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Abstract

Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related 
to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in 
in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this 
transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these 
emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The 
survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief 
and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing 
enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic 
efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further 
evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and 
repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role 
of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described 
classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in 
anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in 



a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer 
therapy.
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INTRODUCTION
Cancer drug resistance
A major road block in cancer patient care is the development of resistance where cancer cells become 
tolerant to pharmaceutical treatments[1]. In clinical practice, low therapeutic index and dose limited toxicity 
are crucial problems associated with drug resistance. Despite encouraging progress in drug discovery 
and enhanced understanding of the molecular mechanisms of drug action, many cancer patients still 
succumb to drug resistance. Even with the introduction of new “targeted” drugs, drug resistance remains 
the foremost concern in cancer treatment with reports suggesting that the resistance mechanisms to these 
agents are frequently similar or identical to those of classical chemotherapeutic agents. Cytoprotective 
mechanisms against therapeutic/cytotoxic compounds which evolve in mammals continue to be daunting 
challenges for successful treatment of cancer[2]. Diverse and complex biochemical and genetic mechanisms 
underlie the drug resistance phenomenon[3]. 

Mechanisms of drug resistance 
Mechanistically, resistance phenomena may frequently be explained by mutation or over expression of 
drug target proteins and/or inactivation of drugs by a reduction in uptake or enhanced detoxification 
and removal of drugs[4-6]. With a highly adaptable nature, cancer cells become resistant through the 
activation of survival pathways and the inactivation of downstream death signalling pathways. The 
influences of epigenetics, tumor microenvironment and cancer stem cells along with molecular and genetic 
heterogeneity of tumors have also been implicated in the development of drug resistance[7-10] [Figure 1]. 
Rigorous research has dramatically increased our knowledge about cancer drug resistance associated genes, 
proteins and their mechanisms of action. Studies on the control of cellular gene expression programs 
have highly influenced the understanding of genetic alterations in disease. Importantly, deregulation of 
transcription factors (TFs) was found to be a pervasive phenomenon in the pathogenesis of many forms of 
cancer[11]. 

TFs and drug resistance
Over 2000 different TFs are encoded by the human genome. TFs are expressed in a cell type specific 
manner and regulate an array of cellular processes by coordinating their gene expression programs. The 
contribution of mutations in the TFs in tumorigenesis have been known for decades and studies have 
demonstrated that the autoregulatory circuitry of the cell can be altered by the overexpressed TFs[11]. 
Various proto-oncogenes and tumor suppressor genes encode transcription related factors that alter the 
drug sensitivity of cells[12]. Drug induced responses can be affected by TFs and TFs can induce transient 
or acquired drug resistance[13]. Many of the TFs including nuclear factor E2-related factor 2 (NRF2) have 
been demonstrated to be overexpressed in drug resistant cancers [Table 1]. It is of interest that most of 
these TFs highlighted in Table 1 are directly or indirectly regulated or influenced by cellular NRF2 status 
and/or function. In this review, we discuss the role of NRF2 in the mechanism of action and resistance to 
anticancer therapies. 

NRF2 AND ITS FUNCTION
NRF2 is a member of the bZIP family of TFs[40]. While the basic region, just upstream of the leucine zipper 
region is responsible for DNA binding the acidic region is required for transcriptional activation. In 
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mammals, the CNC (Cap “N” Collar) family is composed of four closely related proteins; p45-NF-E2[41], 
NRF1[42], NRF2[43,44] and NRF3[45]. Others are two remotely related proteins; BTB and CNC homology 1 
(BACH1)[46] and BTB and CNC homology 2[47]. The roles of some of these mammalian CNC factors have 
been extensively studied. These proteins, form heterodimers with other b-ZIP proteins, such as small 
musculoaponeurotic fibrosarcoma K, G and F (MafK, MafG, MafF), to function as TFs[48]. For example, the 
pattern of heterodimeric association between NRF2 and small Mafs, is that the small Maf protein provides 
DNA binding activity to NRF2, while NRF2 activates transcription via its transactivation domain[49]. 
Hence, NRF2 cannot bind to the ARE as a monomer, but requires dimerization with one of the small Maf 
proteins in order to bring about transactivation[50]. 

