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Abstract
Maintaining safe operations in cyber physical systems is a complex task that must account for system degradation
over time, since unexpected failures can result in the loss of life and property. Operational failures may be attributed
to component degradation and disturbances in the environment that adversely impact system performance. Compo-
nents in a CPS typically degrade at different rates, and, therefore, require continual monitoring to avoid unexpected
failures. Moreover, the effects of multiple degrading components on system performance may be hard to predict.
Developing andmaintaining accurate physics-based systemmodels can be expensive. Typically, it is infeasible to run
a true system to failure, so researchers and practitioners have resorted to using data-driven techniques to better eval-
uate the effect of degrading components on overall system performance. However, sufficiently organized datasets
of system operation are not readily available; the output of existing simulations is not organized to facilitate the use
of data-driven machine learning techniques for prognostics. As a step toward addressing this problem, in this pa-
per, we develop a data management framework and an end-to-end simulation testbed to generate such data. The
framework facilitates the development and comparison of various system-level prognostics algorithms. We adopt a
standard data-centered design methodology, combined with a model based engineering approach, to create a data
management framework that address data integrity problems and facilitates the generation of reproducible results.
We present an ontological design methodology centered around assets, processes, and data, and, as a proof of con-
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cept, develop an unmanned aerial vehicle (UAV) system operations database that captures operational data for UAVs
with multiple degrading components operating in uncertain environments.

Aim: The purpose of this work is to provide a systematic approach to data generation, curation, and storage that sup-
ports studies in fault management and system-level prognostics for real-world and simulated operations. We use a
data-driven simulation-based approach to enable reliable and reproducible studies in system-level prognostics. This
is accomplished with a data management methodology that enforces constraints on data types and interfaces, and
decouples various parts of the simulation to enable proper links with relatedmetadata. The goal is to provide a frame-
work that facilitates data analysis and the development of data-drivenmodels for prognostics usingmachine learning
methods. We discuss the importance of systematic data management framework to support data generation with a
simulation environment that generates operational data. We describe a standard framework for data management
in the context of run-to-failure simulations, and develop a database schema and an API in MATLAB® and Python to
support system-level prognostics analyses.

Methods: Asystematic approach to defining a datamanagement framework for the study of prognostics applications
is a central piece of this work. A second important contribution is the design of aMonte Carlo simulation environment
to generate run to failure data for CPSwithmultiple degrading components. We adopt a bottom-up approach, starting
with requirements and specifications, then move into functionality and constraints. With this framework, we use a
Monte-Carlo simulation approach to generate data for developing and testing a variety of system-level prognostics
algorithms.

Results: We have developed a data management framework that can handle high dimensional and complex data
generated from real or simulated systems for the study of prognostics. In this paper, we show the advantages of a
well-organized datamanagement framework for tracking high-fidelity datawith high confidence for complex, dynamic
CPS. Such frameworks impose data logging discipline and facilitate downstream uses for developing and comparing
different data-driven monitoring, diagnostics, and system-level prognostics algorithms.

Conclusions: In this paper, we demonstrate the design, development, and use of an asset, process, and data man-
agement framework for the research to develop prognostics & health management applications. This work helps fill a
gap for system-level remaining useful life studies by providing a comprehensive simulation environment that can gen-
erate run to failure data, and a data management architecture that addresses the needs for system-level prognostics
research. The framework is demonstrated with a Monte-Carlo simulation of a UAV system that operates multiple
flights under different environmental conditions and degradation sources. This architecture for data management
will enable researchers to conduct more complex experiments for a variety of cyber physical systems applications.

Keywords: Data management, system-level prognostics, simulation architecture, run to failure data generation, un-
manned aerial vehicles, cyber physical systems

INTRODUCTION
Cyber Physical Systems (CPS) are systems that integrate computing, networking, and physical processing and
are comprised of one or more embedded computing platforms. They interact with the physical environment,
and often times with humans. All physical systems degrade with use over time, and the added uncertainties in
the environments these systems operate in (e.g., changing wind and weather conditions) makes it imperative to
track system components and overall system performance. Prognostics and Health Management (PHM) can
support the decision making required to facilitate safe flights; however, developing System-Level Prognostics
(SLP) algorithms remains a challenging task due to the lack of real-world data or high quality simulation
data. This is for two reasons: (1) it is not practical from a safety or cost perspective to run a real system to
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failure; and (2) currently available simulations do not utilize a standardized data management framework for
the generation, organization, and storage of data.

In this paper, we develop a data management framework and data generation scheme to support data-driven
approaches to SLP, which refer to approaches where system health and system Remaining Useful Life (RUL)
are tied to overall system performance under realistic operating conditions. Our framework provides the
context for developing data-driven machine learning models that support SLP and computation of system
RUL.These approaches use a Monte-Carlo stochastic simulation to generate operational data for UAV systems
with multiple degrading components flying a number of trajectories that are subjected to wind conditions that
are modeled as stochastic processes. Our key contribution is a data management framework that facilitates
the generation, curation, usage, and storage of simulation data that encompasses multiple operating and
environmental conditions to facilitate studies with multiple machine learning algorithms for RUL and SLP
analyses. We discuss below the motivating factors of this work, the challenges that we address, and our key
contributions to the field.

Background & motivation
Theuse ofUAVs has rapidly grownover the last few years across awide variety of applications that include aerial
photography, surveillance, package delivery, cartography, agriculture, and military missions. As adoption and
use of these vehicles increase, so does the risk of failures during flight that can result in a loss of money, time,
productivity, and most importantly, human lives. Components of these systems naturally degrade over time
with continual use, and, consequently, the risk of failure during flight increases. The System-Wide Safety
Project (SWS) (https://www.nasa.gov/aeroresearch/programs/aosp/sws), one of NASA’s primary thrusts in the
Urban Air Mobility (UAM) program, deals with all aspects of safety within the operational context of UAVs
and is a driving force in this area of research.

System health management is critical for reliable and safe CPS operations. The inability to proactively manage
system health can result in failures that lead to unnecessary down times, loss of assets, or even loss of human
life. Therefore, researchers, practitioners, and system operators put a lot of effort into managing system health
by monitoring the health of system components as well as overall system performance.

SLP contributes to the overall safety of operations by using estimation and prediction methods to improve sys-
tem reliability andmaintainability. A lot of work has been done on RUL estimation for individual components,
but the literature that studies multiple component degradation and the effects on overall system performance
is still sparse. The next generation of space and aerospace operations need to incorporate SLP methods for
effective and safe operations.

NASA recently commissioned the National Academy of Sciences to conduct an in-depth study of the benefits
and challenges of Advanced Air Mobility [1]. A key finding related to safety was that the current state of the
art in simulation technology is not adequate. The report discusses the need for better tools to address both
simulation and testing. In recent years, using a mix of tools and frameworks, along with custom software
written in various languages, researchers around the world have developed prognostics applications with great
results. Despite this progress, Li et al. [2] summarize quite succinctly,

“existing literature addresses aspects of PHM design methodology and provides PHM architecture formulations. However, a
systematic methodology towards a consistent definition of PHM architectures, i.e., one that spans the conceptual and applica-
tion level, has not been well established.”

Software tools & simulation methods
The development of simulation-based and data-driven environments that have grown to a level of complexity
wheremanaging the generated data becomes a burdensome task fraught with errors. Therefore, it is imperative
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for system health management platforms to adopt a robust and well-defined framework that focuses on the
data management aspects as much as the simulation. More than 10 years ago, Uckun et al. [3] highlighted the
lack of standardization within the PHM community and critically pointed out that many PHM experiments
lacked statistical rigor. While statistical evaluation methods for PHM applications have made significant ad-
vances, the PHM community still lacks a universally accepted research methodology using simulations and
standard conventions for data quality and management. Developing new technology often starts with creating
simulations and simulation testbeds. Typically, these simulations are developed ”in-house”, rely on specialized
dependencies, are poorly documented, and are often difficult to replicate or extend. To overcome these prob-
lems, we propose a systematic approach to designing end-to-end simulation systems, and our key claim is that
the simulation approach should be designed around the data first - not the other way around.

Modeling and simulation tools such as Simulink, LabVIEW, or Modelica are industry standards for a number
of engineering applications. They also facilitate the generation and use of data. However, these tools do not
enforce any policies or rules on how the generated data is managed. These are open-ended tools, meaning there
is no framework to specify and implement such policies or interfaces, it is all left to the user. Given the skill-set
disconnect between engineers or research scientists, the users of these tools, and the database engineers or
the enterprise software developers who typically implement data schemas, the data management practices and
implementations needed to facilitate experimentation often fall through the cracks.

Morris et al. [4] remark that a well-organized approach to planning and reporting simulation studies involves
formally defining the purpose of the study, exhaustively enumerating all sources of data, the parameters that
are being estimated, the methods used, and performance measures. While they focus on the field of medicine,
their methodologies may be easily expanded to other domains of study. Typically what is seen in the literature
is an overemphasis on the purpose of the study and methods used, with little attention given to properly doc-
umenting the component modeling or data these components generate. Simulink is the underlying software
tool used for the simulation environment in this work; however, we provide all of the building blocks necessary
to ensure simulation conformity and reduce the burden on the end user.

TheNASADiagnostics andPrognosticsGrouphas developed the Prognostics PythonPackages, prog_models [5]

and prog_algs [6]. These are a collection of open-source research tools for developing prognostic models,
simulating system degradation, performing prognostics, analyzing results, and developing new prognostic
algorithms. The Prognostics Python Packages encapsulate design improvements over the previously released
MATLAB Prognostics Libraries (PrognosticModels, PrognosticAlgorithms, and PrognosticMetrics) and C++
Generic Software Architecture for Prognostics (GSAP) [7]. The packages implement common functionality
found in PHM applications (e.g., state estimation algorithms, predictors, sampling methods) and provide clear
interfaces and tools for extending that functionality. NASA also had an effort to explore the challenges asso-
ciated with a Service-Oriented Architecture (SOA) for Prognostics, called Prognostics As-A-Service (PaaS) [8].
This effort explored different architectures for PaaS, including structures for long-term data storage to enable
outer-loop model optimization approaches.

