applied simultaneously with the Th17 or Treg cytokine T cell stimulation mixtures 
throughout the culture timecourse (4 days). Anti-CD3, anti-CD28, and anti-IFNγ were purchased from 
eBioScience (Thermofisher Scientific, MA, USA), and TGF-β1, IL-1β, IL-6, IL-23 and IL-2 were purchased 
form PeproTech (NJ, USA). Pooled CD4 T cells from naïve mice (5 male or 5 female mice maintaining sex-
separate tubes) were used for two independent experiments, followed by flow cytometry procedures similar 
to that detailed in prior reports[66-69].

Intracellular staining and flow cytometry 
On Day 4 of T cell differentiation culture, cells were collected, washed with 1 × PBS (300 × g, 5 min, 4 °C), 
kept on ice to prevent cytokine secretion, and stained for intracellular levels of pro- or anti-inflammatory 
cytokine or transcription factor (protein) production. Proinflammatory markers included retinoid-related 
orphan receptor-ɣt (RORɣt), the Th17-associated transcription factor, and the cytokines, IL-17A and TNF. 
Anti-inflammatory markers included the cytokines IL-10 and TGF-β1. Cells were first stained for viability, 
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surface antigens, and intracellular proteins, as described previously, with minor modifications[51]. Briefly, 
cells were pelleted into FACS staining tubes (BD Falcon) and incubated with Fc-block (blocking buffer) 
for 10 min on ice, stained with viability dye (25 min, on ice, dark) and then incubated with CD4 antibody 
(25 min, on ice, dark). To stain for RORɣt and intracellular cytokines (IL-17, TNF, IL-10 and TGF-β1), an 
intracellular cytokine staining kit (Cat#00-5523-00, eBioScience, Thermofisher Scientific, MA, USA) was 
used. With this protocol, cells were fixed and permeabilized for 60 min at RT and protected from light. 
Then cells were washed 2× with permeabilization buffer (2 mL/tube) for 5 min at RT. To prevent non-
specific binding of the antibodies, cells were incubated with blocking buffer (containing 2.5 µg anti-mouse 
CD32 purified antibody) for 15 min on ice. Without washing, fluorochrome conjugated antibodies against 
RORɣt, IL-17A, and TNF (cells from Th17 differentiation wells), or against IL-10 and TGF-β1 (cells from 
Treg differentiation wells), were added, and cells were incubated for 45 min at RT in the dark. Cells were 
then washed 2 × again with 2mL of permeabilization buffer at 300 × g for 5 min, at 4 °C, resuspended in 
300 μL FACs buffer (1 × PBS containing 1% bovine serum albumin and 1mM EDTA), and kept on ice 
protected from light until data acquisition. Blocking buffer was purchased from BD Biosciences (Fc block, 
Cat#553141). All the fluorochrome conjugated antibodies were purchased from eBioscience (Thermofisher 
Scientific, MA, USA) and used at 0.125-1 μg/per 106 cells per tube, as recommended by the manufacturer. 
T cell events (50,000) were collected using a BD LSR Fortessa Cell Analyzer, and later analyzed via FlowJo 
software v.8.7.4. Only viable (based on light scatter properties and viability dye) CD4 T cells (based 
on positive staining of surface CD4 antigen) were included for further analysis. Positive staining for 
transcription factor and/or cytokines were determined based on staining with fluorochrome conjugated 
isotype controls (IgG2b and IgGa).

Experimental design and statistical analysis
Three independent behavioral experiments were conducted with an n = 6 mice in each group in each 
experiment. Prior work demonstrates n = 4-6 mice/experimental condition is sufficient to yield reliable 
group differences when examining similar endpoints[3,4,13,33-35,47]. The initial experiment was an examination 
of differences in hindpaw sensitivity between sexes following peri-sciatic manipulations (sham vs. 4-0 vs. 
5-0 CCI) during a 56-days timecourse. Thus, a 2 × 3 repeated measures analysis of variance (ANOVA) 
was conducted, with hindpaw thresholds assessed at BL and re-assessed every 1, 2, 3, or 5 days after 
surgical manipulation until complete resolution of allodynia was observed. The behavioral profile of the 
mice presented in Figure 1 was predicted to inform parameters of Experiment 2. That is, to characterize 
the earliest maximal onset, stable maintenance and duration of allodynia in both male and female mice. 
For experiment 2, injection of BIRT377 was administered on Day 10 after surgery, and the efficacy and 
duration of reversal from allodynia by BIRT377 was assessed. Experiment 2 design was a 2 (male vs. 
female) × 2 (vehicle vs. BIRT377) and analyzed by a 2-way repeated measures ANOVA where hindpaw 
assessment occurred prior to and following BIRT377 treatment. The goal of Experiment 3 was to examine 
the biochemical profile (protein and mRNA) in discrete tissue systems at a time when BIRT377 exerts 
maximal efficacy on stable allodynia as determined by Experiment 2. Therefore, Experiment 3 design was a 
2 (male vs. female) × 2 (sham vs. CCI) × 2 (vehicle vs. BIRT377) and analyzed by a 3-way repeated measures 
ANOVA, with re-assessment of hindpaw thresholds terminating at peak BIRT377 efficacy. At this time, 
spleen, SCN, DRG, ipsilateral and contralateral LSC tissues were dissected and processed.

Al l behavioral data was graphed in GraphPad Prism version 7.02 (GraphPad Sof tware Inc.; 
RRID:SCR_002798). All statistics were run using IBM SPSS Statistics version 24 (IBM; RRID:SCR_002865). 
ANOVAs were performed for data collected at BL and on injection day. For all other behavioral timepoints, 
repeated measures ANOVA were performed to assess differences of group and timecourse between 
treatments. The assumption of sphericity was assessed using Mauchly’s Test of Spericity (α = 0.05) and, if 
the assumption of sphericity was violated (P > 0.05), the reported degrees of freedom and p-values were 
adjusted using the Greenhouse-Geisser correction to protect against Type I errors[47,51]. Fisher’s LSD test was 
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applied for post hoc analysis. Relative mRNA transcript levels from qRT-PCR were analyzed using 3-way 
ANOVA on GraphPad PRISM version 7.02 or SPSS. To control the type I error rate during all multiple 
comparisons, Fisher’s LSD test (reported with adjusted P values) was applied for post hoc examination of 
possible group differences selected a priori. Within-group outliers were detected by Grubbs’ Test using the 
GraphPad QuickCalc Outlier Calculator (https://graphpad.com/quickcalcs/grubbs1/) with α = 0.05.

An in vitro tissue culture experiment (Experiment 4) was conducted using CD4 T cells isolated from 
naïve male and female mice to investigate the effects of BIRT377 on T cell activation and differentiation. 
No behavioral assessment was performed on these mice. Flow cytometry data from Experiment 4 were 
analyzed by 2-way ANOVA using Graphpad Prism and Fisher’s LSD test for post hoc comparisons. The 
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H

Figure 1. The timecourse of CCI-induced allodynia comparing 4-0 or 5-0 suture material is similar in both males and females. No 
significant differences were observed between groups at baseline (BL) assessment for hindpaw threshold responses either (A) ipsilateral 
or (B) contralateral to the sciatic nerve injury. Compared to mice that underwent sham manipulations, all mice with either 4-0 or 5-0 
CCI reached maximal bilateral allodynia by Day 8-10 post-surgery and remained stably allodynic through Day 36 post-surgery. Main 
effects of time on hindpaw responses was observed from BL to Day 8 in the ipsilateral side (F2.4,74.7 = 207.56, P  < 0.001) or Day 10 in the 
contralateral side (F2.7,81.5 = 212.64, P  < 0.001). A main effect of surgery (ipsilateral: Day 8 - 27: F2,30 = 591.25, P  < 0.001; contralateral: 
Day 10 - 19: F2,30 = 352.59, P  < 0.001) was observed from hindpaw responses showing stable allodynia. A gradual spontaneous reversal 
of hindpaw responses similar to BL values was evident by Day 56 post-surgery, as supported by a main effect of time (ipsilateral: Day 27 
- 56: F3.5,105.0 = 113.37, P  < 0.001; contralateral: Day 19 – 56: F4.3,131.6 = 91.55, P  < 0.001). Interestingly, sex and suture size had an effect on 
hindpaw responses only during the onset of allodynia, as shown by the main effect of sex (ipsilateral: BL - Day 8: F1,30 = 13.05, P  = 0.001; 
contralateral: BL - Day 10: F1,30 = 9.03, P  = 0.005). (C-H) Sciatic nerves were biopsied on Day 56 post-surgery. Compared to Sham (C) 
female and (D) male sciatic nerves, (E) female and (F) male nerves with peri-sciatic 4-0 CCI revealed a translucent sheath and remaining 
suture material surrounding the injury site, combined with significant discoloration and indentation of the nerves. (G) Female and (H) 
male mice with peri-sciatic 5-0 CCI revealed diminished or lack of sheath, and minimal suture material surrounding the injury site, 
combined with far less discoloration and indentation of the nerves. n  = 6 for all groups
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threshold for statistical significance for all sets of multiple comparisons was set a priori to α = 0.05. All data 
are presented as the mean ± Standard Error of the Mean.