NRF2 contains seven basic domains, namely Neh1-Neh7. The Neh1 domain has been shown to bind to 
ubiquitin-conjugating enzymes to enhance the stability and the transcriptional activity of NRF2. The 
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Figure 1. Plausible mechanisms of cancer drug resistance. The mechanisms can generally be classified as pharmacological and cellular 
physiological mechanisms, which either feed into or feed out of the well-known and characterised hallmarks of cancer[12]

Table 1. Some TFs that contribute to drug resistance

Transcription factors Cancer type Drug resistance Reference
SP1 Ovarian cancer, Leukemia Cisplatin, Doxorubicin [14,15]
YB1 Gastric cancer Cisplatin [16]
NF-κB Ovarian cancer Cisplatin [17]
NRF2 Breast cancer, Non-small cell lung cancer, 

Ovarian Cancer, Endometrial cancer, 
Gallbladder cancer, Pancreatic cancer, 
Renal cancer

Mitoxanthrone, Doxorubicin, Cisplatin, Oxaliplatin, 
Gemcetabine, Temsirolimus, Gefitinib, Erlotinib, 
Lapatinib, Imatinib, Afatinib, Axitinib, Sunitinib, 
Osimertinib, Trastuzumab,Pertuzumab

[18-34]

YAP Hepatocellular carcinoma Doxorubicin [35]
HIF1-α Gastric cancer 5-fluorouracil [36]
c-MYC Non-small cell lung cancer Gefitinib, Erlotinib [37]
ATF2 Pancreatic cancer Gemcitabine [38]
ZNF143 Epidermoid cancer, Prostate cancer Cisplatin [39]

TFs: transcription factors



second domain, known as Neh2 [Figure 2], possesses two essential motifs known as DLG, which has 
less affinity for Kelch-like ECH-associated protein 1 (KEAP1), and ETGE, which has a high affinity for 
the interaction between NRF2 and KEAP1[51,52]. The Neh3 domain contains a carboxy-terminal which 
associates with transcription co-activators such as chromodomain helicase DNA binding protein 6, which 
is responsible for the transactivation of ARE-dependent genes. Both Neh4 and Neh5 domains bind with 
cAMP response element binding protein, which facilitates the transactivation of NRF2 target genes. These 
two transactivation domains are also reported to interact with the nuclear cofactor known as receptor-
associated coactivator 3/amplified in breast 1/steroid receptor coactivator-3 (SRC-3), thereby leading to 
an improved NRF2-ARE gene expression. The Neh5 domain also possesses a redox-sensitive nuclear 
export signal that mediates the cellular localisation of NRF2. The sixth domain, known as Neh6, contains 
a domain that is rich in serine amino acids, and contains two motifs known as DSGIS and DSAPGS. 
The Neh6 domain is involved in the degradation of NRF2 even in stressed cells, where the half-life of 
NRF2 protein is longer than in unstressed conditions. The Neh6 domain also offers stability control of 
NRF2 when NRF2 is in the NRF2-KEAP1 complex[53-55]. The Neh7 domain is a recent discovery and has 
been found to specifically interact with RXRα, a nuclear receptor that inhibits the NRF2-ARE signalling 
pathway[51,56-60]. 