While the Prognostics Python Packages and GSAP focus on implementing common functionality across PHM
applications and enforce constraints on the physics-based models and composition of components within a
system, it does not provide any systematic framework for the handling or storage of data. A running theme
throughout this paper is the importance of understanding and addressing data concerns first, and then build-
ing the simulation software around those requirements. The data management framework proposed in this
work does just that, and enables researchers to focus on their specific experiments with little upfront effort
to incorporate the data schema into their work. This framework can also interoperate with any of the tools
discussed above. Next we discuss data generation aspects in more detail.
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Data generation & management
Over the last several years, there has been a rise in the use of deep learning methods in prognostics research to
achieve results that were previously unobtainable. Nevertheless, as we have seen, there is a general lack of data
management and attention to data provenance in these studies, which results in data that lacks appropriate
descriptors, unverifiable origins, or any of the other several aforementioned issues presented previously that
make replication or validation tasks hard to achieve. We argue that these issues persist due to the lack of data
management standards and policies. The goal of data management is to produce “self-describing datasets” [9]
such that scientists and practitioners can discover, use, and interpret the data across multiple experiments.

Oracle (https://www.oracle.com/database/what-is-data-management/) defines data management as the prac-
tice of collecting, keeping, and using data securely, efficiently, and cost-effectively. One thing not specif-
ically mentioned in this definition is data organization, however, it can be inferred that the ability to use
data efficiently implies some form of underlying organization. Microsoft (https://dynamics.microsoft.com/en-
us/ai/customer-insights/what-is-a-data-management-platform-dmp/) defines data management as the collec-
tion, organization, and activation of data from various sources to put into a usable form. They define this in
terms of a data management platform as a tool to facilitate data management, a critical piece that is missing in
the scientific and engineering literature. This point is perhaps the biggest reason why such poor data manage-
ment practices exist within the PHM community (not to remark on the acumen of our researchers, but simply
the identification of a skill-set gap that exists).

TechTarget (https://searchdatamanagement.techtarget.com/definition/data-management) adds to the above by
bringing accuracy into the picture, which can be interpreted as a form of assurance on the validity of the data
and its provenance. Munappy et al. [10] define data management specifically for deep learning applications as a
process that includes collecting, processing, analyzing, validating, storing, protecting, and monitoring data to
ensure consistency, accuracy, and reliability of the data are intact.

However, these definitions do not address how this data is generated or its origins. This is one point of con-
tention that must be addressed within the context of engineering or scientific disciplines that use simulation
studies to draw conclusions. These studies are used to drive technological development of some system or
algorithm that is eventually used in the real world, with real implications, and the validity of the data used is of
utmost importance. Therefore, our definition includes data generation, in addition to the definition proposed
by Munappy et al. [10], as follows:

Definition 1 (Data Management for CPS) A formal method for generating, validating, storing, documenting,
and retrieving data that guarantee data security, consistency, availability, and persistence even long after the project
that generated such data is finished.

Most of the effort in the application ofmachine learning algorithms is spent on data preparation [11]. The perfor-
mance of a machine learning algorithm is directly related to the quality of the data sets employed for the learn-
ing task. Machine learning models are highly dependent on the underlying data, and, therefore, consistency,
accuracy, and completeness of the data is essential to train models that are capable of sufficient generalization
and performance [10]. Thus, good data management principles and practices need to be adopted throughout
the entire development process. The majority of engineers focus on the development of the machine learning
algorithms and simply deal with the fact that data preparation is going to be their most time-consuming part.
This is largely because of the gap that exists between the skill-sets of a data management professional and that
of a machine learning engineer.

Data consistency is hard to achieve or guarantee without a systematic and pragmatic approach to data man-
agement. Lack of consistency in the data ultimately results in a poorly trained model and has negative effects
on any downstream processes [12]. Data validation can address these problems, and a properly implemented
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data schema can perform automatic validation, alleviating many of these issues. Lack of metadata or data
descriptors creates confusion and poor understanding of the data, resulting in ambiguous data semantics that
makes data discovery a cumbersome and sometimes impossible task. Data dependency, memory manage-
ment, concurrency, the problem of noisy data, and data inconsistency can be solved in an integrated manner
using a DataBaseManagement System (DBMS) within the workflow of simulation studies or machine learning
applications [13].

Most datasets discussed in the literature are schema-free [14], meaning they do not share a standard format. This
results in data organizationmethods that do not conform to a set of predefined rules or systems of organization.
As a result, validating machine learning models is a major challenge. Accessing data from one dataset may not
be the same as in another, even if the datasets are for similar applications. A well-defined data schema is
necessary as it encodes and specifies what correct data is, and valid types and ranges for the data. In this
manner, it enforces data relationships and other constraints to ensure data validity. Our aim is to propose
a data schema that provides standards and explicit rules for data management for the PHM community to
address the issues outlined in this paper. We provide this data schema and discuss the primary SLP use case
next.

System-level prognostics
Prognostics brings together the study of how systems fail with life-cycle management to ensure safe and proper
operations of the system [15]. Put simply, prognostics is predicting how a system’s state and performance will
change with time, and when a future event, typically End Of Life (EOL), or some safety or performance thresh-
old violation [16], will occur. One common approach to assessing when failure will occur is to use empirical
data provided by component manufacturers, such as Mean Time Between Failure (MTBF). However, MTBF
specifications fail to account for system usage, therefore, are limited in their practical usability, especially when
systems operate under a variety of operational and environmental conditions. Prognostics, in contrast, en-
compasses methods for estimating future performance based on telemetry data from system sensors, its cur-
rent state of health, and predicted use over time. Because prognostics methods project system behavior into
the future, the predictions are uncertain and are often expressed as probability distributions with confidence
bounds [17].

In general, prognostics methodologies can be divided into three basic categories [18,19]:

1. Data driven: These methods use probability-based [20] and machine learning algorithms [21] to map compo-
nent measurements to the degradation parameters of a component, and often need run-to-failure datasets
that are rarely available. Regression and deep learning techniques fall into this category.

2. Model based: This prognostic approach uses first principles physics and differential equation models of the
system dynamics to develop parameterized degradation models of a component [22,23]. Filtering techniques
that utilize different Kalman and Particle Filtering techniques fall into this category.

3. Hybrid approaches: Hybrid approaches combine the best aspects of model-based and data-driven tech-
niques. For example, Neerukatti et al. [24] proposed a hybrid approach for damage state prediction using a
crack growth model and then showed using regression techniques how the model could be updated as new
measurements became available. They demonstrated that the hybrid approach was more accurate and reli-
able than pure data- or model-based methods. This approach easily extends from the component level to
the system level, where models of the components are used to update the component and state degradation
parameters, and the generated data is used to make RUL estimates for individual components as well as the
overall system.

Typically, prognostics is used at the component level to predict when an individual component, such as a
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battery or motor, will fail. This approach does not account for multiple degrading components in a system,
and ignores the interactions between the individual components when estimating overall system health. SLP
studies the combined effects of multiple degrading components in a system on overall system behavior and
performance [25].

Definition 2 (System-Level Prognostics (SLP)) SLP is a methodology for estimating future performance and
time of events, such as component and systemEnd of Life (EOL) or performance threshold violation, for a system co-
mprised of multiple interacting components that degrade simultaneously.

SLP must account for uncertainty, external influences, component damage accumulation, the interactions
among these components, and the effects of multiple component degradation on system performance. Com-
ponents interact with one another, so individual component degradation is no longer an isolated function of
inputs and environment, but includes the complexities of interactions with other components. Degradation
models that predict performance at the system level are an aggregation of the individual component degrada-
tion models, and because the interactions can be complex and nonlinear, they are not solvable analytically. In
addition, variability in the environment parameters and uncertainty in the aggregated degradation functions
necessitates the use of stochastic simulation methods to derive system performance over multiple missions.
Events of interest in system-level prognostics include EOL for individual components (computed from RUL
estimates) and system life (computed using estimated system performance). System EOL represents an esti-
mated point in time when the system performance drops below pre-specified thresholds. System failure is
expressed as the union of component failure conditions in conjunction with the violation of one or more
system-level performance constraints. This is further discussed in sections 3 and 6.

In our previous work [26], we demonstrated that system performance degrades much faster than individual
components due to the nonlinear effects of the joint interactions among the components and their degradation
functions. However, we did not perform true RUL computations, and instead performed short-term forecasts
via linear extrapolation, which only detected EOL eventswithin the forecast horizon. Thismethod also assumes
that system-level performance degradation is linear within the forecast horizon, which may or may not always
be guaranteed. While these predictions were accurate, they lacked a confidence interval because aMonte-Carlo
base stochastic simulation was not used to account for uncertainty.

Perhaps the first true system-level prognostics approach that addresses these shortcomings with a convergent
confidence interval with the use of Monte-Carlo simulations was demonstrated by Khorasgani et al. [25]. They
developed a formal framework for SLP and applied it to the analysis of a full-wave rectifier circuit consisting of
two capacitors concurrently degrading at different rates. The authors defined system-level RUL prediction as a
function of the set of component degradation models, degradation parameters, system performance function,
system performance threshold function, and the probability density functions of the system state variables.
By combining the degradation rates of individual components using a particle filter approach, they generated
accurate and stable results for system RUL events, i.e., when system performance dropped below pre-specified
thresholds. We have incorporated this approach into the simulation environment developed in this paper and
discuss it in greater detail in the following section.

