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Abstract

Breast cancer is the most common cancer in the world. Despite advances in early detection and understanding 
of the molecular bases of breast cancer biology, approximately 30% of all patients with early-stage breast cancer 
have metastatic disease. Breast cancers are comprised of molecularly distinct subtypes that respond differently to 
pathway-targeted therapies and neoadjuvant systemic therapy. However, no tumor response is observed in some 
cases and development of resistance is most commonly seen in patients with heterogeneous breast cancer subtype. 
To offer better treatment with increased efficacy and low toxicity of selecting therapies, new technologies that 
incorporate clinical and molecular characteristics of intratumoral heterogeneity have been investigated. This short 
review provides some examples of integrative omics approaches (genome, epigenome, transcriptome, immune 
profiling) and mathematical/computational analyses that provide mechanistic and clinically relevant insights into 
underlying differences in breast cancer subtypes and patients’responses to specific therapies.

Keywords: Breast cancer, ERBB/HER, estrogen receptor, progesterone receptor, genomics, proteomics, epigenomics, 
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INTRODUCTION
Cancer is defined as genetic disease and is molecularly characterized by accumulation of mutations and 
epimutations that lead to functional dysregulation of cell genome and epigenome-driven processes[1]. 



Nonetheless, different genetic and epigenetic variations within patients to patients can lead to a same 
disease phenotype, e.g., uncontrolled cell growth. Recent advances in whole genome throughput DNA 
sequencing, systems biology and machine learning algorithms have produced promise information on 
the evolutionary dynamics of tumors, from a single cell to a cell population[2-4]. The complex landscape 
of somatic modifications (copy number variations, mutations, gene rearrangements) observed in breast 
tumors are typically the result of a relatively small number of functional driver oncogenic alterations and a 
large number of non-functional passage alterations. The functional consequence of most cancer mutations 
could be characterized in phenotypic readouts such as growth assays or drug response screens using tumor 
cell lines[5-7]. The impact of mutations on kinase binding specificity has been explored in vitro protein 
binding microarrays, or in vivo, for example, by measuring kinase target phosphorylation after kinase 
mutation[8]. However, what substantially contribute to oncogenesis and progression of tumors is intra and 
inter-clonal heterogeneity, which is determined by a stochastic mutational process in cancer cells[9,10].

Most common factors taken into account for classification of tumors into distinct groups include: degree 
of local invasion, degree of remote invasion, histological types of cancer and specific grading based on 
various tumor markers, and general status of the patient[2,3]. However, cancers with similar morphological 
and histopathological features reveal very distinct patterns of progression and response to therapy. With 
growing number of database of tumor and single cell genomic, epigenomic, and pharmacogenomics 
reporting on differences and similarities between clinical outcomes of patient cohort to the same therapies, 
we have a rewarding opportunity to modeling and predicting outcomes to traditional chemotherapy and 
targeted therapies[11].

Epigenetic alterations participate in all steps of cancer, from tumor initiation to cancer progression and 
metastasis[1,12]. It is now well understood that both losses and gains of DNA methylation occurring in 
CpGs motifs, as well as aberrant chromatin organization, contribute significantly to cancer associated 
phenotypes[12]. Epigenetic inactivation of tumor suppressor genes (TSGs) is a well-established event in 
cancer progression. Oncogenic activating mutations are now known to occur in a number of epigenetic 
modifiers such as isocitrate dehydrogenase 1 and 2, histone-lysine N-methyltransferase enzyme (EZH2), 
DNA methyl transferases (DNMTs)[13]. In cancer cells, global DNA hypomethylation is frequently 
concomitant with both local hypo and hypermethylations (epigenetic mosaicism). This may contribute 
to cancer progression through chromosomal instability, reactivation of transposable elements and loss of 
imprinting. The DNMTs: DNMT1, DNMT2, and the DNMT3A/3B/3L are main components methylation 
machineries whereas demethylases Ten-eleven translocation proteins TET1, TET2 and TET3, and 
repressive histone-modifying enzymes of the Polycomb repressive complex 1 (PRC1) and PRC2, specifically 
named, “writers” and “erasers” are modulators of epigenetic patterns[12]. Defects in DNA methylation 
could induce TSG silencing and resistance to classical chemotherapeutic agents. Interplay between DNA 
methylation and DNA repair machineries may also occasionally provoke de novo methylation and 
aberrant gene silencing[12-14]. Methylome profiles provides a molecular signature of cancers and might serve 
as potential diagnostic and predictive biomarkers[15-17]. Some new epigenetic modifier drugs combined with 
conventional chemotherapies and immunotherapies may reverse more permanent changes that affect the 
epigenetic processes such as histone hypermethylation and transcriptional gene silencing[18].