NRF2 SIGNALLING PATHWAY AND REGULATION
NRF2 is maintained at low concentration in the cytoplasm under normal basal conditions, due to control by 
KEAP1 that targets and presents NRF2 for ubiquitination and subsequent proteasomal degradation[53,54,56]. 
However, since degradation of NRF2 by the 26S proteasome requires prior ubiquitination of the substrate 
molecule, recognition and targeting of the NRF2 protein by the ubiquitin ligases may represent a critical 
rate-limiting step. NRF2 activation has been found to be promoted by oxidative stress in the cells. An 
increase in the level of NRF2 in response to stress leads to its dissociation from KEAP1, and is mediated 
by a post-transcriptional mechanism rather than an increase in NRF2 mRNA levels. Hence activation of 
NRF2 has an important role in its stability and transcriptional activity[61-63]. The KEAP1-NRF2 complex 
is formed in the cytoplasm, where NRF2 is ubiquitinated and degraded in the event of normal basal 
conditions. In the event of stress, NRF2 dissociates from KEAP1 and translocates into the nucleus [Figure 3] 

Figure 2. Structural and functional domains of NRF2. A Schematic representation of the human/mammalian NRF2 structure and function 
domains. There are 7 highly conserved regions in NRF2 that are referred to as NEH domains. From the N-terminal to the C-terminal of 
NRF2, the NEH2 domain contains the DLG/ETGE motifs that facilitate NRF2 interaction with KEAP1 and for KEAP1-dependent NRF2 
proteasomal degradation. The NEH2 domain also contain a lysine residues rich site that is directly ubiquitylated by the Cul3/Rbx1/
E3 cullin-based E3 ubiquitin ligase substrate adaptor complex, as well as a first NLS sequence between the amino acids 42 and 53. 
The NEH4-5 domains facilitate the interaction of NRF2 with Hdr1 and other proteins like p300 and CBP to activate NRF2-dependent 
transcription; also, a NES is located between amino acids 191-202 in the NEH5 region. The NEH7 domain contains sites for interaction 
with the RARs (RXR-α and RAR-α) that facilitates NRF2 transcriptional repression. The NEH6 domain contains two specific sites of 
interaction with the β-transducing repeat-containing protein (βTrCP ubiquitin ligase; the binding by βTrCP to the DSGIS motif requires the 
prior phosphorylation of NRF2 in Ser344 and Ser347 by Gsk-3β, but the interaction of βTrCP with the DSPAGS motif of NRF2 is direct. 
The association of NRF2 with βTrCP leads to Cul1-mediated ubiquitination, followed by NRF2 proteasome degradation. The NEH1 domain 
contains the CNC bZIP region, which is required for DNA binding and dimerization with small Maf proteins and other TFs; also, there is 
a second NES sequence between amino acids 553 and 562. Finally, the NEH3 region is another transactivation domain that contains a 
second NLS sequence between amino acids 595 and 601. NRF2: nuclear factor E2-related factor 2; NLS: nuclear localisation signal; NES: 
nuclear export signal; CNC bZIP: Cap'n'Collar basic leucine zipper; TFs: transcription factors; Maf: musculoaponeurotic fibrosarcoma
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where it heterodimerises with sMAF and then binds to ARE for initiation of expression of cytoprotective 
and detoxifying genes[54].

Studies have shown that the process where KEAP1 interacts with NRF2 is through a mechanism called 
“hinge and latch” in which two motifs of NRF2 (DLG and ETGE) bind with the KEAP1 homodimer. The 
ETGE motif possesses a higher affinity for KEAP1 than the DLG motif and acts as a hinge, whilst DLG 
acts as a latch[51,64]. NRF2 first binds with KEAP1 at the ETGE site where there is high affinity through 
the hinge, then at the DLG site by the latch. Under normal basal conditions, NRF2 remains attached to 
KEAP1 through the hinge and latch interaction until activated by its inducers throwing it into an oxidative 
stress state, when it then dissociates from KEAP1 in the cytoplasm. This free NRF2 then translocates to 
the nucleus, where it binds with sMAF proteins to form a heterodimer, and then transactivates ARE-
driven gene expression that leads to the expression of many cytoprotective and detoxifying genes[51,55,65]. 
The phosphorylation of NRF2 by a series of protein kinases is reported to result in changes in the NRF2-
KEAP1 complex and subsequent stabilisation of NRF2, which promotes the dissociation of NRF2 from 
KEAP1 and its accumulation in the nucleus[53,54].