There are a large number of excellent articles within the PHM literature that have led to health management
advances that are being deployed today for real-world use-cases [27,28]. However, many of these are application-
specific methods, when viewed from a larger context of SLP are difficult to generalize across systems or ap-
plications [29,30]. A large contributing factor to this is the increasing system complexity and the sheer volume
of data generated from these systems. As system complexity continues to increase and physics-based models
become more expensive to develop and maintain, more advanced data-driven machine learning techniques
are required to support prognostics and health management methodologies and applications. This need paves
the way for deep learning and reinforcement learning based prognostics, which require large amounts of data

http://dx.doi.org/10.20517/jsss.2022.04


Page 62 Darrah et al. J Surveill Secur Saf 2021;3:55­87 I http://dx.doi.org/10.20517/jsss.2022.04

for training and validation. Such datasets simply do not exist, and for practical reasons, as outlined above, they
must be generated by simulation. This leads to a set of primary challenges that we address in this paper.

Challenges
Very little real operational data is available for systems that are run to failure due to several reasons, primar-
ily being that of safety and cost. Developing a simulation-based data repository for system-level prognostics
to address this problem is a big challenge. On the one hand, simulation models are not an exact replica of
the real system or how the system may operate in different environments. On the other hand, mathematical
representations of system performance degradation are not easily derived, even when component degrada-
tion and system dynamics models are known. A number of run-to-failure experiments have been conducted
for single components in isolation [31–33], but these experiments do not capture the nonlinear feedback loops
amongmultiple components degrading simultaneously within a system, and the effects of their degradation on
system performance. Only recently has a dataset been released that includes simultaneously degrading com-
ponents [34], but the issues with standardized conventions around data management persist. In this paper, we
address this issue and demonstrate the data management framework with a simulation that replicates realistic
scenarios where multiple components of a complex system degrade during system operations.

A second challenge we address in this paper is tomake the simulated data generation process transparent so the
experiments can be replicated and results validated. Traditional methods for managing data from experiments
employ predefined naming conventions and file hierarchies, with logs written during runtime as part of code
execution. However, Almas et al. [12] explain that there is a critical need to describe and document more
details of the properties of the component and system behavior data, as well as the relationships between the
components, that cannot be done by writing files to disk. These details are captured inmetadata, which needs
to be made an explicit and integral part of documentation to ensure that the data descriptions are accurate,
and validation exercises can be performed. Data generated from complex, multi-component simulations must
ensure that robust data storing conventions are followed, which becomes a daunting taskwithout awell-defined
interface and data schema available. This is known as data provenance, and guarantees that the stored data
conforms to predefined standards.

Contributions
The primary contribution of this work is a data management framework that allow for easy data processing
of the generated data for a variety of applications. The data management framework imposes constraints
on the generated data as well as the way the simulation is composed. This is accomplished with an asset-
process-data paradigm, and is discussed in greater detail in the Methods section. Tracking the metadata and
intricate relationships among all of the different data sources and types is essential to a robust datamanagement
framework. The retrieval, usage, and post-processing of data then becomesmuchmore simplified and scalable,
making the development of deep learning or reinforcement learningmodels much easier. The framework itself
can interface with any type of system, real or simulated, and multiple systems can be tracked simultaneously.
The framework can be used in production environments with real operational data feed coming from live
systems, or with simulated environments where data is generated. We provide a stochastic simulation testbed
in conjunctionwith the framework that allows for the seamless composition of component degradationmodels
into a dynamic model that generate system performance data for complex cyber physical systems. Such an
end-to-end simulation framework supports the data generation process. Overall, this allows for (1) a more
comprehensive study of degradation, failure, and RUL; (2) the generation of curated datasets that make it
easier to run machine learning experiments to support SLP and RUL studies; and (3) flexibility to simulate a
multitude of systems under varying environmental and operational conditions.
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METHODS
This work brings together simulation methods and data management practices into a unified framework to
support data generation experiments for developing data-driven models for system-level prognostics. We
formalize SLP, building on Definition 2, and discuss the implementation of the simulation environment. We
then show how the data management framework integrates with this simulation environment to organize and
store the data for future use.

System­level prognostics
The goal of system-level prognostics (definition 2) is to predict the RUL of a system considering the interac-
tions among its different components and the effect of degradation over time on system performance. System
failure is attributed to individual degrading components in the system and the effect of multiple degrading
components on overall system performance. Therefore, system EOL is a result of physical failures attributed to
the effects of multiple component degradation, and the operational failures that result from the loss of system
performance with respect to a set of predefined performance constraints (e.g., maintain system trajectory devi-
ations to < 3𝑚). We formally define the SLP / RUL problem in Equations 1-8 below, and then specify how the
required variable values generated from a simulation model using the equations are organized into a database
with a specific tabular structure to impose logging discipline.

The system 𝑅𝑈𝐿𝑛 at time instant 𝑛 ∈ 𝑁 is computed as a distribution that takes into account the different
sources of uncertainty associated with the prediction process. System RUL takes as input the (hidden) state 𝑥𝑛,
measurements 𝑦𝑛, and degrading parameters 𝜗𝑛. More formally, following Khorasgani et al. [25] system 𝑅𝑈𝐿𝑛
is defined as:

𝑅𝑈𝐿𝑛 = (𝐸𝑂𝐿𝑛 − 𝑛)Δ𝑡, (1)

where 𝑛 represents the time step, Δ𝑡 represents the sampling time, and 𝐸𝑂𝐿𝑛 is the end of life (EOL) prediction
of the system at time step 𝑛. System EOL is then defined as:

𝐸𝑂𝐿𝑛 = 𝑖𝑛 𝑓 {𝑧 ≥ 𝑛 | 𝑇 (℘(𝑦𝑧, 𝜗𝑧)) = >}, (2)

which is the earliest point in time when a system performance parameter threshold is violated. The system
performance threshold function 𝑇 (℘(𝑦𝑧, 𝜗𝑧)) is defined by:

𝑇 (℘(𝑦𝑧, 𝜗𝑧)) = ¬(
∧
𝑖

℘𝑖 (𝑦𝑧, 𝜗𝑧)), (3)

where ℘𝑖 : 𝑦𝑧, 𝜗𝑧 → {>,⊥}maps a specific performance parameter or a component parameter of the system to
a Boolean domain {>,⊥} and denotes the set of performance constraint functions. Each constraint function
℘𝑖 (𝑦𝑛, 𝜗𝑧) is described using a linear temporal logic (LTL) formula. Equation 3 returns true if at least one of
the performance constraint functions returns false at time 𝑧.

The set of constraints is defined to account for both component and system-level performance metrics, and
they are computed based on states 𝑥𝑛 obtained from the system’s degradation model. A system degradation
model describes the behavior of a system as it degrades over time. Formally, the degradation model is defined
as follows:

Definition 3 (System degradation model) The system degradation model is defined as

x𝑛+1 = 𝑓 (x𝑛,u𝑛, 𝜗𝑛,w𝑥), (4)
𝜗𝑛+1 = 𝑔(𝜗𝑛, 𝛼𝑛,x𝑛,w𝑑), (5)
y𝑛+1 = ℎ(x𝑛,u𝑛, 𝜗𝑛,w𝑦), (6)

𝜅𝑛+1 = 𝑓 ′(x𝑛,u𝑛), (7)
𝛼𝑛+1 = 𝑔′(x𝑛, 𝜅𝑛,w𝑎); (8)
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where x𝑛 ∈ <𝑚 denotes the state vector describing the dynamics of the system; u𝑛 ∈ <𝑜 denotes the input; y𝑛 ∈
<𝑝 represents the measured variables in the system at time step 𝑛; and 𝜗𝑛 ∈ <𝑞 is the set of degrading parameters.
𝛼𝑛 ∈ <𝑞 define the degradation rates for the set of component degradation parameters in the system. Since
the degradation of components may be nonlinear, Equation 8 (𝑔′) captures the dynamics of how the component
degradation rates themselves may vary over time. 𝜅 ∈ <+ is the vector that stores the cumulative usage (or age) of
the different components of the system. Equations 𝑓 , 𝑔, and ℎ are the state update, parameter update, and system
output functions, respectively. Together, they characterize the system dynamics. w𝑥 , w𝑑 , w𝑦 , andw𝑎 capture the
uncertainties and disturbances associated with the systemmodel, the system degradation model, the measurement
noise, and component degradation models, respectively.

The noise and disturbance parameters,w𝑥 , w𝑑 , w𝑦 , andw𝑎 are modeled as 𝑁 (0, 1) normal distributions, and
therefore, all of the system variables x𝑛 and y𝑛 and parameters 𝜗𝑛 are stochastic variables, and Equations 4-8
represent a stochastic simulation model of the degrading system.

System-level data generation for prognostics
Individual component behavior depends on many factors, including usage and the health and functionality
of other components. The system behavior is typically a function of the behaviors of these tightly coupled
components, which results in complex nonlinear dynamics. All of these phenomena need to be accurately
captured in the system model. Therefore, the system dynamic function 𝑓 comprises all equations required
to characterize each component’s behavior and their interactions. If each component is treated in isolation,
the system’s 𝑅𝑈𝐿 might not correspond with the minimum 𝑅𝑈𝐿 among all components, and even more so,
the minimum 𝑅𝑈𝐿 among the components also likely does not correspond with the system-level 𝑅𝑈𝐿. For
example, one or more motors and the battery pack may degrade simultaneously during UAV flight. As a
result, the propulsion generated by the vehicle is a combined result of both sources of degradation, and it is
unlikely that a closed-form expression can be derived for the overall propulsion change over time. Continued
operations in such degraded state may weaken the propulsion generated by the vehicle significantly, and that
will affect the ability of the vehicle to follow the specified reference trajectory, or maintain a safe level of charge
in the battery. This can result in position errors for the UAV that exceed pre-specified bounds, or complete
failure midflight due to loss of power. As discussed in previous sections, the data must be properly organized
in order to build high quality machine learning models for prognostics, and to correctly compare and evaluate
different prognostics algorithms. Current approaches do not adequately support such approaches outside of
very specific use cases that cannot be easily generalized.