Genomic and post-genomic research technologies have shifted to focus on biomarker discovery for 
diagnosis, prognosis and prediction of treatment response to targeted therapies[6]. Continuous discovery 
of cancer subtypes has proven that tumor cell surface markers used in traditional pathology-based 
classifications and clinical phenotyping cannot capture the full complexity of tumors[2-4]. In tumors, 
different cell types interact with each other in the tumor microenvironment (TME). Immune and stroma 
cells of TME play an important role in tumorigenesis and development of metastasis[9,10]. TME studies 
revealed that tumors can be classified into inflamed and non-inflamed tumors[19]. The first type contains 
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abundant presence of immune cells: T cells, myeloid cells, monocytes, and the second little or no presence 
of immune cells, especially T cells[19]. Fibroblast cell types are part of TEM, and more precisely cancer-
associated fibroblasts (CAFs) have pro-tumor functions in breast cancer as they can enhance metastasis[20]. 
The presence of tumor-infiltrating lymphocytes (TILs) in TME is associated with an overall patient good 
prognosis, better survival and the success of checkpoint immunotherapy[19]. Studies performed a multi-
omic analysis of Tumor Cancer Genome Atlas (TCGA) datasets have allowed identification at least 
six immune subtypes across cancer types[21]. Finally, stromal cells and immune cells can preserve the 
properties of cancer stem cells (CSCs), or cancer initiating cells, which are cells that exert multicellular 
functions in tumor tissue-specific networks and immune resistance[22,23]. More important, CSCs display 
differentiation-state plasticity that allow cancer cells to undergo epithelial to mesenchymal transition 
(EMT), a process in which cancer cells acquire migratory and invasive properties[24]. These results 
underline the importance of immunophenotyping as a new modality to sub-classify cancers based on their 
TME[19,20]. 

The effectiveness of the targeted therapy strongly depends on both the cancer type and molecular 
features of the individual tumors[25,26]. The context-specific impact of molecular features such as somatic 
alterations and/or copy number events can be measured using diverse high-throughput techniques such as 
transcriptomics (the number of counts of mRNA molecules) and (phospho) proteomic and transcription 
factor (TF) activities[27,28]. The reverse phase protein array (RPPA) is a high-throughput antibody-based 
technique, similar to Western blot, to evaluate protein activities in signaling networks[27,28]. This functional 
proteomic analysis can be done in either flash-frozen or formalin-fixed, paraffin-embedded (FFPE) tissue 
samples. The use of RPPA data for evaluation of functional signatures linking perturbations in down- and 
up-stream signal transduction pathways might be crucial for personalizing cancer therapies in future[18]. 

Computational integrative methods that combine genomic and functional cancer phenotypes may better 
predict those patients who will benefit of the combination therapies[27,28]. This system biology approach 
generally uses statistical/mathematical modeling and supervised machine learning for learning and predict 
disease similarities from basic and clinical data. Personalized disease subnetworks may be necessary to 
uncover cancer-related associations, including genotype-phenotype relationships and spatial heterogeneity 
in the tumor microenvironmental interactions[4,27,28]. However, although powerful, the use of these 
methodologies still requires additional strategies to reveal functionally important biomarkers, which often 
remains the rate-limiting step in the diagnostic challenge. Here we will discuss these issues using as model 
the breast cancer tumors. 

BREAST CANCER SUBTYPES AND THERAPY OUTCOMES
Breast cancer has the highest incidence in women worldwide and is the fifth leading cause of mortality in 
the globe. Many breast cancer classifications have been proposed according to the invasive characteristics, 
occurrence, histology and molecular profiling of tumor samples[29,30]. Based on their site of occurrence, 
tumors can be classified as lobular (located at breast lobules) or ductal (at breast ducts). Carcinomas 
may also arise from invasive epithelial cells (medullary carcinoma), mucus-producing cells (mucinous 
carcinoma, also called colloid carcinoma), or a subtype of ductal carcinoma in situ (DCIS) or invasive 
ductal carcinoma (tubular carcinoma). The in situ to invasive breast carcinoma progression is often caused 
by interactions among epithelial, myoepithelial, and stromal cells. The progression occurs due to the loss of 
normal myoepithelial cell function[31].