RESULTS
Male and female mice with CCI of the sciatic nerve using either 4-0 or 5-0 chromic gut suture 
material develop allodynia with similar onset, duration and spontaneous recovery
The mouse CCI model has been performed using a range of suture types and sizes[4,47,70,71]. Here, we 
examined the profile of allodynia using chromic gut suture material of two thickness characteristics (4-0 
vs. 5-0), whereby the 4-0 suture material is thicker than the 5-0 suture material. Assessment for hindpaw 
light mechanical touch responses at BL revealed no difference between male or female mice (ipsilateral: 
F5,30 = 0.78, P = 0.576; contralateral: F5,30 = 2.37, P = 0.063) [Figure 1A and B]. 

Compared to mice that underwent sham manipulations, mice that underwent CCI surgery developed 
bilateral allodynia, which replicated similar experiments reported previously[47,51,72-75]. All mice with either 4-0 
or 5-0 CCI reached maximal bilateral allodynia by Day 8 (ipsilateral) or Day 10 (contralateral) post-surgery, 
with main effects of time (ipsilateral: F2.4,74.7 = 207.56, P < 0.001; contralateral: F2.7,81.5 = 212.64, P < 0.001) and 
surgery (ipsilateral: F2,30 = 141.3, P < 0.001; contralateral: F2,30 = 420.18, P < 0.001), and an interaction between 
time and surgery (ipsilateral: F4.9,74.7 = 53.99, P < 0.001; contralateral: F5.4,81.5 = 56.28, P < 0.001). Compared to 
sham-treated mice, stable bilateral hindpaw sensitivity (allodynia) persisted in CCI-treated mice ipsilaterally 
(Day 8-27) and contralaterally (Day 10-19), as supported by a main effect of surgery (ipsilateral: F2,30 = 591.25, 
P < 0.001; contralateral: F2,30 = 352.59, P < 0.001). A gradual and spontaneous return to levels similar to BL 
was observed bilaterally with complete reversal occurring by Day 56, as supported by a main effect of time 
(ipsilateral: Day 27-56 post-surgery: F3.5,105.0 = 113.37, P < 0.001; contralateral: Day 19-56 post-surgery: F4.3,131.6 = 
91.55, P < 0.001) and surgery (ipsilateral: F2,30 = 151.37, P < 0.001; contralateral: F2,30 = 192.63, P < 0.001), and 
the interaction between time and surgery (ipsilateral: F7.0,105.0 = 27.86, P < 0.001; contralateral: F8.7,131.6 = 21.52, 
P < 0.001) [Figure 1A and B]. While hindpaw responses between males and females were similar during 
most of the timecourse following surgery, differences during the initial phase of allodynia were observed. 
Statistical differences in the onset of allodynia were revealed between males and females, as supported by a 
main effect of sex (ipsilateral: BL-Day 10 post-surgery: F1,30 = 13.05, P = 0.001; contralateral: BL-Day 10 post-
surgery: F1,30 = 9.03, P = 0.005), and between 4-0 and 5-0 chromic gut suture. That is, in comparison with 
other groups, males with 4-0 chromic gut suture material (thicker than 5-0) developed robust allodynia 
by Day 3 post-surgery, while females with 5-0 chromic gut suture material did not develop clear maximal 
allodynia until Day 8 post-surgery.

Reversal from allodynia prior to full reabsorption of the chromic gut suture material was observed in 
virtually all of the mice treated with CCI, regardless of the chromic gut suture thickness. Representative 
photographs of each treatment condition (with suture removed) are presented [Figure 1C-H]. Unpublished 
reports that examined reabsorption of 4-0 chromic gut from the SCN at Day 72 post-surgery in a rat model 
of CCI revealed variable degrees of reabsorption, and often observed a complete absence of chromic gut 
material, despite the presence of allodynia[75]. This further supports a published report that by Day 60 
and 120 post-CCI in rats, the connective tissue capsule has been resorbed[46]. The current report sought to 
conduct gross morphological examination of the SCN in the mouse model of 4-0 and 5-0 chromic gut CCI 
following resolution of allodynia. 

The data suggest that, while SCNs from sham-operated mice appear translucent with little discoloration 
[Figure 1C and D], the nerves treated with 4-0 chromic gut suture were found to possess a sciatic sheath/
capsule surrounding the sutures, which was similar between male and female mice [Figure 1E and F]. 
However, SCNs from mice treated with a 5-0 chromic gut CCI revealed visibly less remaining suture 
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material and less encapsulating sheath compared to SCNs treated with 4-0 CCI [Figure 1G and H]. Upon 
further dissection of the sheath and sutures away from the nerve in 4-0 and 5-0 CCI, marked indentations 
beneath the ligature in both conditions were observed. These observations suggest that reversal of 
allodynia from CCI in mice involves processes that are independent of the presence of the sutures. That is, 
the physiological response to peri-sciatic CCI is critical in the resolution of allodynia, and is not dependent 
on the presence of factors from the suture material itself. 

The LFA-1 antagonist BIRT377 reverses allodynia in male and female mice 
Given the onset, intensity, and duration of allodynia was similar following either 4-0 or 5-0 peri-sciatic 
CCI in both males and females, subsequent experiments applied 5-0 chromic gut suture for CCI. Mice 
were assessed using the von Frey fiber test at BL, and no significant differences were observed. Mice with 
CCI developed maximal bilateral allodynia by Day 8 post-CCI [Figure 2A]. On Day 10 post-CCI, when all 
animals revealed stable and maximal allodynia, an i.v. injection of BIRT377 or vehicle was given followed 
by hindpaw re-assessment. Compared to mice given vehicle, complete reversal from allodynia was observed 
in both male and female animals following BIRT377 injection. Interestingly, a slight delay and duration 
of reversal of ipsilateral hindpaw sensitivity was observed in females compared to males. Specifically, 
BIRT377-mediated reversal of allodynia was delayed by 24 h in female mice, with allodynia returning 24 h 
earlier than their male counterparts. Contralateral hindpaw sensitivity was reduced by BIRT377 treatment 
to a similar degree and magnitude between males and females, as no statistical differences were observed. 
While it is clear that both male and female mice develop allodynia to the same degree with a similar 
duration, the difference in their response to i.v. BIRT377 suggests that the underlying processes leading to 
allodynia may not simply overlap, but instead may include distinct mechanisms between male and female 
mice. 