NRF2 activation involves two basic pathways: canonical and non-canonical. The canonical pathway 
accounts for the primary mechanism of NRF2 activation. This is based on the dissociation of NRF2 from 
KEAP1 in the cytoplasm leading to the translocation of NRF2 into the nucleus where it dimerizes with 
sMAF proteins, and then binds to ARE-carrying promoters to subsequently initiate the gene expression of 
cytoprotective and detoxifying enzymes[60,66]. The activation of the phosphoinositide 3-kinases (PI3K)/Akt 
signalling pathway and stresses on the endoplasmic reticulum are some of the mechanisms that can lead 
to nuclear accumulation of NRF2 and increased ARE-driven gene expression[60,67,68]. The non-canonical 

Figure 3. Redox regulation of NRF2-KEAP1 signalling. A: Under normal physiological (homeostatic) conditions, KEAP1 interacts with 
NRF2 in the cytosol, promoting its polyubiquitylation and subsequent proteasomal degradation by the substrate adaptor for cullin-
based E3 ubiquitin ligase complex, resulting in little NRF2 that is sufficient for the maintenance of cellular homeostasis or absence of 
NRF2 transactivation; B: In contrast, under oxidative stress conditions, the binding of KEAP1 to NRF2 is greatly impaired to compromise 
the likelihood of NRF2 ubiquitylation. Consequentl, a greater fraction of NRF2 molecules in the cytosolic pool can translocate into the 
nucleus, wherein NRF2 interacts with sMAF proteins, then binds to DNA and other transcription partners to form a heterodimeric nuclear 
complex, which induces the transcription of several antioxidant and cytoprotective genes. NRF: nuclear factor E2-related factor 2; sMAF: 
small musculoaponeurotic fibrosarcoma
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pathways of NRF2 activation involve numerous proteins with motifs similar to the ETGE motif in NRF2 
competing with NRF2 for KEAP1 binding. In this process, NRF2 loses out in the binding to KEAP1 and 
therefore becomes free, leading to its accumulation in the cytoplasm[60]. This is a harbinger to the eventual 
ease of activation and translocation of NRF2 to the nucleus. Proteins that compete with NRF2 include p62, 
a protein that is known to contain the STGE motif, dipeptidyl peptidase 3 and a partner and localiser of 
BRCA2[60,66].

NRF2 has also been described as “a guardian of healthspan and gatekeeper of species longevity”[69]. It 
has been associated with regulating aging and can be up-regulated by longevity promoting interventions 
including dietary and pharmacological approaches[70]. With aging, NRF2 activity is diminished in many 
cell types with decline of oxidant stress resistance[70]. Conversely, strategies that enhance NRF2 activity 
such as mutations that increase NRF2 nuclear activity can increase mouse lifespan[71] while loss-of-function 
mutations in Keap1 can extend Drosophila life span[72]. Positive lifestyle influences that include calorific 
restriction and exercise have been associated with both enhanced NRF2 activity and increased longevity[70].

Early NRF2 research pinpointed the role of NRF2 in preventing cancers[73]. For instance, a study by Ramos-
Gomez et al.[74] reported that NRF2 null mice are more susceptible to carcinogen-induced tumors than 
their NRF2 wild-type counterparts. Moreover, another study by Pearson et al.[75] compared the effects of 
caloric restriction on NRF2 wild-type and NRF2 null mice, and implicated NRF2 as playing an important 
role in preventing cancer in the caloric restricted mice.