Cancers derived from luminal cells are the most common types of breast cancer expressing hormone 
receptors for estrogen receptor (ER), progesterone receptor (PR), or the amplified human epidermal 
growth factor receptor (EGFR) 2/erythroblastic leukemia viral oncogene homolog 2 receptor (HER2/
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ErbB2/ERBB2)[30]. A high resolution copy-number analyses have confirmed recurrent amplification 
on chromosomal regions and genes, respectively, found in primary tumors mapping at 8q24 [v-myc 
myelocytomatosis viral oncogene homolog (avian) (MYC)], 11q13 [cyclin D1 (CCND1)], 17q12 (ERBB2), 
20q13 [serine/threonine kinase 15 (STK15)/aurora kinase A], and homozygous deletion at 9p21 [cyclin 
dependent kinase inhibitor 2A (CDKN2A)][32]. Tumors lacking expression of all three receptors (ER, PR, 
HER2) are referred to as triple-negative breast cancers (TNBCs), which are tumors most often derived 
from cells of basal origin. TNBCs display stem cell-like and luminal progenitor-like gene signatures, and 
frequently have somatic mutations in the TSGs TP53 and PTEN, and a smaller fraction is also mutant for 
breast cancer 1 (BRCA1). Molecular gene expression profiling has also redefined breast cancer subtypes 
as luminal A, luminal B, HER2-rich, and basal-like, which roughly parallel the immune-histochemical 
categories[33-35]. The basal and claudin-low subtypes map to the previously designated basal A, and 
basal B subtypes, respectively[36]. In general, the luminal A breast cancer subtype displays mutations in 
phosphatidylinositol 3-kinase (PIK3CA) (~49%), mitogen-activated protein kinase (MAP3K1) (~14%), GATA 
binding factor 3 (14%), TP53 (~12%), and MAP2K4 (~12%) and loss of Phosphatase and tensin homolog 
deleted on chromosome ten (PTEN) (13%), among others. The luminal B breast cancer subtype has 
mutations in TP53 (~32%), PIK3CA (~32%), MAP3K1 (~5%) and other genes. HER2-overexpressing tumors 
display representative TP53 mutation and overexpression of other genes, such as growth factor receptor-
bound protein 7 (GRB7) and Post-GPI Attachment To Proteins 3. Patients with HER2-overexpressing tumors 
usually develop brain metastases and additional mutations in fibroblast growth factor receptor 2, PI3KCA 
and ataxia telangiectasia and rad3-related kinase, homozygous deletion in CDKN2A as well as amplification 
in Kirsten rat sarcoma viral oncogene homolog (KRAS)[33-36]. Breast cancer patients with BRCA1 germline 
mutation do not express ER, PR, and HER2 and share morphological, clinical, and molecular features and 
immunohistochemical and cytokeratin expression patterns like basal like breast cancers[30,37]. 

Immunohistochemistry and/or fluorescence in situ hybridization in slides or tissue microarray (TMA) have 
been used to identify the distinct primary and invasive and non-invasive breast cancer subtypes[30]. The 
subtyping is critical in clinical management of distinct prognoses and predictive responses to endocrine 
or targeted therapy[38,39]. Breast cancers with HER2/ERBB amplification respond to trastuzumab and/or 
lapatinib, and tumors with mutated or amplified BCR-ABL (breakpoint cluster region C-ABL oncogene 
1, non-receptor tyrosine kinase) respond to imatinib mesylate[40]. However, although molecular profiling 
provides important prognostic indicators, breast cancer risk stratification remains a challenge in TNBC 
cases[41]. For instance, the claudin-low subtype was identified as a TNBC subset that is associated with more 
aggressive tumor behavior and worse prognosis[41].