In an effort to expand on characterizing potential sex-dependent differences in expression levels of 
peripheral immune signaling molecules (pro- and anti-inf lammatory cytokines) during established 
peripheral neuropathy or BIRT377-induced reversal from neuropathy, a separate experiment was conducted 
to replicate the effect of BIRT377 on allodynia which was terminated at the peak of BIRT377 mediated 
pain reversal [Figure 2B] and tissues were collected for protein or mRNA (represented in subsequent 
figures) analysis. In this replication study, while differences in ipsilateral, but not the contralateral hindpaw 
threshold responses were observed at BL (F7,40 = 2.27, P = 0.048), these differences may simply be due to an 
exceptionally small variance in the threshold responses of female mice compared to males. However, these 
differences are not considered physiologically meaningful, as such variance was not observed previously 
or routinely in either the ipsilateral or contralateral hindpaws. Compared to sham-operated animals, male 
and female mice with CCI developed clear allodynia through Day 10 [Figure 2B]. A main effect of time 
(ipsilateral: F2.22,88.85 = 265.36, P < 0.001; contralateral: F2.11,84.20 = 213.38, P < 0.001) and surgery (ipsilateral: 
F1,40 = 1612.46, P < 0.001; contralateral: F1,40 = 978.01, P < 0.001), and an interaction between time and 
surgery (ipsilateral: F2.22,88.85 = 240.45, P < 0.001; contralateral: F2.11,84.20 = 200.82, P < 0.001) was observed. 
Following BIRT377 treatment, while sham animals remained stably responsive and close to BL thresholds 
throughout the timecourse, partial bilateral reversal from allodynia was observed by 24 h in males, but 
not females. Additionally, maximal effects of BIRT377 on allodynia were observed a full day sooner in 
males than in females [Figure 2B]. Main effects of time (ipsilateral: F3,120 = 65.14, P < 0.001; contralateral: 
F3,120 = 71.58, P < 0.001), injection (ipsilateral: F1,40 = 218.80, P < 0.001; contralateral: F1,40 = 306.81, P < 0.001), 
and surgery (ipsilateral: F1,40 = 1818.98, P < 0.001; contralateral: F1,40 = 1816.36, P < 0.001), and interactions 
between time and sex (ipsilateral: F3,120 = 5.31, P = 0.002; contralateral: F3,120 = 2.86, P = 0.040), time and 
injection (ipsilateral: F3,120 = 62.77, P < 0.001; contralateral: F3,120 = 69.52, P < 0.001), and sex and injection 
(ipsilateral: F1,40 = 16.08, P < 0.001; contralateral: F1,40 = 10.70, P = 0.002) were observed. However, by Day 3 
post-injection, both males and females achieved similar levels of reversal from allodynia. 
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Characterization of sciatic nerve anti- and proinflammatory cytokine/chemokine mRNA levels in 
males and females following BIRT377 treatment
Prior studies suggest contralateral allodynia referred to as “mirror pain” corresponds to pathological events 
at the spinal cord[22,72,73,76-81]. In the current study, inflammatory cytokine changes were examined in the 
ipsilateral SCN and DRGs, as well as in both the ipsilateral and contralateral LSC dorsal horn to complement 
prior reports. In the ipsilateral SCN, mRNA levels of the proinflammatory cytokines, CCL2, IL-1β and TNF, 
were robustly elevated in both males (CCL2, IL-1β and TNF: P < 0.0001) and females (CCL2: P = 0.039; IL-1β: 
P = 0.0007; TNF: P = 0.0006), compared to the corresponding sham-treated controls [Figure 3A-C]. A greater 
magnitude of CCL2 (P = 0.015) and IL-1β (P < 0.0002) increase was observed in CCI + Veh males when 
compared to CCI + Veh females. Treatment with BIRT377 in CCI-operated mice (CCI + BIRT) revealed a 
reduction in CCL2 in males (P = 0.006), and in both males and females, a reduction in IL-1β (male: P < 0.0001; 
female: P = 0.049) and TNF (male: P = 0.0001; female: P = 0.022) mRNA levels, with the largest magnitude 

A

B

Figure 2. The LFA-1 antagonist, BIRT377, similarly reverses allodynia in males and females. Mice were either sham or treated with 
perisciatic 5-0 suture. (A) All groups of mice show similar BL threshold hindpaw sensitivity. Following 5-0 CCI, all animals develop 
clear allodynia during an 8-day timecourse, showing stable allodynia on Day 10, with a main effect of time (ipsilateral: F3.02,60.48 = 
1003.02, P  < 0.001; contralateral: F3.56,71.15 = 528.60, P  < 0.001). Additionally, a main effect of sex during the development of allodynia 
is observed (ipsilateral: F1,20 = 21.27, P  < 0.001; contralateral: F1,20 = 13.06, P  = 0.002), with a significant interaction between time 
and sex (ipsilateral: F3.02,60.48 = 10.899, P  < 0.001; contralateral: F3.56,71.15 = 3.23, P  = 0.021). Following injections on Day 10 post-
surgery, clear reversal from allodynia resulting from BIRT377 injection is observed compared to vehicle treated mice, supported by 
a main effect of injection (ipsilateral: F1,20 = 328.97, P  < 0.001; contralateral: F1,20 = 74.47, P  < 0.001). In addition, male mice treated 
with BIRT377 appeared to reverse from allodynia 1 day sooner than female BIRT377-treated mice, as observed in hindpaw responses 
ipsilateral (F1,20 = 12.12, P  = 0.002) but not contralateral to the CCI, with an interaction between time and sex (ipsilateral: F4.33,86.61 = 
9.33, P  < 0.001; contralateral: F4.92,98.34 = 3.15, P  = 0.012), and time and injection (ipsilateral: F4.33,86.61 = 70.29, P  < 0.001; contralateral: 
F4.92,98.34 = 32.77, P  < 0.001). (B) Experimental replication of BIRT377 reversal in males and females following CCI, with the onset and 
full development of bilateral allodynia occuring during a 10-day timecourse. Female mice reveal delayed onset of allodynia but no 
sex differences are observed by Day 10 post-surgery, when maximal allodynia is observed in both males and females. As previously 
observed, female 5-0 CCI mice treated with BIRT377 displayed slightly slower reversal from allodynia compared to males, with 
maximal bilateral reversal observed by Day 3 post-injection. n  = 6 for all groups
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Figure 3. BIRT377 treatment reduced pro-inflammatory cytokine/chemokine in males and females and increased anti-inflammatory 
cytokines only in females around the injured sciatic nerve. Ipsilateral sciatic nerves were collected from behaviorally verified mice as 
represented in Figure 2B. (A) Sciatic nerve damage (CCI) induced a significant increase in CCL2 mRNA expression (F1,1 = 16.33, P  = 
0.0002), which was greater males than females (F1,1 = 4.36, P  = 0.043). BIRT377 treatment reduced CCL2 mRNA expression in male 
mice with CCI (F1,1 = 7.43, P  = 0.009). (B) CCI increased IL-1β mRNA expression (F1,1 = 54.46, P  < 0.0001), which was greater in males 
than females (F1,1 = 9.68, P  = 0.003). BIRT377 treatment reduced IL-1β mRNA levels in mice with CCI (F1,1 = 16.3, P  = 0.0002). (C) 
Similarly, after CCI, TNF mRNA expression was elevated (F1,1 = 35.85, P  < 0.0001). BIRT377 treatment reduced TNF mRNA expression 
in mice with CCI (F1,1 = 11.53, P  = 0.001). (D) Following CCI, IL-10 mRNA was dramatically increased (F1,1 = 83.79, P  < 0.0001). BIRT377 
treatment further induced IL-10 mRNA expression in females, as a significant interaction between BIRT377 treatment and sex (F1,1 = 
4.35, P  = 0.04) was observed. (E) CCI induced an increase in TGF-β1 mRNA expression (F1,1 = 52.7, P  < 0.0001). BIRT377 treatment 
further increased TGF-β1 in female s with CCI (F1,1 = 6.98, P  = 0.012). (F) After CCI, CD11b mRNA levels were increased (F1,1 = 104.2, 
P  < 0.0001). Following CCI, males displayed greater levels of CD11b mRNA than females (F1,1 = 4.58, P  = 0.038). BIRT377 treatment 
reduced CD11b mRNA levels in male mice with CCI (F1,1 = 4.884, P  = 0.032) but not females, as a main effect of sex was observed for 
CD11b mRNA levels (F1,1 = 4.22, P  = 0.046). (G) CD3 mRNA levels were elevated in mice with CCI (F1,1 = 34.3, P  < 0.0001). Post hoc 
comparisons revealed that BIRT377 treatment reduced CD3 levels in males with CCI (P  = 0.016). *p values from post hoc comparisons 
ranges from P  = 0.039 to P  < 0.0001. n  = 5 in female Sham + Veh and CCI + Veh for TGF-β1 data. n  = 6 per group unless otherwise 
indicated
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of changes observed in males. mRNA levels of the anti-inflammatory cytokines, IL-10 (male: P < 0.0001; 
female: P = 0.034) and TGF-β1 (male: P = 0.0001; female: P = 0.046) were increased in CCI + Veh mice 
compared to sham-operated conditions (Sham + Veh) [Figure 3D and E]. These data reflect the predicted 
peri-sciatic anti-inf lammatory compensatory response to control ongoing inf lammation at the injured 
SCN [47,51]. Neuropathic females had lower levels of IL-10 mRNA than their male counterparts (CCI + Veh: 
P = 0.001). Interestingly, while BIRT377 treatment in neuropathic males did not induce further increases 
in these anti-inflammatory cytokines, notable mRNA increases in both IL-10 (P = 0.002) and TGF-β1 (P = 
0.006) were measured in females [Figure 3D and E]. Additionally, because low-level cytokine/chemokine 
expression remains unaltered in sham-surgery animals given BIRT377 (Sham + BIRT), these data suggest 
a permissive effect of BIRT377’s action in and around activated peripheral immune cells that have already 
migrated to the local site of injury in the female SCN microenvironment. 