The study of reliable system-level prognostics methodologies is critical for safe operations of complex cyber
physical systems. Currently, this is a very active area of research [35]. Due to the challenges in developing
prognostics applications discussed in the previous sections, we have proposed a data management framework
to support prognostics studies for real or simulated systems. All cyber physical systems aremade up ofmultiple
components and subsystems, and each of these components degrades with use and over time. By measuring
system inputs and outputs over time, we can track the degradation and performance of individual components,
as well as the overall system. Therefore, the set of relevant input and output variables in the system as well as the
parameters associated with components and system performance, constitute the data management framework,
as illustrated in Figure 1.

Simulation approach
We utilize aMonte Carlo (MC) approach as the basis for a stochastic simulation framework to generate system-
level data given a set of component, environmental, and degradation models; a series of inputs; as well as
performance threshold functions. Stochastic simulation accounts for the different forms of uncertainty within
the environment, degradation models, and state-space estimates. It should be noted, however, that the data
management framework is designed to work with real systems as well as simulations. Therefore, one does
not need to employ a specific simulation system to use the data management framework if a real system is
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Figure 1. System-level data generation for prognostics applications. The decoupling of the data generation, whether it is from a real system
or a simulation, from data organization and consumption (machine-learning, data analysis, etc.), allows for multiple systems and system
types to be studied with the same core functionality and codebase.

Table 1. Data sources for stochastic simulation

Data model Source Reference

Torque/load dynamics Propeller dataset [41]

Aerodynamics Publication [36]

DC motor Publication [42]

Continuous battery Publication [37]

Battery degradation NASA data repository [43]

Motor degradation Experimentation -
Wind gusts Experimentation [40]

available. For PHMapplications, however, run-to-failure data needed to develop prognostics algorithms, is not
easily available since it is uneconomical or even hazardous to run a real system to failure. Therefore, accurate
simulation systems are the feasible recourse for systematic studies of system-level prognostics. Our simulation
environment implements a set of MATLAB® scripts that run in parallel to take advantage of multi-core CPU
architectures without requiring any specialized parallelization computing libraries. We describe the simulation
architecture in parts to facilitate a better understanding of how the individual pieces work together, and begin
with the data sources for the simulation.

The torque-load relationship model was derived via polynomial fitting of test data obtained from a publicly
available dataset. The aerodynamics, DC motor, and continuous battery models were adapted from previous
publications [26,36–39]. The battery degradation model came from test data obtained from NASA’s data repos-
itory. Motor degradation models were developed by experimentation using reasonable assumptions on how
long the motors are expected to last based on manufacturers’ datasheets. Wind gust models for typical urban
environments were generated by studying the literature [40]. The stochastic simulation of the UAV system and
environment uses input/model data from several different sources, shown below in Table 1.

The simulation framework is executed in two parts that repeat until EOL is reached. First is the true system
simulation, a facsimile of a real system, followed by the Monte-Carlo stochastic simulation, which generates
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Figure 2. Stochastic simulation framework for data generation.

Figure 3. Single flight simulation.

the necessary degradation data for prognostics analyses. The Monte-Carlo simulation is designed to run 24
parallel systems until system EOL is reached for all 24. Afterward, the true system is simulated again for the
next mission. This process repeats until the true system reaches EOL, at which time the data collection process
is complete. This is depicted in Figure 2. This Monte Carlo simulation process and the data management
framework can be applied to any CPS. In this paper, we demonstrate its application to a UAV system.

A single flight flow diagram is shown in Figure 3. First, the workspace is initialized by connecting to the
database and loading information such as available trajectories, system performance thresholds, and initial
conditions (For a complete description and documented example code in Matlab, see
https://github.com/darrahts/uavTestbed/blob/main/livescripts/example.mlx). Other simulation parameters,
such as the controller gains for the PID controllers, are also specified. This data is stored in the base workspace
of the calling process, where parallel processes have their own information and do not share data. Next, an
existing UAV model is loaded from the database or a new UAV model is created. If multiple UAVs are part of
the SLP study, one can be selected by serial number or ID. Then, a trajectory is assigned to the selected UAV
in one of several ways, with a random selection from a set of predefined trajectories being the default method.
Alternatively, a flight plan can be specified as a set of valid waypoints (a waypoint and an obstacle cannot have
the same coordinates).

The flight is then simulated and all of the flight variables and parameters (especially the degradation parame-
ters associated with components) are recorded along the flight path. After flight termination, the degradation
parameters for the UAV model are updated and the system performance parameters are evaluated. The flight
can either end successfully, or end with a stop code (i.e., a performance parameter violation), and this informa-
tion is logged. At the end of every simulation run (i.e., a mission), the battery is recharged. Charging cycles
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also add to battery degradation, just as the battery discharging process, but the rates of degradation for these
two processes are typically not the same. This is captured by a parameter whose value ranges between 1 (same
effect as discharging) and 0 (no effect). In this work, it is set to 0.75. The asset use and flight data are also
recorded in the database.

System description
The system used in our experiments is a generic octorotor UAV using parameter values provided in [36]. Table
2 lists the variables and their descriptions. The Newton-Euler equations of motion for a rigid body dictate the
dynamic behavior of the system as follows [38]:

¤v𝐵 = 𝑚−1(𝐹𝑀 + 𝐹𝐷) + 𝑔𝑅𝐼𝐵e𝑧 − w𝐵 × v𝐵, (9)
¤w𝐵 = 𝐽𝐵

−1((𝑀𝑀 ) − w𝐵 × 𝐽𝐵w𝐵), (10)

where v𝐵 andw𝐵 are linear and angular acceleration in the body frame, respectively; 𝐹𝑀 ∈ <3 is the resultant
force generated by the motors, 𝐹𝐷 ∈ <3 is the drag force resulting due to the movement of a UAV through
the air, 𝑀𝑀 ∈ <3 is the moment generated by the motors, 𝑚 is the mass of the UAV, 𝐽𝑚 is the inertia matrix
of vehicle, 𝑔 is the acceleration due to gravity, 𝑅𝐼𝐵 ∈ <3×3 is the rotation matrix from the inertial frame to the
body frame, and e𝑧 = [0 0 1]𝑇 . The rotation matrix is calculated based on the Euler angles [𝜙, 𝜃, 𝜓] [44]. In
this work, we ignore the effects of drag moment.

The octocopter is made up of multiple components, which simultaneously affect the overall system perfor-
mance. For example, the degradation of a motor affects the resulting generated forces and moments (𝐹𝑀 and
𝑀𝑀) over time; this affects the ability to follow a reference trajectory. In the current simulation model, brush-
less DC motors commonly used in UAVs are modeled as generic DC-motor models, i.e., Equations 11 and 12
describe the dynamic behavior of each motor 𝑖:

¤𝜔𝑖 =
1
𝐽𝑚

(𝐾𝑒𝑖𝑚𝑖 − 𝑇𝑝 − 𝐷 𝑓𝜔 − 𝑇 𝑓 ), (11)

𝑖𝑚𝑖 =
1
𝑅𝑚

(𝑣𝑚 − 𝐾𝑒𝜔𝑖), (12)

where 𝑅𝑚 = 2
3
∑3
𝑗=1 𝑅 𝑗 is the equivalent electric resistance of the motor coils j of a 3-phase motor, 𝐾𝑒 is the

back electromotive force constant,𝜔𝑖 is the angular velocity of the 𝑖th motor, 𝑇 𝑓 is the static friction torque, 𝐷 𝑓

is the viscous damping coefficient that allows to estimate the dynamic friction torque (𝐷 𝑓𝜔), 𝐽𝑚 is the inertia
of the motor, 𝑣𝑚 is the input voltage control signal, 𝑖𝑐 is the current demanded from the battery pack, and
𝑇𝑝 represents the torque load generated by the propellers. The battery is modeled using an equivalent circuit
representation [26,37]. The model of the UAV also includes a GPS that consumes an average of 690mA with an
average power consumption rate of 8.26Wh [45]. Noise associated with the position and velocity measurements
are modeled as 𝑁 (0, 𝜎) distributions with 𝜎 values of .2 meters and .01 meters per second, respectively.