Figure 1 shows the Kaplan-Meier curves that exemplify how hierarchical clustering based on patterns 
of expression of intrinsic genes or gene expression signatures can discriminate tumors and ultimately 
the outcomes following the adjuvant and combined systemic treatments[33]. Many independent data sets 
representing different patient cohorts have confirmed the discriminatory power of the molecular subtypes 
for the representative groups and recommended their treatment as separable diseases[33]. Diverse panels 
of well-characterized breast cancer cell lines have been used to statistically validate the robustness of 
associations between molecular subtypes and activated signaling pathways to in vitro specific therapeutic 
compound responses[5-7]. Surprisingly, more than 50,000 genetic and molecular features emerged from these 
cell lines which exhibit differential sensitivities to most therapeutic compounds[5-7]. Similar mutational 
profiles have been identified in tumor samples derived from patients’cohorts such as METABRIC (the 
Breast Cancer International Consortium), TCGA and many other cancer genome cohorts[42]. Analyses of 
subclonal evolution of a cancer cell across lifespan indicated that a dominant common ancestor lineage 
is present at time of tumor diagnosis[43]. Deep analyses of cancer genomes identified over 30 cancer 
mutational signatures, which are caused by multiple mutational processes include infidelity of either the 
DNA replication, damage or repair machinery[43]. At least six genome rearrangement signatures driving 
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the genomic amplification have been identified in breast cancers[42]. These clinical and genomic datasets 
and somatic mutational catalogues are available online for in silico investigation for their relationships to 
tumor clinical responses[42,43].

Growing evidence suggests that CAFs is the major cellular component in the peritumoral micro-
environment and a strong biomarker for breast cancer growth invasion and dissemination[20,24]. CAFs 
display mesenchymal-like features and are likely mesoderm derived and differ from normal fibroblasts in 
terms of gene expression profile, activation mechanism and phenotype[44]. A study in a Brazilian cohort of 
breast cancer patients confirmed that CAFs in lymph nodes with macrometastasis express similar profile of 
vimentin, alpha-smooth muscle actin (-SMA), and S100A4 protein as those CAFs found in primary tumors. 
CAFs were uniformly ER, PR, HER2, MKI67, and P53 negative, but level of staining of transforming 
growth factor-1 (TGF-1), CXC chemokine receptor CXCR4, and p-AKT STK(62.3%, 52.4%, 65%, 
respectively) were equivalent between primary and lymph node metastasis fibroblasts[44]. Some anticancer 
drugs are likely to affect CAFs, however none is known about the impact on therapeutic outcomes.

The presence of distinct global gene-expression signatures within tumors allowed the development of 
reliable omics-based technologies for clinical diagnostics of breast cancer subtypes[33-36]. The Oncotype 

P

P

Figure 1. Kaplan-Meier curves of time for distant metastasis (A) and overall survival (B) among five breast cancer subtypes in two patient 
cohorts. This figure is quoted with permission from Sorlie et al .[33]
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DX, PAM50, and MammaPrint tests are some examples commercially available[45]. The routine application 
of these tests are useful for identifying stage I or stage II lymph node-negative breast cancer patients that 
may or may not require adjuvant chemotherapy[30,46]. The Oncotype-DX breast cancer assay quantifies 
the transcription for only 21 genes through reverse transcription polymerase chain reaction using in 
the breast cancer tissue (lumpectomy, mastectomy, or core biopsy) conserved in FFPE. The Oncotype-
DX test provides a recurrence score (from 1 to 100) that is used to predict the risk of recurrence of DCIS 
breast cancer subtypes and/or the risk of a new invasive cancer[45]. The Oncotype DX DCIS test in woman 
diagnosed with DCIS predicts benefit from radiation after surgery. There is currently clinical practice 
guideline addressing when biomarker scores might be applied for predicting which women will benefit of 
specific drugs or regimens for adjuvant systemic therapy[45].

The PAM50 test uses 50 gene expression set to discriminate between each of the 5 breast cancer subtypes. 
The PAM50 recurrence score estimate the risk of distant recurrence of hormone-receptor-positive breast 
cancer from 5 to 10 years after diagnosis and after 5 years of hormonal therapy treatment in postmenopausal 
women[30,45]. For illustrative propose we present a heatmap generated in cBioPortal (https://www.cbioportal.
org/) for PAM50 gene set in 1904 breast tumors samples from METABRIC study [Figure 2]. This colored 
representation displays similarities between the tumor samples in terms of messenger RNA expression 
levels (z-scores) for the panel of genes. The rows correspond to indicated genes and column to samples. The 
gene clusters that define subtypes Basal, Luminal B, luminal A, HER-enriched and Normal-like markers 