To confirm the presence of the monocytes/macrophages and T cells, which are well-characterized to 
produce CCL2, IL-1β, TNF, IL-10 and TGF-β1, mRNA levels for CD11b (pan myeloid cell marker) and 
CD3 (pan T cell marker) were evaluated [Figure 3F and G]. While all neuropathic mice (CCI + Veh) reveal 
significant increases in peri-sciatic CD11b (male: P < 0.0001; female: P = 0.0001) and CD3 (male: P < 0.0001; 
female: P = 0.005) mRNA levels, reflecting that these peripheral immune cells have migrated to the damaged 
SCN, the magnitude of increase was greater in males than females for CD11b (P = 0.0002). Sham animals 
treated with BIRT377 did not result in alterations of CD11b and CD3 mRNA levels. However, BIRT377 did 
significantly reduced mRNA levels of CD11b (P = 0.0002) and CD3 (P = 0.016) in neuropathic males. These 
data indicate that by 4 days following i.v. BIRT377 injection, a reduction in both monocyte/macrophage and 
T cell recruitment around the injured nerve occurred in males. Importantly, these data demonstrate that 
despite similar levels of CD11b and CD3 mRNA in CCI + Veh and CCI + BIRT females, TNF and IL-1β are 
reduced, indicating that BIRT377 alters functional responses of immune cells previously recruited around 
the SCN in females. That is, BIRT377 may be exerting actions on immune cells beyond simply preventing 
leukocyte trafficking. Given the observed elevation in anti-inflammatory IL-10 and TGF-β1 mRNA levels 
and reduction in proinflammatory cytokines discussed above, BIRT377 may be dampening the degree of 
peripheral “damage” signals relayed from the peripheral nervous system to the central nervous system 
(CNS). 

Sex differences observed in the effects of BIRT377 on reduced mRNA levels of T cell-specific 
pro- and anti-inflammatory responses
Previous reports demonstrate potential differential contribution of T cell-mediated responses in males and 
females[3]. In the current report, the T cell specific factors, FOXP3 (anti-inflammatory-like T cells) and IL-17A 
(proinflammatory-like T cells) were analyzed in key anatomical regions of the pain pathway following CCI 
[Figure 4]. A potential cellular source of anti-inflammatory cytokines is from a subset of T cells referred to 
as Tregs cells[57,82]. The transcription factor responsible for generating Treg cells is FOXP3[57,59]. Therefore, to 
identify a possible source of IL-10 and TGF-β1 (demonstrated in Figure 3D and E), the contribution of Treg 
cells was indirectly explored by examining FOXP3 mRNA levels. Compared to sham treatment, elevated 
FOXP3 mRNA was observed in SCN of males (P < 0.0001) and females (P = 0.003) given vehicle. FOXP3 
mRNA levels were further elevated from CCI + Veh group following BIRT377 treatment, only in females (P < 
0.0001) [Figure 4A]. Similarly, DRGs revealed elevated FOXP3 mRNA levels in CCI + Veh females (P = 0.034), 
while no such increases were observed in males [Figure 4B]. However, BIRT377 did not alter basal FOXP3 
mRNA levels in DRG in sham or CCI groups. These data indicate a modest recruitment of Tregs in female 
DRGs. In contrast to effects observed in females of peripheral tissues (SCN and DRG), only males revealed 
changes in FOXP3 mRNA levels in the ipsilateral spinal cord, with no FOXP3 mRNA changes observed in the 
contralateral spinal cord [Figure 4C and D]. Th17-specific proinflammatory cytokine, IL-17A, increases were 
detected in SCN of both neuropathic males (P = 0.04) and females (P < 0.0001), when compared to sham-
surgery groups [Figure 4E]. Neuropathic (CCI + Veh) females displayed about twice as much upregulation 

Noor et al. Neuroimmunol Neuroinflammation 2019;6:10  I  http://dx.doi.org/10.20517/2347-8659.2019.18                Page 15 of 32



Figure 4. Sex differences in anti-inflammatory FOXP3 and proinflammatory IL-17A from damaged sciatic nerve and in spinal cord. Tissues 
were collected from behaviorally verified mice as represented in Figure 2B. (A) From ipsilateral sciatic nerve (SCN), CCI induced a significant 
increase in FOXP3 mRNA expression (F1,1 = 76.18, P  < 0.0001), with CCI-treated females responding to BIRT377 treatment to a greater 
degree than males (F1,1 = 5.38, P  = 0.025). (B) In the ipsilateral DRGs, FOXP3 mRNA levels were elevated following CCI (F1,1 = 6.55, P  = 0.014), 
post hoc comparisons revealed significant increases in FOXP3 mRNA levels in females with CCI compared to the sham controls. (C) In the 
ipsilateral lumbar spinal cord (LSC) dorsal horn, post-CCI induction in FOXP3 mRNA levels was observed in males (P  = 0.0006). Following 
CCI, males displayed significantly greater FOXP3 mRNA levels than in females (P  = 0.001). BIRT377 treatment reduced FOXP3 in males with 
CCI (P  < 0.0001), a significant interaction between surgery, injection, and sex (F1,1 = 6.5, P  = 0.014) was observed. (D) In the contralateral 
dorsal horn, FOXP3 levels were comparable between groups. (E) Post-CCI IL-17A mRNA levels were significantly elevated at the ipsilateral 
sciatic nerve (F1,1 = 21.93, P  < 0.0001). BIRT377 treatment reduced post-CCI IL-17A mRNA levels (F1,1 = 21.93, P  < 0.0001), with post hoc 
comparisons revealing a significant reduction of IL-17A mRNA levels following BIRT377 treatment in females with CCI. (F) In the ipsilateral 
dorsal horn, post-CCI IL-17A mRNA levels were elevated (F1,1 = 14.85, P  = 0.0004). BIRT377 treatment reduced IL-17A mRNA levels in mice 
with CCI (F1,1 = 14.07, P  = 0.0006), which occurred in females to much a greater degree than males (F1,1 = 5.71, P  = 0.02). Post-CCI induction 
in IL-17A mRNA levels were much greater in females, than in males (F1,1 = 5.23, P  = 0.02). *p values from post hoc comparisons ranges from 
P  = 0.04 to P  < 0.0001. n  = 5 in female CCI + BIRT data for DRG FOXP3. n  = 6 per group unless otherwise indicated
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of IL-17A than neuropathic males (P = 0.002). These data suggest that Th17 cells may play a more 
prominent role in females with peripheral neuropathy. This is further supported by BIRT377-mediated 
reduction of IL-17A mRNA levels in SCNs of pain-reversed females (P < 0.0001). Spinal IL-17A mRNA 
transcripts were absent under non-neuropathic sham-treated conditions in males and females [Figure 4F]. 
Compared to sham controls, large increases in LSC IL-17A mRNA levels were observed ipsilaterally in 
neuropathic females (P < 0.0001), with modest increases in IL-17A in neuropathic males [Figure 4F]. IL-17A 
was not reliably detected in the DRGs or contralateral spinal cord samples in any groups. BIRT377 treatment 
abolished ipsilateral spinal IL-17A mRNA levels in neuropathic females (P < 0.0001) and, to a lesser extent, 
in neuropathic males. These data, along with the data presented in Figure 3G suggest that though there was 
no difference in overall content of the T cell (CD3 mRNA) population, the quality and differentiation status 
of these T cells varied in neuropathic animals. These data also show that the actions of BIRT377 on these 
differentiated T cell subsets is most pronounced in females and may ref lect a phenotypic change from 
proinflammatory to anti-inflammatory, rather than simply reflecting a suppression of T cell recruitment.