The airframe, motor, and battery parameters and their values are given in Tables 3, 4, and 5, respectively, shown
below. Together, these values are used in the simulation environment to create the physics-based models that
are simulated to generate data for usage in downstream processes such as those shown at the bottom of Figure
1.
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Table 2. Dynamical variables of the system

Variable Description

𝐹𝑏 Force applied to body frame
𝐹𝑀 Force generated by the motors
𝐹𝐷 Drag force
𝜔𝑖 Angular velocity of the 𝑖𝑡ℎ motor
¤𝜔𝑖 Angular acceleration of 𝑖𝑡ℎ motor
𝑖𝑚𝑖 Current demand from 𝑖𝑡ℎ motor
𝑣𝑚 Input voltage to the motors
𝑖𝑇 Total current demand from entire system
𝑖𝑑 Internal diffusion current
𝑣ℎ Hysteresis voltage
𝑣𝑜𝑢𝑡 Output voltage
𝑣𝑜𝑐𝑣 Open circuit voltage
𝑠 (𝑖𝑇 ) Sign of current
𝑧 Battery state of charge

Table 3. Airframe parameters

Parameter Desc Value

Mass Total mass 10.66kg

𝐽𝑏 Inertia matrix

.2506

.2506
.4538

 𝑘𝑔 −𝑚2

𝐴 Cross sectional area


1.6129
.508

.508

 𝑚
2

𝑙 Arm length 0.635m

Table 4. Motor Parameters

Parameter Description Value

𝑅𝑚∗ Equivalent motor resistance .27
𝐾𝑒 Back EMF .0265
𝑇𝑓 Friction torque 1𝑒−8

𝐷 𝑓 Viscous dampening 1𝑒−8

𝑗𝑚 Inertia 2.0𝑒−5

𝑐𝑡 Rotor thrust coef. 9.8419𝑥10−5

𝑐𝑞 Rotor drag coef. 2.1388𝑥10−8

𝑐𝑑 Translational drag coef. 1.8503𝑥10( − 6)

* degradation parameter

Table 5. Battery Parameters

Parameter Description Value

𝑄∗ Total charge capacity 22000
𝜂 Coulombic efficiency .9929
𝛾 Voltage decay constant 163.441
𝑀0 Polarization constant .0019
𝑀 Polarization constant .0092
𝑅𝐶 Warburg impedance 14.25
𝑅0∗ Internal resistance .0011
𝑅𝑑 Diffusion resistance 2.83𝑒−4

𝑉0 Initial voltage 22.2𝑣

* degradation parameter

System model
The five major blocks of the system-environment simulation are navigation, control, powertrain, dynamics,
and environment as depicted in Figure 4. Initially, values for position and velocity are provided in the UAV’s
start state in a continuous space 3-D world. A reference trajectory is derived offline before flight and supplies
the navigation block with coordinates to fly to. The GPS model adds position and velocity noise (with a bias
of 0 as we are not modeling sensor faults) and supplies the control block with the reference position, true
position, true velocity, GPS position, and GPS velocity. The control block calculates the position errors and
uses PD controllers for orientation and angular velocity. It outputs anN-dimensional array of voltage reference
signals; in the case of an octorotor, N = 8.

The voltage reference signals are fed to the powertrain block, which contain the motors and battery models.
The second input to the powertrain block is the current demand from all other components in the system
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Figure 4. Simulation model.

Figure 5. Nominal voltage distribution.

(such as the GPS). The output of the powertrain block is a vector of motor RPMs that is sent to the dynamics
block, which implements the aerodynamic equations of the UAV. The environment block is also an input to
the dynamics block, where external factors such as wind gusts are translated to forces that are applied to the
airframe. The output of the airframe block is updated position and velocity in the inertial axis, which is sent
to the navigation block, and the flight control process is repeated.

It is important to also discuss the sources of uncertainty and noise, as well as the random variables in the
simulation. Noise is attributed to processes and measurements within the system, system components, and
environment. Measurement noise for a given parameter is modeled as an additive value. Uncertainty is mod-
eled similarly and is captured in the confidence intervals for a given randomvariable, such as for the component
degradation models. For each degradation parameter,𝑄, 𝑅0, and 𝑅𝑚 , we use a standard deviation of 2% of the
mean value. Noise and uncertainty are also captured in the battery state estimator mentioned above, and for
a more in-depth review, we direct the reader to ( [46–48]).

Another source of uncertainty is the variation in the fully charged battery voltage for each charging episode.
This is modeled as a skewed distribution in Figure 5 with approximately 90% of the values falling between 21.2
and the nominal voltage, 22.2, and 10% of the values falling between 22.2 and 22.6. This effectively models
what is experienced in the real world for charging batteries: sometimes they overcharge or undercharge, and
usually the final charge value is within some range of the rated output voltage value.
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Table 6. System performance parameters

Parameter Name Description Value

𝑧 Battery state of charge Impacts flight time and load capacity 20%
𝑣𝑜𝑢𝑡 Battery output voltage Impacts flight time and load capacity 18.71v
𝜖𝜇𝑝𝑜𝑠 Average position error Impacts risk of collision 2.8m
𝜖𝜎𝑝𝑜𝑠 Position error standard deviation Impacts risk of collision .7m

System performance parameters
System-level performance parameters are random variables computed from system variables, and they are a
proxy for the State Of Health (SOH) of the system. For the UAV, overall system performance is a function of
the SOH of the battery and the SOH of the eight motors. A Sigma Point Kalman Filter [47] is used to perform
battery (state and degradation) parameters estimation, and resistance measurements with additive noise are
used to assess the motor (degradation) parameter. These are common and well-documented methods not
discussed further in this work. We instead will focus on the implementation of the system-level performance
parameters.

The first two parameters are (1) the battery State of Charge (SOC) (𝑧), (2) the battery output voltage (𝑣𝑜𝑢𝑡),
and the second two are (3) the average position error (𝜖𝜇𝑝𝑜𝑠), and (4) the position error standard deviation
(𝜖𝜎𝑝𝑜𝑠)(see Table 6). Due to the feedback loops among degrading components and the effects these components
have on battery performance outside of the battery’s operating characteristics and degradation in isolation, we
track these battery indicators directly. The performance parameters for the battery are computed from its
degradation parameters, the internal resistance, 𝑅0, and overall charge capacity, 𝑄, which are indicators for
battery SOH. Battery SOH in turn, contributes to overall system health. A similar comparison is made for the
position error parameters; the combined interactions among multiple components degrading effect the UAV’s
ability to stay on its intended course, not just motor degradation (𝑅𝑚). are used to track overall system-level
performance in this work. Together, these four parameters provide the information needed to perform SLP.

The set of system performance parameter constraint functions (℘𝑖 (𝑦𝑛))) are implemented as a set of linear
temporal logic (LTL) equations (Equation 13-16) that specify certain states the system should never reach. It is
prudent to set the threshold values for these parameters below that of actual or unrecoverable failure. In order
to tie back into the high level safety goals our system should achieve, one must leave some buffer space to take
action (such as immediate landing procedures, return to base, etc.), if necessary, prior to actual failure. These
functions together comprise (𝑇 (℘𝑖 (𝑦𝑛))) in Equation 1, the system performance threshold equation, defined
in section 3.

Definition 4 ℘𝑧, System Performance Parameter Constraint Expressions

□ (𝑧 > 20%) (13)

The battery state of charge shall always remain above 20%.

□ (𝑣𝑜𝑢𝑡 > 18.71𝑣) (14)

The battery output voltage shall always be greater than 18.71 volts.

□ (𝜖𝑝𝑜𝑠𝜇 < 2.8𝑚) (15)

The average position error shall always remain below 2.8 meters.

□ (𝜖𝑝𝑜𝑠𝜎 < 0.7𝑚) (16)

The position error standard deviation shall always be less than .7 meters.
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Figure 6. Degradation profiles for battery charge capacity (𝑄) and internal resistance (𝑅0), and motor internal resistance (𝑅𝑚).

Degradation models and environment conditions
In this work, we consider the effects of the simultaneous degradation of eight motors and the battery pack.
Specifically, stochastic degradation profiles are generated for three parameters: the equivalent electric resis-
tance of the motor coils (𝑅𝑚), the battery charge capacity (𝑄), and battery internal resistance (𝑅0). Altogether,
the degradation profiles describe how the degradation parameters 𝛼𝑛 change with time (function 𝑔′ in defini-
tion 4). We empirically derived degradation profiles for three parameters considered through run to failure
experiments as described in [43,49] (battery), and [50] (motor). Figure 6 shows the resulting nonlinear degrada-
tion profiles that are dependent on usage-based factors such as cumulative load demand.

The battery charge capacity is the amount of charge available in a fully charged battery. Battery charge capac-
ity degrades as the battery undergoes multiple charge-discharge cycles over time. This can be attributed to
the internal chemical processes within the battery as well as environmental factors, such as temperature. The
degradation rate for 𝑄 is also a function of power delivered to the loads. Therefore, a fast discharge of the bat-
tery ages the battery faster than a slow discharge. The charge cycle also causes aging effects and degradation,
however, the degradation rate is lower during charging than it is during discharging. The battery internal re-
sistance (𝑅0) also increases over time caused by Lithium corrosion, plating, and electrolyte layer formation [51].
Consequently, this increases the current drawn from the battery, which, in turn, affects 𝑄 and causes the volt-
age delivered by the battery to drop. Motor coil resistance is used as a proxy for modeling loss of performance
of the motors, which may be attributed to factors such as continued use over time and exposure to adverse
weather conditions. As a result, throttle increase is required to compensate for these effects, thus increasing the
battery’s rate of drainage. In previous experiments [26,39,48], we only considered the degradation of one motor,
which resulted in a consistent position error deviation with respect to the direction of flight and the direction
of wind. In real life, all of the motors can degrade simultaneously, and this would result in unpredictable
trajectory deviations.

Besides simultaneous component degradation, environmental factors can affect the operation and perfor-
mance of the system. In this work, we consider three environmental parameters: temperature, wind, and
obstacles. Temperature is known to have an effect on both flight and battery performance. At high tempera-
tures, flight performance is reduced due to the aerodynamic affects of increased molecular air speed causing a
reduction in lift. This reduction in lift causes the motors to draw more current to produce the increased forces
necessary to counter the reduction in lift. This further increases the rate of damage accumulation for the mo-
tors and the battery. Furthermore, in [52], the authors show that battery aging increases in high temperature
conditions, and battery charge capacitance decreases in low temperature conditions.