Figure 2. Heatmap of RNA expression (z-scores) of the PAM50 gene set in 1904 breast tumors samples from METABRIC cohort. The 
visual representation of clustered gene patterns associated with subtypes Basal, Luminal B, luminal A, HER-enriched and Normal-like (left 
to right order). Each rows correspond to a gene and each column to a patient sample. The data of BAG1, PPR160 and TMEM45B were not 
included. The heatmap was generated using cBioPortal tools (https://www.cbioportal.org/)
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are separated from left to right order. The PAM50 scores incorporate most highly enriched clusters of genes 
associated with ER signaling (12 genes), growth factor signaling (4 genes), proliferation (21 genes), invasion 
(1 gene), basal phenotypes (9 genes) and miscellaneous (3 genes). Cytokeratins KRT5, KRT14 and KRT17, 
as well as basal markers SFRP1 and MIA differentiates Basal-like from Luminal B tumors. ERBB2, EGFR, 
FGFR4 and GRB7 differentiates HER2-enriched tumors from other subtypes. The PAM50 and Oncotype 
DX share the genes MKI67, CCNB1, BIRC5 and MYBL2, which contribute to their proliferation score. The 
prognostic value of PAM50 is greater than ER/HER2 immunohistochemistry classification[30,45]. However, 
studies have shown that PAM50 score did not improved outcomes of patients who underwent anthracycline- 
and taxane-based therapy[30,47]. 

Many predictive modeling methodologies for phenotyping breast cancer subtypes have focused on 
signaling transduction upon the canonical signaling pathways, including PI3K, mammalian target of 
rapamycin, MAPK, transforming growth factor β, Wingless/Integrated, cell cycle, apoptosis, immune 
responsiveness, and DNA damage response pathways[3,27,28]. Protein phosphorylation, a reversible post-
translational modification at serine (S), threonine (T) and tyrosine (Y) residues, involves a system of 
sequence-specific kinases (writers), phosphatases (erasers) and reader proteins. The advent of reverse RPPA 
databases has allowed the phophoproteomic profiling of key cancer-related proteins. The RPPA platform 
of the University of Texas MD Anderson Cancer Center (https://bioinformatics.mdanderson.org/main/
MCLP) displays the protein expression in 650 independent cell lines with known genomic, transcriptomic, 
and drug-screening data. Analyses in this dataset revealed mutation-induced perturbations of over 200 
proteins and their phosphorylated forms in various cancer types[48]. The representative nodes and modules 
of cell network perturbations were used to determine specific clusters for each cancer type. For instance, 
the breast cancer cluster was distinct from other cancer types by high expression of proteins of androgen 
hormone receptor canonical pathway and HER2 protein[48]. RPPA-based pathway-activation profiling can 
be a powerful tool to predict putative mechanisms underlying sensitivity and resistance to breast tumor 
subtypes for specific therapy[48]. The phospho-HER2 and phospho-EGFR profiles are particularly important 
in clinical setting for prescription of EGFR pathway-targeted drugs such as Herceptin, lapatinib and 
pertuzumab[40].

HER2/ERBB2 is a transmembrane glycoprotein belonging to EGF family of receptors that regulate cell 
growth, proliferation, survival, differentiation, and angiogenesis[40]. Activation of the ERBBs receptors 
by phosphorylation leads to complex signaling pathways[40]. GRB7 is one of the 105 protein coding genes 
located in the same amplicon as HER2 on chromosome 17q12. Over-phosphorylation of GRB7 in ERBB2 
amplified tumors is involved in resistance to anti-HER2 and antiestrogen therapy. A comprehensive 
gene set enrichment analysis revealed perturbed ERBBs signaling in HER2 amplified breast cancer cells 
overexpressing dermcidin (DCD), a gene localized at chromosome 12q13 locus and potential oncogene of 
breast epithelial cells[49]. Agreeing with this postulated, we found that DCD is co-expressed with GRB7, 
ERBB2 and FGFR4 in various cohorts of breast tumor samples, including METABRIC cohort (data not 
shown). More importantly, DCD has been considered as biomarker for cellular resistance of various tumor 
cells to the EGFR/ErbB1 tyrosine kinase inhibitors erlotinib and lapatinib[50].