Studies by Padmanabhan et al.[76] and Singh et al.[77] reported on activation of NRF2 in cancer, describing 
mutations and polymorphisms in KEAP1 in lung cancer tissues and cell lines. Increased NRF2 activity 
in cancer was reported to have a role in increased cancer cell survival and resistance to chemo- and 
radiotherapy, which could lead to poor prognosis[78]. Identified differences in the clinical manifestation of 
tumors suggest that those with sustained NRF2 activation are distinct from those without[73]. An elegant 
study has demonstrated that dysregulation of the NRF2/KEAP1 system can impact lung cancer survival 
by increasing the metastatic potential of lung cancer cells[79]. Approximately 30% of non-small lung cancers 
have mutations in either KEAP1 or in NFE2F2 resulting in stabilisation of NRF2. This study demonstrated 
that NRF2 activation can lead to a metastatic programme by inhibiting the heme and FBXO22-mediated 
degradation of BACH1. In turn, this suggests that Heme oxygenase inhibitors could represent a potential 
therapeutic strategy. Following the findings of the role of NRF2 in chemoresistance, researchers have 
focussed on identifying NRF2 inhibitors to modulate NRF2 to overcome chemoresistance[51,55,80-94].
 
DUAL ROLES OF NRF2 - CHEMOPREVENTIVE AND CHEMOPROTECTIVE
A number of studies have reported on the double-edged role of NRF2. It displays a vital chemopreventive 
role in helping normal cells to tolerate stress, yet on the other hand it plays a crucial chemoprotective role 
in promoting carcinogenesis, drug resistance and cancer protection[95-100]. The chemopreventive role of 
NRF2 has been described in many studies[101-104]. The activation of NRF2 as a chemopreventive measure is 
an adaptive response to environmental and endogenous stresses that serves to render organisms resistant 
to chemical carcinogenesis and other forms of toxicity[105-108]. A wide variety of studies have reported several 
natural and synthetic compounds such as curcumin, xanthohumol, sulforaphane and oltipraz as inducing 
NRF2, which in turn leads to chemoprevention in cancers[95,109-115]. Alongside these phytochemicals, trace 
minerals including zinc and selenium, are essential to optimize NRF2-mediated resilience to oxidative 
stress[116]. NRF2 is known to be activated by a component of the gut microbiome, namely Lactobacilli[117]. 
Cellular reactive oxygen species (ROS) enzymatically is generated in response to contact with Lactobacilli 
in both mice and Drosophila and has effects against exogenous insults to the intestinal epithelium via 
the activation of NRF2 driven cytoprotective genes[117]. A new developing research field that seeks to link 
the microbiome, diet and lifestyle to molecular pathologies is molecular pathological epidemiology[118,119]. 
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Since all of these factors influence NRF2 activation, it will be important to understand their combined 
interactions to assess their overall impact on NRF2 action. The ultimate goal of this would be to help 
predict impacts within individuals and eventually suggest recommendations for precision medicine.

In contrast, a number of studies have reported on the protective role of NRF2 in cancer leading to increased 
cancer cell proliferation and survival, a situation that may lead to drug resistance. One mechanism of 
NRF2 activation is a loss of interaction of the KEAP1 protein, leading to increasing and persistent nuclear 
accumulation of NRF2. This thereby activates antioxidant and anti-apoptotic gene expression, which in 
turn leads to drug resistance[58,120-124]. Interestingly some studies have reported on ways of overcoming this 
problematic side of NRF2. For example, transient transfection of NRF2-siRNA, sensitizes cancer cells to 
be more susceptible to Cisplatin and Doxorubicin[122]. In addition, the pharmacological inhibition of NRF2 
as a way of overcoming chemoresistance and increasing the killing effect of anti-cancer drugs has been 
demonstrated[84,125]. Therefore, the pharmacological inhibition or genetic knockdown of NRF2 in cancer 
would help in overcoming chemoresistance[53,54,82,84].