BIRT377 treatment exerts sex-dependent differential effects on T cell differentiation and 
functional responses 
While BIRT377-mediated reduction of IL-17A is indicative of effects of BIRT377 on CD4 T cell 
differentiation and function, these effects may also be due to the indirect effects of a general reduction in 
proinflammatory cytokine production (such as TNF) from monocytes that promote Th17 differentiation[83]. 
Therefore, to examine the direct actions of BIRT377 on CD4 T cell differentiation and function, CD4 
naïve T cells were given conditioned media to induce the generation of either a Treg or Th17 phenotype, 
in the presence of control (media only) or BIRT377. Subsequently, the proportion of T cells positive 
for RORγt+ (transcription factor required for the generation of Th17 cells), was analyzed. BIRT377 only 
reduced the generation of RORγt+ T cells in females (P = 0.0007), but not in males [Figure 5A]. Additionally, 
CD4 T cells that are IL-17A+, and also produce TNF, were examined as an indication of their functional 
proinflammatory capacity. Compared to conditioned media alone, the population of IL-17A+TNF+ CD4+ 
T cells was substantially reduced by BIRT377 exposure only in CD4+ T cells derived from females (P = 
0.001), but not males [Figure 5B]. Furthermore, Treg generation and function in the presence of BIRT377 
was examined. Fully differentiated Tregs exert their immune suppressive actions by producing the 
characteristic anti-inflammatory cytokines, IL-10 and TGF-β1[57]. Therefore, the expressions of IL-10 and 
TGF-β1 proteins were examined as direct evidence of the fully differentiated functional Treg cells. Given 
that FOXP3 drives Treg generation concurrent with IL-10 and TGF-β1 production, FOXP3 expression 
was considered redundant. During Treg differentiation in the presence of BIRT377, a large increase in the 
production of the IL-10 (P = 0.0005) and TGF-β1 (P = 0.014) was observed [Figure 5C and D] in female-
derived pooled T cells, while BIRT377-induced changes in these anti-inflammatory cytokines were absent in 
male derived T cells. While a trend of increased IL-10+ CD4+ T cells was also observed in males [Figure 5C], 
these data demonstrate that female T cells are much more responsive to BIRT377-mediated modulation of 
pro- and anti-inf lammatory T cell-related cytokines. Therefore, BIRT377 regulates one aspect of T cell 
differentiation and function more readily in females under pathological conditions, which may provide a 
mechanism for the IL-17A reduction reliably detected only in females at the SCN [Figure 4]. 

BIRT377 modulates the proinflammatory cytokine milieu in the DRGs to favor pain reversal 
The most widely examined proinf lammatory cytokines known to be critical for pain processing were 
examined in the ipsilateral DRGs. As predicted, neuropathic male and female (CCI + Veh) mice revealed 
increases in CCL2 (male: P = 0.01; female: P = 0.016), IL-1β (males: P = 0.0005; female: P < 0.0001), TNF (P < 
0.0001: both sexes). In support of prior reports, a compensatory elevation in anti-inflammatory IL-10 (P < 0.0001: 
both sexes) mRNA levels in the ipsilateral DRGs as compared to Sham + Veh was also measured [Figure 6]. 
While CCL2 mRNA levels were increased in males and females following CCI, BIRT377 did not alter CCL2 
mRNA levels under either condition, and sex differences were not observed. However, a reduction in IL-1β 
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Figure 5. Flow cytometric characterization of ex vivo  T cells: sex differences in the anti-inflammatory response to BIRT377. Naïve CD4 T 
cells were conditioned with (A-B) Th17 or (C-D) Treg inducing cytokines, with or without BIRT (500 ng/mL). After 4 days, all viable CD4 
T cells were identified and analyzed for the expression of: (A) RORɣt (major transcription factor for Th17 cells) or (B) intracellular levels of 
pro-inflammatory cytokines IL-17A and TNF. BIRT377 treatment reduced RORɣt+ CD4 T cells (F1,8 = 17.99, P  = 0.002) and IL-17A protein 
production (F1,8 = 24.3, P  = 0.001) in females. (C-D) From Treg inducing culture, all viable CD4 T cells were analyzed for intracellular 
levels of (C) TGF-β1 and (D) IL-10. BIRT377 treatment increased intracellular TGF-β1 (F1,5 = 12.85, P  = 0.015) and IL-10 (F1,6 = 10.57, P  = 
0.017) protein levels in females. (A-D) Representative flow cytometry plots are shown. Numbers represent the percentages of the (A) 
RORɣt or (B-D) cytokine positive CD4 T cells, where total CD4 T cells are taken as 100%. Corresponding isotype controls (stained with 
IgG, IgG2a or IgG2b fluorochrome conjugated antibody) for the intracellular staining are shown. Each experimental condition was run in 
2-3-well replicates. Error bars represent variations in the well replicates. Data are representative of two independent experiments where T 
cells were pooled from n  = 5 males or n  = 5 females in each experiment. Viable cells were identified based on their light scatter properties 
(forward and side scatter plot) and viability dye staining. Viable cells were then gated for CD4 cell surface expression; only CD4+ T cells 
were included for further analysis. Positive staining for transcription factor and/or cytokines were determined based on staining with 
fluorochrome conjugated isotype controls (negative controls). *P  values from post hoc comparisons ranges from P  = 0.014 to P  = 0.0005
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(male: P = 0.029; female: P < 0.0001) and TNF (males: P = 0.001) mRNA levels were measured in allodynic-
reversed mice given BIRT377. Unexpectedly, no further increases in IL-10 mRNA levels were observed in 
BIRT377-treated allodynic-reversed mice. It is notable that the magnitude of IL-1β increase was greater 
in female CCI + Veh mice (P = 0.0002) than males. Correspondingly, the magnitude of BIRT377-induced 
decreases in IL-1β was greatest in female CCI + BIRT mice [Figure 6B]. In general, the effects of BIRT377 on 
these pro- and anti-inflammatory cytokines revealed similar trends in both male and female DRGs. Together, 
these data support that BIRT377 not only affects immune cells at the nerve injury, but also is able to modulate 
immune cells locally in the DRGs thereby dampening the proinflammatory environment contributing to pain 
reversal.

BIRT377 predominantly restores IL-10 levels in the dorsal spinal cord
It is possible that BIRT377-mediated changes in cytokine mRNA levels at the damaged SCN and the 
DRG together inf luence the inf lammatory signals ultimately relayed to the spinal cord dorsal horn 
where critical pain relays can be facilitated by spinal glial and resident immune cells. Moreover, it is 
reasonably possible that BIRT377 additionally modulates leukocyte adhesion and spinal trafficking, thereby 
controlling the peripheral leukocyte milieu recruited to the spinal cord as a consequence of nerve injury. 
Therefore, spinal mRNA levels of CCL2 was assessed, as CCL2 is a well-established chemokine released 
from damaged neurons that signals to circulating leukocytes (macrophages as well as subsets of T cells) 
facilitating immune cell migration to the spinal cord. As predicted, a significant induction of CCL2 mRNA 
was observed in the dorsal horn of the LSC ipsilateral to the SCN lesion both in males (P = 0.014) and 
females (P < 0.0001), with a trend toward increased CCL2 in LSC contralateral to the SCN lesion in CCI 
females compared to Sham conditions [Figure 7A and B]. Interestingly, CCL2 mRNA levels were similar in 
neuropathic males given vehicle or BIRT377, whereas a significant bilateral reduction of CCL2 was observed 
in females given BIRT377 (LSC ipsilateral: P = 0.0006; LSC contralateral: P = 0.04) [Figure 7A and B]. In 
support of prior reports documenting the crucial role of IL-1β actions in mediating allodynia, a small but 
significant increase in the levels of IL-1β mRNA were observed in female CCI + Veh (P < 0.0001), with a 
similar trend observed from the contralateral side. Unexpectedly, BIRT377 treatment did not change IL-1β 
mRNA levels in the spinal cord [Figure 7C and D].