Mutations in PIK3CA gene encoding the p110α catalytic subunit of PI3K, class IA, are among the most 
common alterations in human malignancies and contribute to approximately 25% of breast cancers[30]. 
Such mutation confers a gain of function to p110α and resistance to HER2-based therapy[51]. A combination 
of three proteins comprising the receptors EGFR, ERBB3/HER3, and the cyclin-dependent kinase 
inhibitor p27 (CDKN1B) was found to be a potential biomarker for dependence on PI3K/AKT vs. MAPK/
ERK signaling for drug resistance in HER2 breast cancers[52]. A computational algorithm called affinity 
regression was developed for analysis of distinct dysregulated transcriptional regulators downstream of 
oncogenic somatic alterations[53]. The analyses and validation of the method was done across 12 TCGA 
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cancer data[53]. The differential activity of TFs associated to mutant PIK3CA in isogenic breast cancer cell 
lines was revealed by comparing the phospho (p)-AKT and p-S6K levels[53,54]. The results point toward the 
possible application of these predictive models to screening of drugs to personalized therapies.

Epigenetic studies have found that luminal breast cancers share a common epigenetic signature, whereas 
basal-like breast cancers display highly heterogeneous signatures[55,56]. Basal-like breast cancer cells that 
constitute the majority of TNBCs can reprogram a subset of luminal breast cancer cells to a basal-like state, 
which drastically alter their phenotype. This phenotype is associated with high production of the cytokine 
IL-6 and tumor-promoting molecules[56]. Overexpression of three TFs Engrailed 1, T box transcription 18, 
and T-cell factor 4 can induce the repression of some luminal features in luminal breast cancer cells[56]. 
Over 75% of breast tumors express the ERα that leads to genetic and cellular aberrations[38,39]. Patients with 
ERα-dependent tumor growth often respond well to tamoxifen and fulvestrant[38,39]. Nonetheless, patients 
may develop endometrial cancer and increased bone density. Recent studies using ChIP-seq and chromatin 
accessibility (DNase-seq and ATAC-seq) assays have identified a unique cistrome ERα profile for breast 
cancers[57]. The TF FOXA1 was found as an essential TF for estrogen binding and induction of ERα-
mediated gene expression in breast cancer cells[58,59]. Therefore, targeting FOXA1 with small molecules may 
disrupt ERα positive breast tumor growth. The cyclin D and cyclin-dependent kinases 4 and 6 (CDK4/6) 
have critical roles in breast carcinogenesis[29,30]. Experimental chemotherapy with small molecule inhibitors 
of CDK/6, such as abemaciclib, palbociclib and ribociclib, have yielded clinical benefits to ER positive 
breast cancer patients[60]. Abenamaciclib decreases cell proliferation and enhances tumor cell intracellular 
levels of endogenous retroviral genes, triggering “viral mimicry”. This in turn stimulates production of 
type III IFNs and IFN-induced genes in an autocrine fashion[60,61]. Accordingly, treatment of cancer cells 
with abemaciclib markedly decrease DNMT1 mRNA levels and DNA methylation, therefore, functioning 
in the similar way as epigenetic modifier 5-azacytidine[62]. Finally, epigenetic changes at enhancers and 
promoters of breast cancer cells as well as tumor stroma cells such as CAFs and myoepithelial cells are 
critical for transformation and metastasis[20,24]. CAFs may also contribute to immune suppressive effect 
of TME that is one specific biological feature of HER2/neu-positive breast cancers[63]. Therefore, DNA 
demethylating agents and cell cycle checkpoint inhibitors may be promise therapies to breast cancers.

Immunophenopying has been proposed as an biologica l assay to classi f y tumors and their 
microenvironments[21-23]. A classification into inf lamed and non-inf lamed tumors, and presence 
of the immune cells, especially T cells, have been used as an indicator of clinical response to the 
immunotherapies[19-21]. The immune-inflamed phenotype is rich in immune cells responsive to the immune 
checkpoint monoclonal antibodies towards CTLA-4 and PD-1, as well as its ligands PD-L1 and PD-
L2. These mAbs are highly effective and specific, however, the main drawback of immunotherapies is 
heterogeneity of response rate, estimated from 10%-40%[64]. CD8+ T-cell infiltration increases significantly 
with tumor mutation load[64]. The presence of both PD-L1 expression on breast tumor cells and TILs 
in TME predict longer disease-free survival and better overall survival to TNBC patients[65]. One study 
investigated the role of PD-1 as a prognostic marker for TNBC in an Asian cohort of 269 patients[66]. The 
results suggested a superior prognostic value of the CD274 (PDCD1 ligand 1, PD-L1) and PDCD1 in TNBC 
tumor immune microenvironment as compared to classical clinicopathological parameters[66]. Overall 
the results of these studies are providing new insights and alternative routes for possible therapeutic 
interventions to breast cancers.