NRF2 DYSREGULATION AND DRUG RESISTANCE - MULTIPLE MECHANISMS
NRF2 works as a double edge sword by regulating cellular antioxidants and providing survival advantages 
whereas the over-expression of NRF2 diminishes the toxic effect of anticancer agents. Recent studies 
have shown that constitutive high level expression of NRF2 leads to tumor formation and drug resistance 
in cancer cells. Somatic mutation in KEAP1/NRF2 is the foremost reason for NRF2 constitutive hyper 
activation. These mutations are often found in the regions of protein-protein interaction and compromise 
the KEAP1 checkpoint over NRF2[126]. Other reasons for NRF2 over-expression include epigenetic and 
post-translational modification, increased disruptor proteins, proto-oncogenes etc.[127-130]. In addition, 
polymorphisms in NRF2 lead to poor prognosis in lung and breast cancers, etc.[131-133]. Overexpression of 
Inhibitor of Apoptosis Stimulating Protein of p53 (iASPP), also known as Rel A-associated inhibitor, in 
tumor cells has been demonstrated to promote cancer growth and drug resistance through high NRF2 
levels. Originally identified as a binding partner and trans-activity inhibitor of NF-kB/p65, iASPP has been 
shown to interact with Keap1. Thus, high levels of iASPP in tumor cells leads to insufficient binding of free 
Keap1 thereby freeing NRF2 to enter the nucleus[134]. Other proteins such as p21 and p62 can also directly 
bind to NRF2 or KEAP1 and disrupt the NRF2-KEAP1 interaction and NRF2 activation[135,136].

When cancer cells acquire drug resistance during anticancer drug treatment, this process can be 
accompanied with higher NRF2 level in various cancer models. Cancer cells resistant to various anticancer 
drugs such as Tamoxifen, Oxaliplatin, Cisplatin, Doxorubicin, Etoposide, Imatinib, etc., have been 
reported to induce drug resistance by activating the NRF2 signalling pathway[23-25]. Recently it has been 
demonstrated that overexpression of NRF2 and its target genes in a Gefitinib-resistant non-small cell lung 
cancer cell line can be attributed to an acquired Keap1 mutation. Furthermore, these Gefitinib resistant 
cells acquired cross-resistance to the irreversible EGFR-TKIs, Afatinib and Osimertinib[28]. Vorinostat is an 
effective histone deacetylase (HDAC) inhibitor and enhances the resistance of leukemia cells by promoting 
NRF2 nuclear translocation[137]. 
 
Rigorous research has revealed that NRF2 elicits drug resistance in cancer cells via multiple mechanisms. 
NRF2 controls the expression of phase I and phase II drug metabolizing enzymes, phase III drug efflux 
transporters and other cytoprotective genes[35]. Table 2 summarizes several NRF2 controlled proteins that 
mediate drug resistance. 

Phase I drug metabolizing enzymes 
NRF2 regulates various phase I drug metabolizing enzymes which are reported to be overexpressed 
in tumors. A target of NRF2, NAD(P)H: quinone oxidoreductase 1 (NQO1) apart from catalysing the 
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biotransformation of quinones, also acts as a superoxide scavenger to defend oxidative stress[138,139]. 
Overexpression of NQO1 in drug resistant breast, lung, colon and pancreatic tumors has been 
reported[23,140-143]. Even though it is widely accepted that NQO1 metabolizes and decreases anticancer drug 
toxicity, it also functions to increase the bioavailability of quinone containing alkylating agents such as 
Mitomycin C which is used to treat breast, lung, bladder and liver cancers[144]. 

Cytochrome P450, family 1, subfamily B, polypeptide1 (CYP1B1), another NRF2 controlled enzyme 
metabolizes chemotherapeutic drugs such as Cyclophosphamide and Taxanes through hydroxylation. 
Upregulation of CYP1B1 results in altered structure of the drug and leads to cancer cell resistance towards 
anticancer agents such as Docetaxel, Paclitaxel, Flutamide[145-148]. Furthermore, the NRF2 dependent 
increase in carbonyl reductases leads to Doxorubicin resistance by reduction of the drug in leukemia 
and gastric cancer[149,150]; microsomal epoxide hydrolase acts through hydrolysis and is found to be 
overexpressed in gemcitabine resistant lung cancer cells[151]; Aldo-keto reductases lead to the resistance of 
lung cancer cells to Daunorubicin and Lidarubicin[152].