Anti-inflammatory cytokines TGF-β1 and IL-10 were analyzed in the LSC both ipsilateral and contralateral 
to the SCN lesion [Figure 7E-H]. Compared to Sham + Veh, a significant induction in ipsilateral TGF-β1 (male: 
P = 0.0004; female: P = 0.013) and reduction of IL-10 (male: P = 0.0001; female: P < 0.0001) mRNA levels 
were measured in all CCI + Veh mice [Figure 7E and G]. However, following BIRT377 treatment, ipsilateral 
LSC IL-10 mRNA levels were elevated in both neuropathic males (P = 0.005) and females (P = 0.02), with 
similar observations made in female ipsilateral LSC TGF-β1 mRNA levels [Figure 7E and G]. However, the 
magnitude of IL-10 increases in ipsilateral LSC was greater in CCI + BIRT males than females, and CCI + 
BIRT females displayed lower IL-10 levels than males (P = 0.019). Contralateral IL-10 mRNA levels displayed 
the same pattern as ipsilateral dorsal horn following CCI: IL-10 mRNA levels were significantly decreased 
in neuropathic females (P = 0.004), along with a similar trend in males (P = 0.07), compared to their 
corresponding Sham + Veh groups. BIRT377 treatment increased contralateral IL-10 significantly from 
CCI + Veh in males (P = 0.04), with a similar trend observed in females (P = 0.06) [Figure 7H]. These data 
indicate that BIRT377-mediated pain reversal corresponds to increased bilateral spinal IL-10 mRNA levels 
in neuropathic animals of both sexes. 

BIRT377 reduced astrocyte activation in the spinal cord
The data above show that i.v. BIRT377 corresponds to reduced proinflammatory cytokines in both the SCN 
and DRGs, and reduced CCL2 in the ipsilateral spinal cord, while elevating anti-inflammatory cytokines in 
the SCN, DRGs, and LSC. Persistent microglial and astrocyte activation in the spinal cord is critical for the 
chronicity of sciatic neuropathy. Reducing the pro-inflammatory cytokine milieu at peripheral anatomical 



regions (SCN and DRG) of the pain pathway may likely reduce chronic pain relays to the spinal cord, and 
in doing so, may reduce spinal glial activation and ultimately, pathological pain processing. In support of 
this possibility, GFAP (marker of astrocyte activation) and TMEM119 (related to microglial activation) 
mRNA levels were examined in the ipsilateral and contralateral LSC [Figure 8]. Data revealed that GFAP 
mRNA levels were significantly increased in the ipsilateral dorsal horn of CCI + Veh animals compared 
to Sham + Veh animals (male: P = 0.0001; female: P < 0.0001), in support of prior reports[26,84]. Compared 
to CCI + Veh animals, GFAP mRNA levels of CCI + BIRT males were significantly decreased (P = 0.044), 
with a similar trend (P = 0.056) observed in females [Figure 8A]. Similar increases in GFAP mRNA levels 
were observed in contralateral LSC in CCI + Veh animals (male: P = 0.015; female: P < 0.0001). Similarly, 
contralateral GFAP levels returned to BL in all neuropathic mice following BIRT377 treatment (male: P = 0.04; 
female: P = 0.0003) [Figure 8B]. Of note, GFAP transcripts from the contralateral side of the spinal cord were 
significantly greater in neuropathic females than in males (P = 0.001). Ipsilateral TMEM119 mRNA levels 
were also increased, indicative of increased microglial activation following CCI [Figure 8C and D] in both 
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Figure 6. DRGs from males and females reveal similarly reduced IL-1β and TNF mRNA levels following BIRT377 treatment. Total RNA 
was isolated from ipsilateral lumbar DRGs from the same mice used in Figure 2B, and analyzed for inflammatory cytokines. (A) In the 
DRGs, CCI induced CCL2 mRNA levels (F1,1 = 25.5, P  < 0.0001) remained unchanged following BIRT377 treatment. (B) CCI increased 
IL-1β mRNA expression in females (F1,1 = 25.4, P  < 0.0001) to a much greater degree than in males (F1,1 = 8.3, P  = 0.006). BIRT377 
treatment reduced IL-1β mRNA levels in mice with CCI (F1,1 = 25.4, P  < 0.0001), with a greater magnitude in females (F1,1 = 4.95, P  = 
0.031). (C) Post-CCI TNF mRNA expression levels were increased (F1,1 = 61.81, P  < 0.0001). BIRT377 treatment reduced TNF mRNA 
expression levels in mice with CCI (F1,1 = 9.92, P  = 0.003). Post hoc comparisons revealed a significant reduction of TNF mRNA levels 
following BIRT377 treatment in CCI-treated males. (D) Following CCI, IL-10 mRNA expression levels were increased (F1,1 = 77.99, P  
< 0.0001). BIRT377 treatment did not further elevate IL-10 mRNA levels during neuropathy. *P  values from post hoc comparisons 
ranges from P  = 0.029 to P  < 0.0001, n  = 6 per group
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Figure 7. Ipsilateral dorsal spinal cord mRNA levels reveal BIRT377 treatment reduces CCL2 in sciatic damaged females only, while no 
sex differences occur in elevated IL-10. Lumbar spinal cord (LSC) tissues from behaviorally verified mice (Figure 2B), were collected and 
analyzed for pain-relevant cytokines. (A-B) Ipsilateral CCL2 mRNA levels were increased following CCI (F1,1 = 57.38, P  < 0.0001). BIRT377 
treatment reduced CCL2 mRNA expression in females with CCI (F1,1 = 5.28, P  = 0.026). Neuropathic females displayed significantly more 
CCL2 mRNA levels than in neuropathic males (P  = 0.006). Post hoc comparisons revealed significant reduction in contralateral CCL2 
mRNA levels in CCI-treated females following BIRT377 treatment. (C-D) Ipsilateral IL-1β mRNA levels were increased following CCI (F1,1 

= 32.8, P  < 0.0001) that occurred in females to much a greater degree than males (F1,1 = 6.86, P  = 0.012). (E-F) While sciatic nerve CCI 
induced a bilateral elevation in TGF-β1 mRNA levels in both males and females (ipsilateral: F1,1 = 40.95, P  < 0.0001; contralateral: F1,1 = 
5.23, P  = 0.027), the magnitude of TGF-β1 mRNA increase following BIRT377 treatment was greater in ipsilateral LSC from females than 
males (F1,1 = 6.56, P  = 0.014). No differences in TGF-β1 mRNA levels from contralateral LSC were revealed following BIRT377 treatment. 
(G-H) IL-10 mRNA levels were decreased following CCI (ipsilateral: F1,1 = 52.26, P  < 0.0001; contralateral: F1,1 = 9.45, P  = 0.004). BIRT377 
treatment increased IL-10 mRNA expression levels in mice with CCI (ipsilateral: F1,1 = 6.19, P  = 0.017; contralateral: F1,1 = 4.94, P  = 0.032). 
*P  values from post hoc comparisons ranges from P  = 0.04 to P  < 0.0001. n  = 5 in male Sham + Veh and CCI + BIRT for IL-10 contralateral 
data. n  = 6 per group unless otherwise indicated
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males (P = 0.009) and females (P = 0.001). An elevation in TMEM119 mRNA levels were also observed from 
the contralateral spinal cord, but only in females (P = 0.011). Surprisingly, BIRT377 treatment did not change 
TMEM119 mRNA levels from the ipsilateral or contralateral spinal cord in males or females. 