An increased number of commensal and pathogenic bacteria, including Fusobacterium nucleatum, 
Bacteroides fragilis, Enterococcus faecalis, Streptococcus gallolyticus, Helicobacter hepaticus, and Porphyromonas 
gingivalis have been associated with cancer development. On the other hand, Faecalibacterium prausnitzii, 
Akkermansia muciniphila, Bifidobacterium longum, Collinsella aerofaciens and Citrobacter rodentium seem 
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to have an anti-inflammatory and anti-tumoral roles in a variety of tumors[67]. A comprehensive analysis of 
microbiota of 668 breast tumors indicated that H. influenza and Listeria spp inhabiting the stromal breast 
cancer tissue significantly influence the expression of genes in the proliferative pathways: G2M checkpoint, 
E2F TFs, and mitotic spindle assembly[68]. Additionally, one study identified that Lactobacillus fleischmannii 
was associated with epithelial mesenchymal transition[69]. Oral supplementation with A. muciniphila 
probiotic restore the efficacy of PD-1 blockade against epithelial tumors by increasing the recruitment of 
CCR9+CXCR3+CD4+ T lymphocytes in an interleukin-12-dependent manner[69]. With the approval of the 
first chemo- immunotherapy combination for metastatic TNBC[70], we expect that future studies correlating 
traditionally clinicopathological parameters with additive predictive valor of commensal bacteria will find 
best cancer response signatures to combination chemotherapy and immunotherapy. 

Breast cancer canonical risk factors include age at diagnosis, age at menarche, nulliparity, age at first birth, 
number of children, months of breastfeeding, race, body mass index, menopausal status, absorption, 
combined oral contraceptives, age at menopause, prior benign breast disease, and family history (BRCA 1 
and 2 and PTEN mutations) of breast cancer[71]. The hypothesis that estrogens and estrogen metabolites are 
implicated in female breast cancer etiology and progression has been confirmed for luminal A and luminal 
B breast cancer subtypes[71]. Environmental factors such as endocrine disruptors compounds (xenobiotics, 
pesticides and pollutants) may influence mammary and gut microbiota[72,73]. However, there is no data to 
support that a putative disease-causing microorganism or if altered microbial pattern of women could have 
a role in the development and progression of the breast cancer disease[72,73]. The molecular pathological 
epidemiology (MPE) is a new discipline for investigating specific risk estimative for endogenous and 
exogenous factors controlling the etiologic heterogeneity of carcinogenic process, as well as environmental 
and inherited factors leading to failures to pharmaceutical treatment or prevention[74,75]. MPE incorporates 
large multi-omic and epigenomic datasets to estimate the impact of genome-wide association studies 
on disease entity in population-based cohorts[74,75]. MPE methodologies can provide novel insights into 
mechanistic pathways of common diseases and contribution of medications (pharmaco-MPE), immune 
mediators, and microorganism (microbial-MPE) on their risk expectative[75]. In this way, standardized 
pathological methods for breast cancer molecular subtyping (whole-tissue specimens or TMA), antibodies 
for immunohistochemistry, and imaging digital analytical repertories will have great value to establish the 
multidisciplinary framework for MPE investigations on definitive biomarkers to subtype breast cancers 
and genotype-phenotype relationships.

CONCLUSION 
Breast cancer is a highly heterogeneous disease with differences in histopathological and biological 
characteristics, variable prognoses, and response to therapy. All breast tumor subtypes display different 
types of clonal subpopulations and this intratumoural and metastatic heterogeneity contribute to different 
drug sensitivities and resistance characteristics. Since the first study by Sorlie and colleagues in 2003, 
knowledge about genetic, epigenetic and endogenous and exogenous factors associated with the five 
subtypes of breast cancers (Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low) and their 
associated aberrant signaling pathways extensively increased and become extremely complex. The multi-
omics and MPE methods for large comprehensive molecular cataloguing of cancer patient cohorts will 
help to establish and predictive biomarkers essential for new therapeutic agents and patients’ responses. A 
systematic stratification of tumors based on therapeutically actionable mutated gene, TME immune cell 
profile, mammary microbial profile and epigenetic functional signatures may better predict those patients 
that will benefit from (neo) adjvuvant multi-agent chemotherapy, targeted and combination therapies, 
including immunotherapies.
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