Wang et al. [53] provide a comprehensive analysis of different types of wind conditions and describe models
of their effects on flight. Wind effects create load on the airframe, which puts stress on both the motors and
the battery as the controller works to compensate for this additional force to maintain stability. While many
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Figure 7. Available Trajectories in set 𝜏1.

different wind models exist, we implement a discrete wind gust model that acts along the three axes of UAV
flight. Each axis samples a magnitude and direction from a normal and uniform distribution, respectively.
Then, a duration value is sampled from a distribution where 𝜇 = 1.0𝑠𝑒𝑐 and 𝜎 = 0.1𝑠𝑒𝑐 .

Obstacles are either static, i.e., their location in the global coordinate frame (time and space) does not change,
or they are dynamic, in which case their temporal-spatial location changes. Static obstacle influence system
behavior during the trajectory planning phase and are easier to deal with than dynamic obstacles. In this exper-
iment, we consider static obstacles that are part of the map, and save dynamic obstacles for future experiments.

Trajectories
The flight trajectory of the UAV (see Figure 7) plays a role in its overall safety and risk of failure during flight.
Trajectories with sharp movements can also impose heavier impulse loads on components, which as discussed
above, impact degradation rates. To study these effects in depth, the trajectories must be tracked and linked
to other data objects. In general, a trajectory is represented as a multidimensional array capturing a time
series, where each axis ([0,1,2]) is the equivalent x,y,z axis in space. A triplet is a single slice across the ma-
trix that represents a specific point in space where the UAV is located at a specific time. Trajectories can be
grouped into sets based on distance, estimated flight time, risk, or reward (although risk and reward are not
considered in this work). Six trajectories of the set of trajectories flown (eight in total) are shown in Figure 7.
Trajectories are formed in two steps using probabilistic roadmaps (PRM), followed by B-spline smoothing (see
https://github.com/darrahts/uavTestbed/blob/main/livescripts/trajectories.mlx for a Matlab implemention of
generating trajectories.) described below.

A Probabilistic Roadmap (PRM) is a graph structure where the nodes represent collision-free waypoints and
the edges represent a realizable path between these waypoints ( [54]). Two parameters, number of nodes and
maximum connection distance, must be supplied by the user. First, the graph is created by generating random
nodes in the search space, and then checking if they are valid nodes. Then, each node is connected to every
other node within themaximum connection distance, so long as that connection is also valid using the k-nearest
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Figure 8. Trajectory generation. (L) too few nodes have been supplied and the waypoint at (160,390) cannot be reached. (M) the connec-
tion distance is increased but now it is clear that the flight path is not optimal. (R) enough nodes have been selected and the connection
distance has been reduced, providing the optimal trajectory.

neighbors method. Generating a graph is the first phase of the algorithm, which is executed offline based on
the navigation map. In the query phase, the start location, waypoints, and end location are connected to their
closest nodes of the graph, and the path is obtained by using Dijkstra’s shortest path algorithm. If there is no
valid path (i.e., collision-free) from a supplied location to an existing node on the graph, then that location
is deemed unreachable. Figure 8 depicts three scenarios of the trajectory generation process that show the
outcome of different parameter selections.

Piecewise B-spline curves of degree 𝑘 [55] are used for generating a smooth trajectory based on the waypoints
derived by the PRM method for a desired cruise speed. This method has been widely used in robotic applica-
tions because of its desirable properties of convex hull and maintaining continuity up to the 𝑘 +1 derivative for
a curve of degree 𝑘 . Specifically, we considered cubic B-splines ( [56]) with a desired cruise speed of 1.0 m/s for
the UAV flights. This ensures that any hard pivot points in the trajectory are curved for optimal performance
with respect to energy consumption, flight time, and control.

Monte arlo simulation
c AMonte Carlo simulation approach is used to derive data-driven models and provide confidence bounds on
what is being estimated, in this case, the system-level RUL. This is in the context of its safety goals discussed
above, as well as operational goals, such as flying to each waypoint in the trajectory. Algorithm 1 presents the
pseudocode for the Monte Carlo simulation program, and is detailed below.

The algorithm consists of three functions in addition toMain, which are Initialize (line 1), SingleFlightProcess
(line 5), and RunToFailureProcess (line 16). This organization makes the code more readable, and allows the
reader to refer back to Figures 2 and 3, which depict the simulation program graphically. Starting in theMain
function on line 25, two empty arrays are instantiated that hold the EOL and RUL distribution values at each
iteration. The value 𝑁 is used for creating the MC simulation samples, and we use the number of available
CPUs for parallelization. Other values for 𝑁 can be used as well. The true system UAV is created using values
for the Tarot T18 Octorotor, which are provided in the data management framework.

In line 30, degradation processes are attached to the UAV simulation, which means that the tracking mecha-
nism that works behind the scenes can inform researchers of the degradation models that were used for this
experiment. In line 33 (Initialize), the degradation parameter distributions are first estimated, and then sam-
pled to produce 𝛼𝑛, thereby implementing 𝑔′ from Equation 7. The starting voltage for the battery is also
stochastic and generated by a sampling process, along with selecting a trajectory. This process (Equations 4-6
of section 3) happens at the beginning of every flight, which takes place on line 34, and is depicted in Figure 2,
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section 4.

Line 7 of the SingleFlightProcess is where the system performance parameters are checked, which refers back
to Equation 3 in Section 3. After each flight of the true system and subsequent steps in the single flight process,
the program enters the Monte Carlo block in lines 38-44 (Figure 3, Section 4). A number of MC samples are
created until a system performance threshold is violated by checking 𝑇 (℘𝑛) = > in Equation 3, and then the
results of each MC sample are combined to form an EOL distribution (Equation 2 of section 3). From this, the
true system RUL can be derived in line 44 (Equation 1, Section 3).

In this current form, we allow the true system to reach actual failure as the stopping condition for the program,
since this is a data collection experiment. In all other cases, the stopping criteria would be another boolean
LTL function that operates on the most recent RUL distribution estimate. At the end of the program, a 2D
array is returned, with the first dimension being the mean RUL, and the second dimension being the standard
deviation.

Data management framework
Data sets that lack an organizational structure do not provide effective support for health management appli-
cations. Useful data sets that support PHM analyses must conform to explicit rules for data creation, storage,
retrieval, and update. They also need to include Persistent and Unique IDentifiers (PIDs/UIDs) for data as-
sets. Data curation can become a tedious and error prone task in the absence of a properly designed Extract,
Transform, Load (ETL) pipeline. To address these concerns, we adopt an object oriented design methodology
and bring together intersecting concepts from enterprise software development, data management, and en-
gineering experimental design to establish our data management framework. We begin by outlining the key
requirements and specifications of the framework, followed by an in-depth discussion of the key attributes and
features.

Requirements
Design decisions are driven by requirements, which are themselves driven by higher level goals. In this case,
the goal is to simplify and facilitate system health management analyses, and in particular, SLP research. We
have developed four general and five specific requirements to meet this goal, as outlined below.

R1 - Reproducibility. This represents the ability to reproduce experiments, and, therefore, supports a better
peer-review process while establishing connections with other experiments. This is accomplished by explic-
itly specifying data, meta data, and asset organization. This is also an important requirement for validation
tasks.

R2 - Explainability. This is directed towards making the specific methodologies employed for tracking all
of the influences explicit and transparent, from modeling approaches to algorithms used in the simulation
and data generation process. Explainability is required to achieve proper data provenance.

R3 - Extensibility. The code base needs to be developed using a modular, decoupled approach behind well-
defined interfaces that facilitate superficial changes and the running of new experiments without having to
make substantial alterations to the underlying codebase or having to rewrite significant amounts of code.
Thismakes it easier for engineers not familiar with datamanagement practices to incorporate the framework
into their experimental approaches. Overall, it supports wider adoption.

R4 - Maintainability. This is focused on ensuring that the codebase and data storage is consistent across
multiple experiments. Maintainable systems also make it easier to track bugs and fix errors. Maintaining
a consistent and modular code base makes it easier to run machine learning experiments that generate
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Algorithm 1:Monte-Carlo System-Level RUL Data Generation Simulation Process
Result: System-Level RUL Distribution
Data: models 𝑓 , 𝑔, ℎ, 𝑔′

Input: 𝑢𝑛:𝑧 , 𝛼𝑛:𝑧
Output: 𝑅𝑈𝐿𝑛:𝑧 , 𝑥𝑛:𝑧 , 𝜃𝑛:𝑧 , 𝜅𝑛:𝑧

1 Initialize()
2 degradation parameters = sample degradation parameters
3 battery voltage = sample starting voltage
4 trajectory = sample trajectory
5 SingleFlightProcess()
6 run mission
7 result = check system performance parameters
8 if any result is false then
9 return false

10 else
11 update component degradation
12 update component & system age (cumulative usage)
13 charge battery
14 return true
15 end
16 RunToFailureProcess (digitalTwin)
17 while system performance parameters are not violated do
18 Initialize()
19 result = SingleFlightProcess()
20 if result is false then
21 break
22 end
23 end
24 return digitalTwinEOL
25 Main()
26 EOLdist = empty array
27 RULdist = empty array
28 N = number of cpus available
29 create uav
30 load processes
31 i = 0
32 while true system performance parameters are not violated do
33 Initialize()
34 result = SingleFlightProcess()
35 if result is false then
36 break
37 end
38 create N digitalTwins from true system current state
39 monteCarloEOL = [𝑁]
40 for each digitalTwin do
41 monteCarloEOL[n] = RunToFailureProcess()
42 end
43 EOLdist[i] = mean(monteCarloEOL), std(monteCarloEOL)
44 RULdist[i] = EOLdist[i] - current age
45 i++
46 end
47 return RULdist
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consistent and reproducible results. We do not deal with the software aspects of PHM applications (e.g., see
the GSAP framework [7]), but these concepts apply to data management, and this requires the specification
of a well-defined data schema.