BIRT377 treatment did not result in systemic immune changes
Spleens were collected to capture a broad population of peripheral circulating immune cells inclusive of 
monocytic macrophages, neutrophils, dendritic, and T and B cells. Importantly, all splenic protein data 
presented [Figure 9A-J] are from behaviorally characterized mice, as demonstrated in Figure 2B. Protein 
analysis of spleen revealed that, compared to sham treatment, a trend toward increased proinflammatory 
cytokine IL-1β and chemokine C-X-C motif ligand 1 (CXCL1) occurred in CCI male mice, which 
returned to basal levels following BIRT377 treatment [Figure 9A and E]. However, comparisons did not 
reveal statistically significant differences, suggesting that the reservoir of circulating leukocytes, such 
as monocytes and lymphocytes represented in the spleen cannot act as surrogate indicators of atypical 
neuroimmune events in key anatomical regions of the pain pathway. It is possible that the immune 

Figure 8. Spinal GFAP mRNA levels are reduced following BIRT377 in both males and females. mRNA was extracted from tissues 
behaviorally verified in Figure 2B. (A-B) Astrocyte activation marker, GFAP, mRNA levels were increased on both sides of the spinal cord, 
in all mice with CCI (ipsilateral: F1,1 = 41.91, P  < 0.0001; contralateral: F1,1 = 16.68, P  = 0.0002). BIRT377 treatment reduced spinal GFAP 
mRNA levels in mice with CCI (ipsilateral: F1,1 = 5.533, P  = 0.023; contralateral: F1,1 = 12.28, P  = 0.001). In the contralateral side, CCI-
induced GFAP mRNA levels were greater in females than in males (F1,1 = 9.9, P  = 0.003). (C-D) Microglial proliferation marker, TMEM119, 
mRNA levels were increased following CCI (ipsilateral: F1,1 = 40.49, P  < 0.0001; contralateral: F1,1 = 7.66, P  = 0.008). Neuropathic females 
displayed significantly greater contralateral TMEM119 expression than neuropathic males (P  = 0.015), as a main effect of sex (F1,1 = 4.16, 
P  = 0.048) was observed. TMEM119 mRNA levels were comparable between BIRT377 or vehicle treated neuropathic males or females 
bilaterally. No significant difference was detected between male or female Sham + Veh. and Sham + BIRT group. *P  values from post hoc 
comparisons ranges from P  = 0.04 to P  < 0.0001. n  = 6 per group
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changes observed in discrete regions involved in the pain pathway (SCN, DRGs and LSC) are exceedingly 
localized such that detection from the systemic pool of immune cells is not measurable. More likely, these 
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Figure 9. BIRT377 treatment did not result in systemic immune changes. (A-J) Spleens were collected from the same mice used in 
Figure 2B and analyzed for inflammatory cytokines. Splenic cytokine and chemokine protein levels were similar regardless of surgical 
manipulation, treatment, or sex. n  = 6 in each group
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observations may indicate that further immune cell differentiation occurs after their migration to key 
pain-relevant nervous tissue regions in response to signals from local tissue-damage.

DISCUSSION
Reports focused on understanding neuroimmune changes when performing a comparative approach 
between sexes are rare with most studies applying male rodent models[4,25-27]. In recent years, published 
reports provide compelling evidence that activation of spinal microglia play a direct role in generating 
pathological pain in males, while in females, the actions of T cells are critically important[3,4]. Consistent 
with prior reports[4,26], we find that, while the onset, magnitude and spontaneous reversal of allodynia are 
similar in males and females [Figure 1], divergent peripheral immune and neuroimmune responses are 
present during neuropathy. We demonstrate for the first time that during neuropathy, T cell-associated pro- 
and anti-inflammatory responses in males and females are different at discrete anatomical regions critical in 
the pain pathway of sciatic neuropathy. During neuropathy, females displayed more profound Th17 specific 
responses (IL-17A) than males, both at the injured nerve and in the corresponding LSC [Figure 4]. While 
regulatory T cell (Tregs) recruitment (FOXP3 expression) was evident at the injured SCN in both males and 
females, only females displayed reliable increases of FOXP3 at the DRGs [Figure 4]. The beneficial role of 
blocking the active conformational state of LFA-1 was demonstrated in both sexes [Figure 2] by reducing 
immune cell accumulation in damaged SCN [Figure 3]. However, BIRT377 modulated T cell function in a 
sex-specific manner [Figure 5]. For example, T cells from females were significantly more responsive to the 
anti-inflammatory effects of BIRT377 [Figure 5]. Similarly, BIRT377 treatment elevated T cell-associated anti-
inflammatory factors (FOXP3, IL-10 and TGF-β1) and reduced the proinflammatory T cell cytokine, IL-17A 
in the peri-sciatic milieu, predominantly in neuropathic females [Figures 3 and 4]. Interestingly, despite the 
fact that there was no additional change in FOXP3 expression in the LSC, the profound reduction of IL-17A in 
the LSC in i.v. BIRT377 treated females indicates a limited role exists for spinal Treg actions on pain reversal. 
Importantly, a reduction of peri-sciatic IL-17A co-occurs with profound spinal cord suppression of IL-17A, 
suggesting the excitatory input from centrally projecting nerve terminals into the lumbar spinal region 
ultimately leads to a reduction in proinflammatory factors that includes IL-17A. While these data demonstrate 
that a potential role for spinal IL-17A in pro-nociceptive signaling occurs, it remains unclear whether IL-17A 
acts in concert with other well-characterized spinal proinflammatory factors, or whether IL-17A is a necessary 
factor in pain signaling. Therefore, the results from the current data provide the rationale for performing 
future studies to examine whether specifically blocking the spinal actions of IL-17A also suppresses allodynia 
from peripheral neuropathy. While these additional studies would aid in understanding the role of IL-17A 
in chronic neuropathic pain, the current data are the first documented evidence that a reduction in lumbar 
spinal IL-17A expression co-occurs with a reduction in allodynia from CCI in both males and females [Figure 4]. 
Strikingly, peripheral BIRT377 reduced spinal astrocyte activation, but had little impact on microglial activation 
[Figure 8]. Overall, BIRT377 created an anti-inflammatory bias in discrete regions along the pain pathway of 
the CCI model in both sexes [Figures 3-7], thereby contributing to pain reversal. A brief summary of immune 
changes during CCI-induced neuropathy and BIRT377-mediated effects are listed in Table 1. This initial 
comparative analyses of glial/myeloid and T cell-related cytokines and their corresponding transcription 
factors that are altered by preventing β2-integrin (LFA-1) signaling, provides insight into possible mechanisms 
leading to peripheral sciatic neuropathy between males and females. 

Sex differences in peripheral inflammatory reactions to nerve injury
Remarkable sex differences of immune system activity are observed in different disease models[85-89]. Sex 
differences in TLR4 responses to pathogen stimulation have been observed, whereby females produce 
similar or less IL-1β and TNF compared to males[85]. Female-derived immune cells are more efficient 
in antigen presentation and initiating adaptive immune responses[90]. In the CCI model, peripheral 
inflammatory reactions to nerve injury are mediated by endothelial cells of the blood-nerve barrier and 
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Schwann cells (e.g., undergoing myelin degeneration), followed by circulating leukocytes recruited in 
response to injury[7]. CCL2 signaling recruits monocytes, neutrophils and a subset of T cells[18,91,92]. We 
observed greater induction of SCN CCL2, along with greater SCN CD11b levels in males than females 
during neuropathy. These data, in combination with greater SCN IL-1β production in males suggest greater 
monocyte/macrophage-driven immune responses in males than females. 

Though we detected T cell recruitment in both sexes, the critical finding was in detecting a T cell 
differentiation bias toward a proinflammatory status that was significantly greater in females than males. 
Moreover, responses to BIRT377 in females were robustly anti-inf lammatory. For example, while an 
induction of SCN FOXP3 (transcription factor in Tregs for IL-10 and TGF-β1) was detected from both 
neuropathic males and females, BIRT377 induced additional increases only in SCNs of females with no 
change in FOXP3 levels in males. Even more striking were the robust levels of SCN IL-17A of neuropathic 
females compared to males, with profound blunting of IL-17A in pain reversed females relative to pain-
reversed males [Figure 4A to F]. These data indicate that females mount stronger proinf lammatory T 
cell responses following nerve injury compared to males despite an abundance of peri-sciatic T cells (as 
indicated by CD3, global T cell marker) present in both males and females. Moreover, the striking FOXP3 
increase and simultaneous IL-17A decrease predominantly in female SCN suggests that BIRT377 favors 
targeting T cells derived from females than from males. 
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Table 1. A brief summary of changes in immune factors following CCI and BIRT377 treatment

Tissue Regions Immune Parameters
Male Female

CCI# CCI+ BIRT377## CCI# CCI+ BIRT377##

Sciatic Nerve 
(Ipsilateral)

CCL2 Up Down Up*
IL-1β Up Down Up* Down
TNF Up Down Up Down
IL-10 Up Up* Up
TGFβ-1 Up Up* Up
CD11b Up Down Up*
CD3 Up Down Up
FOXP3 Up Up Up
IL-17A Up Up* Down