R5 - System Composition. The framework should enable seamless composition of component and degra-
dation models to construct the desired system models for simulation. This enables running a variety of
prognostic experiments by pulling component and degradation models from a system library, instead of
building models from scratch or trying to embed them in the executable code for every experiment.

R6 - Operational Variability. The framework should support multiple operational cycles, where a cycle is a
single run of the system. Operational cycles are defined by assigning values to a set of parameters, such as
the load setting for the charge-discharge cycle for a battery, and setting the waypoints to define an aircraft
flight trajectory, or a sequence of deliveries for a UAV.

R7 - Monte Carlo Simulations. Monte Carlo simulations represent a generalizable approach to generating
data associated with a problem specification, taking into consideration variations in operating and environ-
mental conditions, which are represented as stochastic variables. They provide a systematic methodology
for generating large amounts of data that support data-driven analyses.

R8 - Data Validation. Automatic validation of the data is a key requirement that ensures the data conforms
to explicit constraints and can be guaranteed to be correct, without overburdening the user. This allows
researchers to focus more on their specific application, and less on the nuances of ensuring the data is
correct.

R9 - Data Integrity and Availability. The framework should also guarantee accessibility, discoverability,
and persistence of data. This should be accomplished with an application programming interface (API)
that exposes various methods for storing, retrieving, and updating records (among other functions).

A system designed to meet these requirements will allow for automated or semi-automated workflows that are
self-documenting in terms of the data, meta data, and data provenance. Such a design pattern for data manage-
ment within the context of PHMwill improve the development pace and collaboration among researchers. Our
data management framework adopts an asset, process, and data methodology to address these requirements.
This framework captures and organizes high fidelity simulation data to support the development, testing, and
evaluation of health management applications.

Framework design specifications
Wehave established six primary specifications tomeet the above requirements in this framework. We provide a
complete simulation environment for a UAV as reference implementation of this framework inMATLAB® and
Simulink® (A complete simulation package that can serve as a stand alone application or as an example to build
one using this framework can be found at https://github.com/darrahts/uavTestbed). The overall framework
specifications are as follows.

S1. The framework shall be comprised of three primary parts - (1) assets, (2) processes, and (3) data. Assets
are the tangible components that make up the system under study, in our case UAVs. Processes are time-
dependent functions that represent internal or external influences that act upon the UAV. Data is any real
value with meaning that is generated by an asset or process. This decomposition will become clear in the
respective subsections that follow. A high level diagram that depicts these relationships is shown in Figure
9.
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Figure 9. Abstract framework diagram.

S2. The data schema shall define the data type and validity constraints, and be implemented as a set of table
definitions that enforce these constraints. This alleviates a substantial burden for researchers, the users of
the data, by abstracting many low-level data operations common to many different kinds of experiments
behind an application programming interface (API).

S3. For generality, we develop APIs in both Python andMATLAB®, allowing for use and integration among
a wider group of researchers. There are already a substantial amount of innovative projects and experiments
with UAVs using these two languages and an API in both languages will support wider adoption.

S4. Users shall be authenticated before access to the data is granted to ensure data security and integrity.
Other users (such as a guest) might only be given ”read only” access. Certain data fields automatically
populate themselves based on default values or the logged-in user.

S5. The ”delete” operation shall have no effect on any record. This is to ensure data persistence. Since
the data generated is assumed to be inherently valid and accurate (via constraint checking at the database),
every data record has meaning of some form. If there was a mistake in the simulation, the manifestation of
that mistake is captured in the resultant data and should nonetheless be treated as ”valid”.

S6. The data schema shall be implemented using a relational database management system (RDBMS) with
support on Windows, Linux, and Mac. An example is PostgreSQL (often referred to as simply Postgres),
which is free and open source. Other RDBMSs may be used (such as MS SQL Server or MySQL), however,
Postgres is a true open-source RDBMS that offers extensions and 3rd party integration, which have seen a
large degree of success in the world of enterprise data management.

A system is comprised of assets, which are abstractions of user defined components. Assets can be affected
by processes, which themselves can be internal (degradation via damage accumulation) or external (environ-
mental influences). Processes can also have a transient effect on the overall system (i.e., wind gusts for a UAV).
Together, components and processes generate data that is linked to the system and other information pertain-
ing to the usage of that system via the summary table. All usage-based data tables link to the summary table,
which in turn links to the system, the assets installed on the system, and the processes affecting the system at
that time. A system can undergo multiple component changes and these changes are reflected in the underlying
data automatically.

We now proceed to expand this high-level framework to provide more descriptions of the components, and
how they interact to achieve the requirements.
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Table 7. Asset-types

id Type Subtype Description

1 airframe octorotor osmic_2016
2 battery discrete_eqc plett_2015
3 motor dc generic
4 sensor gps generic
5 uav - -

Assets
Assets are the tangible components that make up a system, in our example, the system is a UAV, and the assets
are the UAV itself and its components, i.e., the battery, motors, airframe, and a GPS sensor. Each asset acts as a
first class object, meaning it is the archetype model that all components of the UAV inherit from. This includes
many other types of components not listed above that may make up the UAV. All physical components are
assets, including the UAV.This is perhaps one of the most fundamental concepts of the framework and central
to interoperability among components, systems, environmental effects, and degradation models.

All assets have an associated asset-type (with predefined asset-types given in Table 7), which holds meta-data
about the asset. The table name is asset_type_tb , and it contains the fields id , type , subtype ,
and description . The type property is the high level component type, such as airframe or battery.
The subtype property is used for further specification, such as whether or not the battery is a discrete_eqc
(discrete equivalent circuit) or a continuous_ec (continuous electro-chemistry). There is a one-to-onemapping
between an asset-type and a data table for specific component information of that type. For example, asset-
type with id 1 (Table 7), has an associated table called airframe_octorotor_tb that holds the model
parameters for the airframe dynamics of an octorotor UAV.When a user defines a new asset-type, an associated
table is created automatically with the necessary fields required to work with the framework. The user can then
specify additional fields relevant to their application. The description property contains information
regarding the source of the model that is used by the asset, or any other contextual information about the
model the user wishes to provide. For example, DC motor dynamics are well understood and simple models
like the one used here can be considered generic. But it may be more appropriate to cite an author and year
for more complex models, such as plett_2015 for a specific battery model. Further asset-types might
include electronics or equipment, among many other possibilities.

An asset-typemust exist before an asset of that type can be created. This is stored in a table called asset_tb .
Required fields necessary to properly interface with the rest of the framework are id , owner , type_id ,
process_id , and serial_number . The id field is automatically generated and cannot be altered;
owner and serial_number fields will automatically generate values if none are supplied (the current
user and a random 8 digit hexadecimal value); the process_id is not required. However, if one is sup-
plied it will be validated against an existing process ID; and finally, the type_id is required and the API
automatically assign the correct value for the given type. The type_id field of the asset_tb table is
a foreign key reference to the id field of the asset_type_tb table. The relationship between the asset
table and asset-type table is depicted at the bottom of Figure 10.

Four other tables are depicted in Figure 10 that store the model parameters for the asset-types listed in Table
7. These are parameters of the component models and are specifically related to that component model type,
a.k.a., asset-_type. There is a one-to-one relationship between a given model class and an entry in the asset-
type table, however, there can be any number of model instances of the same model class. This is reflected
in the real world, especially thinking about organizations that operate fleets of the same vehicle made of the
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Figure 10. Relation diagram (assets).

same parts. Enforcing this constraint (and others) using a database management system is straightforward and
works reliably when properly implemented. All other tables that have a relation with the asset table are defined
with a data schema using the same mixed approach as described for the asset table. We direct the reader to
the documentation (https://github.com/darrahts/phm_data_framework) for more in depth information on all
aspects of the data schema and implementation. Each table (with the exception of uav_tb ) presented in
Figure 10 comes with default parameters that are provided from the information in the description
field of the asset_type_tb . For the battery, we use the model given by Plett [37], and thus the default
parameters for this model come from that source. Each of these tables is linked to the asset table via foreign
key relationships on the id fields, whereby the asset table entry must exist before the derived component
model entry is created. This enforces a required constraint that is necessary to properly track a component
that generates data to the model parameters are for that model, and it decouples the model definition from
the source code. This decoupling between model parameters and the object representation they hold when
used in simulation is another aspect that supports a robust data generation process and improves traceability.
Finally, there is the uav type (see Table 7), a special type of asset that serves as a container to store asset
IDs of the installed components and links to the process and environmental models. This is one of many
concepts applied that provide modularity and data organization, and serves as the common interface among
all components. Correctly storing and extracting data generated from different sources and experiments can
be very tedious and prone to errors. Themetadata provided by the asset makes it easy to track the components
with all other factors and sources of data within the simulation. This is a subtle, but very critical piece of the
framework that is repeated with not just assets like motors and batteries, but with processes, like degradation
or wind.

Processes
Processes capture dynamic interactions between the system and the environment. Many different types of
processes can be modeled. In this work, we model internal component degradations and external wind gusts.
Each component has its own set of degradation profiles and failure modes that are separate from, but affect the
overall operation and health of the system. Therefore, the framework must have the ability to track processes
just like tracking components. In a similar manner to modelling components as assets having asset-types, the
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(a) (b)

Figure 11. (a) entity relationship among processes and assets; (b) entity relationship with data fields and types.