DRGs (Ipsilateral) CCL2 Up Up
IL-1β Up Down Up* Down
TNF Up Down Up
IL-10 Up Up
FOXP3 Up

Lumbar Spinal Cord 
(Ipsilateral)

CCL2 Up Up* Down
IL-1β Up
TGFβ-1 Up Up
IL-10 Down Up Down Up
FOXP3 Up* Down
IL-17A Up* Down
GFAP Up Down Up
TMEM119 Up Up

Lumbar spinal Cord 
(Contralateral)

CCL2 Down
IL-1β
TGFβ-1
IL-10 Up Down
FOXP3
GFAP Up Down Up* Down
TMEM119 Up Up

*Fold changes were significantly different in males versus females. #Comparison between Sham+Veh and CCI+Veh, ##comparison 
between CCI+Veh and CCI+BIRT377



Interestingly in DRGs, IL-1β levels were greater in neuropathic females. It is possible that the combination 
of T cell-mediated responses, along with myeloid-driven proinflammatory actions culminate in greater 
nociceptive factors that induce further hyperexcitability relayed to the spinal cord in females. The fact that 
reliable induction of FOXP3 was observed only in female DRGs may reflect the anti-inflammatory rebound 
in response to inflammatory signals. Recruitment of Treg cells could function to control bystander injury-
related proinflammatory cytokines. 

Sex convergent and sex divergent aberrant spinal immune responses underlying chronic pain
Despite evidence of microglial activation in neuropathic females[26], microglial TLR4 signaling is only 
necessary for the development of neuropathy in males, whereas astrocytic signaling under neuropathic 
conditions is observed in both males and females[3,25,26]. Supporting prior observations, we detected 
astrocytic and microglial activity in both sexes during neuropathy [Figure 8][4]. However, we noticed that 
induction of ipsilateral CCL2 in conjunction with IL-1β was greater in females [Figure 7]. The reduction of 
basal IL-10 levels, a finding that our group has previously observed in chronic neuropathic male rats[93,94], 
appeared more pronounced in neuropathic female than male mice. Note that along with greater astrocyte 
(as assessed by increased GFAP) and microglial activation (TMEM119) and increased CCL2 in the 
contralateral side, a simultaneous decrease in IL-10 was measured, indicating that contralateral spinal cord 
IL-10 expression in females may reflect a greater impact of this cytokine in controlling proinflammatory 
contralateral glial activation. It is noteworthy that, other than CCL2 in females, changes in injury-related 
contralateral spinal IL-1β or TGF-β1 were not detectable in males or females, despite ongoing contralateral 
allodynia. Therefore, the reduction of the basal levels of spinal IL-10, rather than the presence of these 
specific proinflammatory cytokines, is likely a better indicator of ongoing allodynia. 

We speculate that T cell-mediated proinf lammatory cytokines (e.g., IL-17A) at the injury site may 
consequently drive sciatic “damage” signals, leading to the release of factors from nerve terminals in the 
spinal cord that communicate to pain projection neurons. Astrocytes and microglia local to the dorsal 
horn of the spinal cord respond to these damage signals from SCN terminals. Though activated astrocytes 
are capable of producing IL-17A[95,96], contralateral IL-17A was not detected despite astrocyte activation, 
suggesting that contralateral IL-17A is not a key factor in contralateral glial activation. In fact, the absence 
of contralateral IL-17 may reinforce the possibility that ipsilateral immune-related signaling may drive 
contralateral spinal cord pain neuron excitability via astrocyte-specific gap junctional communication[73,80]. 
Interestingly, supraspinal mechanisms such as activation of cortical areas important in pain processing, 
and descending facilitation from key brainstem areas may contribute in contralateral allodynia as well[97,98]. 
Proinflammatory cytokines in pain related brain regions are capable of impairing descending inhibitory 
pain pathways[99]. Whether, differential immune mechanisms following nerve injury inf luence the 
descending pathways involved in manifesting mirror image pain in different sexes would be an interesting 
avenue for future exploration. 

Though astrocytic activation during neuropathy is common in both sexes, it is possible that microglia in 
males and infiltrating Th17 cells in females are the predominant cell types responsible for driving chronic 
excitation of astrocytic-neuronal interaction. In support of this possibility, the current report demonstrated 
a robust upregulation of IL-17A in the spinal cord of neuropathic females. Our prior data indicates the 
presence of activated T cells (T-bet and RORγt mRNA transcripts, which are critical transcription factors 
for Th1 and Th17 respectively) in the ipsilateral LSC in neuropathic female rats[100]. Therefore, Th17 cells 
likely infiltrate the ipsilateral spinal cord and interact with astrocytes where ongoing pathology is present, 
inducing a feed-forward astrocyte-proinflammatory chemokine (e.g., CCL2) and cytokine production[101,102], 
as observed in this study. However, re-programming of differentiated T cells and their functional responses 
can occur in response to the local cytokine milieu in the CNS[102-104]. Therefore, the absence of contralateral 
IL-17A does not prove a lack of T cell recruitment or their actions in contralateral neuropathy. 
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Sex-specific mechanistic differences of BIRT377 pain reversal
BIRT377-mediated effects on myeloid/glial activation
Numerous reports suggest that blocking LFA-1 actions restricts migration of monocytes and T cells to 
injured tissues[37,105]. Following BIRT377 treatment, both males and females display decreases in peri-sciatic 
IL-1β and TNF, which are generally myeloid-derived. Reduced CD11b levels around the injured nerve are 
found only in males. Together, these data suggest BIRT377 may reverse pain in males mainly by blocking 
myeloid cell migration and consequent exposure to proinflammatory cytokines. However, in females, the 
effect of blocking the active conformation of LFA-1 by BIRT377 appears to directly alter transcriptional 
regulation of pro- and anti-inf lammatory cytokines of myeloid-derived cells. Previous studies suggest 
that a lack of LFA-1 interaction with leukocytes increases IL-10, switching macrophage activation from a 
proinflammatory bias to an anti-inflammatory state[38,42]. Therefore, BIRT377-mediated re-programing of 
myeloid cell function may also occur, and possible sex differences regarding these observations need to be 
further explored. 

BIRT377-mediated effects on T cells
Though the exact mechanism(s) are unclear, LFA-1 signaling interacts with T cell activation, and therefore, 
modulates adaptive immune responses[44,54]. While sex was not specified, previous studies suggest that 
blocking LFA-1 actions decreases Th17 differentiation and increases FOXP3+ Tregs[39,106]. Consistent with 
the in vitro T cell findings demonstrated in the current report, in vivo increases in IL-10 and TGF-β1 were 
observed along with increases in FOXP3 and reduced IL-17A levels at the SCN only in females following 
BIRT377 treatment. Therefore, BIRT377 treatment is beneficial for pain reversal by affecting both immune 
cell migration and modulation of their actions at local sites of inflammation, thereby, indirectly influencing 
the spinal-immune milieu during neuropathy. Interestingly, for both sexes, BIRT377 did not change 
microglial activation, suggesting that reducing astrocytic activation and increasing IL-10 levels at the spinal 
cord is sufficient to reverse allodynia. 

We have recently reported that intrathecal (spinal) application of BIRT377 in a rat CCI model leading 
to chronic neuropathy, dorsal horn spinal astrocyte activation and IL-1β are reduced, as evidenced by 
immunohistochemical staining and image analysis measures[107]. Though BIRT377-mediated effects on mRNA 
levels of IL-17A, IL-10, and TGF-β1 are supportive of the protein levels of these cytokines [Figure 5], direct 
quantification of protein levels of all the diverse immune markers would further strengthen the findings in the 
current report[30,32], along with semi-quantitative analysis of expression markers using immunohistochemical 
and image analysis methods that can capture within-region specific changes in comparatively sparse T cell 
subtypes[33,108]. 

In conclusion, this study supports the presence of divergent proinf lammatory cytokines in males and 
females following peripheral nerve injury, which has important implications when developing pain 
therapeutics. Despite the observed cytokine/chemokine and related transcription factor expression 
differences in SCN, DRG and LSC, systemic blockade of LFA-1 activation is beneficial for pain reversal in 
both sexes. Therefore, BIRT377 may serve as a novel therapeutic for chronic pain and other CNS diseases.
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