Table 8. Process type table

id type subtype1 subtype2 asset_type_id

1 Degradation Battery Capacitance 3
2 Degradation Battery Internal resistance 3
3 Degradation Motor Internal resistance 2
4 Environment Wind Gust 1
5 Environment Wind Constant 1

process archetype also has process types (Table 8). Processes and assets are closely related as depicted in Figure
11. It is required that every process modeled be mapped to an asset, so as to track the relations between
processes and components. This is something that is easy to lose sight of, and something as simple as a small
parameter value change can have large differences in the resultant data. Therefore, processes and assets are
tracked together. Each process has a foreign key relation type_id on the process_type_tb id

field, which has a foreign key relation asset_type_id on the asset_type_tb id field. With these
relationships and constraints established, the joint interactions between various processes and whole system
performance are captured in the database by design, and require no special attention by the researcher as long
as the framework is implemented correctly.

Having a well-defined foundation for managing assets also makes parallelization and performingMonte Carlo
simulations easier. Multiple assets can be created to run the same code in separate instances, separate ma-
chines, or even in the cloud. Data-driven experiments, this one included, are typically based on stochastic
simulations and this flexibility simplifies planning, optimizing, and executing them. ”The devil is in the de-
tails”, and correctly storing and extracting data generated from these experiments can be very tedious and
prone to errors. This framework addresses these challenges simply through its inherent organization and use
of an underlying database management system.

Data management
We are especially concerned with components, degradationmodels, environmental models, and other internal
and external events that generate information useful for prognostics applications. Metadata is just as impor-
tant to capture as the raw data as well. Ensuring these complex interactions are captured and all relevant
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Figure 12. Relationship diagram (data).

metadata and data from components, processes, the environment, and all other sources is the cornerstone of
any data-driven CPS process, especially that of system-level prognostics. All data that is generated is inherently
organized correctly when this framework is used in conjunction with a simulation environment. In this man-
ner the entire process of data generation, storage, retrieval, and analysis among flights with different components
can be executed with the same code. It is left to the individual practitioner to implement the dynamical models
of their system; this framework handles everything else.

The data relationship diagram is shown in Figure 12, where three primary types of data are considered: degrada-
tiondata, summary data, and telemetry data. The flight_degradation_tb and flight_teleme­

try_tb tables have a foreign key relation on the flight_summary_tb , which is the table that links
back to theUAVand all tangible assets or processes in the simulation environment. The flight_summary
_tb contains aggregate data from each mission such as its ending state of charge (z_end), average position
error (avg_pos_err), or distance travelled (for a complete description of the table schemas see
https://github.com/darrahts/uavTestbed/blob/main/sql/table_schema.sql). Some of these data fields are
application-specific, such as average position error. If this framework were applied to a different CPS, such
as an energy grid, the flexibility in this framework allows for the end researcher to tailor their data needs to
their specific application. This is made available with the API. We discuss how this is implemented with a UAV
system in an urban environment in the following section.

RESULTS
The major challenges with run-to-failure data generation and data management were discussed in detail in
Section 1. In this work, we demonstrate the use of a data management framework with a Monte-Carlo simu-
lation of a UAV in an urban environment and by using the framework, we were successful in addressing all of
the challenges discussed earlier. This includes the amount of data generated and complex inter-relationships
among different data sources, as well as ensuring that we correctly interpreted the saved data from the ex-
periments. Another key issue was needing the ability to experiment with different models without having to
rewrite code, or deal with hard-coded model parameters. The framework handles all of these intricate details
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behind the scenes, and we highlight below how this framework can be used in any simulation environment
using Python.

A primary example we highlight is the creation of asset types and assets. System component models are easily
declared and composed using the API with a couple of lines of code as shown below. In line 1, the asset-
type is created and returned as a dataframe, but if the asset-type already exists, it is simply returned. In
line 2, the asset itself is created with the minimal number of parameters required (other options can be de-
clared). Required parameters include the type_id , common_name , units (that usage is measured in),
and serial_number . The system is created in line 5, and requires an asset type and a list of components
to be defined. This pattern is repeated for any type of physical component and system that is to be simulated.

1 asset_type = api._create_asset_type(asset_type='battery', subtype='discrete­eqc',
description='plett\_2015', db=db, cur=cur)

2 asset = api._create_asset(type_id=int(asset_type.id.values[0]), common_name='battery',
units='amp­hours', serial_number=utils.generate_serial_number(length=8), db=db, cur=
cur)

3 components.append(asset)
4 ...
5 system = api._create_system(system_type, components, serial_number='U09X320A', db=db, cur

=cur)

Listing 1: Asset-type and asset creation

This is also completely decoupled from the model definition and implementation, and is what allows for dif-
ferent models to be used or composed into different systems. When an asset is created, a table in the database
is automatically created using the asset_type name and subtype as the table name. The framework
constrains this combination to be unique, preventing duplicates from being created. The process of creating
the model definition table only takes place once, and requires the user to define the field, data type, data range,
default value, and any constraints in the form of boolean expressions. The table can be populated with a JSON
file,

1 table_json = {
2 "name": "battery_discrete­eqc",
3 "fields": {
4 "SOC": {
5 "type": "float32",
6 "range": [0.0, 1.0],
7 "default": 1.0,
8 },
9 "Capacitance": {
10 ...
11

12 api._create_table(table_json, db=db, cur=cur)

Listing 2: Component Model Table creation

or the fields can be added individually.
1 api._create_field(table='battery_discrete­eqc', field='SOC', type='float32', range=[0.0,

1.0], default=1.0, db=db, cur=cur)

These are just a few short examples of how the data management framework simplifies the creation of compo-
nents, and allows the different data sources to be properly connected without any effort by the end user.

We discuss a few issues in relation to the experiment and data interpretation. System EOL is defined as the
time one or more of the system performance thresholds are violated. This means that system EOL will take
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Table 9. Stop codes for each true system flight and digital twins final flight

id Description True count Stochastic count

1 Low soc 0 1069
2 Low voltage 2* 2131
3 Position error 0 0
4 Arrival success 70 0
5 Average position error 0 0
6 Low soh (battery) 0 0

*validation flights after EOL detected

Figure 13. Trajectory selection histogram of the Monte Carlo simulations.

on different meanings, with different implications, depending on which performance parameter threshold is
violated. Table 9 depicts the stop-codes for each flight in the study. The ”true count” column represents each
flight of the true system, from the first flight to the final flight (and 2 additional flights for verification). We
can see from these results that the true system violated a performance threshold after 70 cycles (flights). The
”stochastic count” column represents the final flight of each run-to-failure trace of all the Monte-Carlo simu-
lation samples in the study. We can see the failure codes relate to battery performance and not controllability.
One might then surmise that this UAV might still be capable of flying short trajectories. We considered a set
of trajectories, each with similar characteristics in estimated load, distance, and duration. This implies that
there may be another set of trajectories with different characteristics that the UAV could still fly. If the stop
codes were related to position error, one might conclude that the individual properties of the trajectory are
irrelevant, and it is not safe to fly at all. Such conclusions will ultimately rest with the policies and standards
established by the organization conducting the flights. The data management framework provides a simplified
and robust manner for storing, retrieving, and interpreting this type of data.

A total of eight different trajectories were used in this work (6 are depicted in Figure 7) and a histogram of
trajectory selection is shown below in Figure 13. The numbers at the top of each bar are the number of run-to-
failure simulations conducted for that trajectory.

High-quality data is generated by ensuring the environment and degradation models propagate component-
level health into system-level behavior. Metadata from the UAV components, environment, and data models
are automatically recorded. The organization of the data imposed by the asset-process-data paradigm ensures
it can easily be used to evaluate PHM applications and research questions.
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DISCUSSION
In this paper, an asset, process, and data management framework for the research and development of PHM
applications has been proposed. This work is motivated by the lack of comprehensive simulation environments
and datamanagement architectures that address requirements specific to PHMresearch, notably run-to-failure
datasets and data organization schemes. From these requirements (among others), a set of specifications and
rules were developed from which the framework was developed. The framework was demonstrated with an
end-to-end simulation environment implemented in MATLAB®.

The lack of real-world system run-to-failure system data made it necessary to run simulation experiments.
Closing the gap between real-world and simulation data can be facilitated through the use of the framework
andmethodology we have presented in this paper. The frameworkwas designed to ensure that it can seamlessly
work with real systems or simulations of systems, and the data will conform to the exact same standards. This
will allow researchers to better understand their models when compared with real systems. Furthermore, the
framework can support multiple systems simultaneously, regardless of the system type. Entire fleets of UAVs
(or groups of any systems for the matter) can be studied for a wide variety of topics.

After initial experiments to validate the framework were successful, we conducted the system-level RUL exper-
iment presented in this paper. This has led to additional questions that can be addressed through future work
in this line of research. For example, in our experiments, we did not notice any significant effects of motor
degradation because the battery always failed first, and this may be expected in the real world. How do these
results differ if, instead of concluding that system EOL is reached based on operational requirements (such as
flying trajectories of a certain class), we provide a different set of trajectories with less usage and shorter flight
duration? Or, what if the battery was changed instead of stopping the experiment? Howmany battery changes
will it take to notice the effects of motor degradation? How does the position error evolve over time after multi-
ple battery changes and continuous motor degradation? How would system-level RUL be affected by different
wind conditions or temperatures? What if we use different degradation models, or incorporated abrupt faults?
These are all important research questions of interest to the PHM community, and can be further studied with
much less upfront effort as well as tedious post processing using this framework.

Overall, this architecture for data management will enable researchers to dig deeper into these questions with
greater ease, and generate results with a high degree of confidence in their validity. It also facilitates using the
data as input to machine learning tasks such as model development for RUL prediction, or decision making,
among many other uses. This framework simplifies the entire simulation process and takes care of the tedious
and error prone tasks of data management. Using this framework, simulation changes are easily tracked, gen-
erated data is inherently organized, and data integrity is guaranteed. Collaboration is also facilitated when
different researchers are using the same framework, making it easier to share code, reproduce results, and
build off the work of others.
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