Phase II drug metabolizing enzymes 
The contributions of NRF2 controlled Phase II metabolic enzymes such as Glutathione S-transferases (GST) 
and UDP-glucuronosyltransferases (UGT) were also reported in cancer drug resistance. GSTs catalyse 
the binding of electrophilic group of substrates to the sulfydryl on glutathione (GSH). This enables the 
following detoxification process of the compounds coordinated with multidrug resistance proteins[153]. 
Colorectal cancer patients with GSTP1 were found to show less positive responses than the GSTP1 deficient 
patients when treated with 5-fluorouracil (5-FU) or Oxaliplatin highlighting the role played by GSTP1 in 
drug resistance[154]. UGT1A4 was found to be a mechanism of intrinsic tamoxifen resistance by increasing 
the glucuronidation levels of active hydroxylated tamoxifen metabolites in patients with estrogen positive 
breast cancer[155]. In addition, microsomal glutathione transferase 1 was reported to be involved in 
Doxorubicin resistance in Ewing sarcoma[156].
 

Table 2. NRF2 controlled proteins that mediate drug resistance

Proteins regulated by NRF2 Mechanism involved Detoxification or transport phase
NQO1 Drug metabolism I
CYP1B1 Drug metabolism I
CBR1 Drug metabolism I
AKR1B1 Drug metabolism I
 AKR1C1 Drug metabolism I
 GSTA1 Drug metabolism II
GSTM1 Drug metabolism II
GSTP1 Drug metabolism II
UGT1A1 Drug metabolism II
UGT2B7 Drug metabolism II
MRP1 Drug efflux III
MRP2 Drug efflux III
MRP3 Drug efflux III
MRP4 Drug efflux III
MRP5 Drug efflux III
BCRP Drug efflux III
SLC7A11 Drug influx 0
SLC3A2 Drug influx 0
SLC16A6 Drug influx 0

NRF2: nuclear factor E2-related factor 2; MRP1: mutidrug resistance protein 1; BCRP: breast cancer resistance protein; SLC7A11: solute 
carrier 7A11; SLC3A2: solute carrier 3A2; SLC16A6: solute carrier 16A6; UGT2B7: UDP glucuronosyltransferase 2 family, polypeptide 
B7; UGT1A1: UDP glucuronosyltransferase 1 family, polypeptide A1; GSTP1: glutathione S-transferase class Pi 1; GSTM1: glutathione 
S-transferase class Mu 1; GSTA1: glutathione S-transferase class alpha 1; AKR1C1: aldo-keto reductase family 1, member C1; AKR1B1: aldo-
keto reductase family 1, member B1; CBR1: carbonyl reductase 1; CYP1B1: cytochrome P450, family 1, subfamily B, polypeptide1; NQO1: 
NAD(P)H: quinone oxidoreductase 1
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Phase III Drug transport proteins 
One of the most significant mechanisms of drug resistance is the overexpression of ATP-binding cassette 
(ABC) transporter super families commonly known as drug efflux pumps. These transporters utilize ATP 
and efflux/eliminate either cytotoxic drugs or targeted anticancer agents, thus decreasing the intracellular 
drug concentration and impair their efficacy. Thus, it is well known that the overexpression of drug 
transport proteins results in a resistant phenotype. The predominantly reported ABC transporters that 
contribute to drug resistance include P-glycoprotein/ABCB1, multidrug resistance-associated protein (MRP/
ABCC) 1/2/3/4/5, and breast cancer resistance protein (BCRP/ABCG2). NRF2 positively regulates all these 
ABC family transporters conferring drug resistance in cancer cells. The ABC transport family contain 
ARE in their regulatory regions and their regulatory mechanism has been shown to be elicited through 
NRF2 mediated ARE - driven transcription[138,157-160]. 

Abnormal expression of MRP1 increases the eff lux of Doxorubicin reducing its cytotoxic potential in 
ovarian cancer, leukemia and non-small cell lung cancer cells[160-162]. NRF2 dependant MRP2 upregulation 
has been reported to be a cause of resistance towards platinum based therapy in small cell lung cancer and 
ovarian cancer[163,164]; Tamoxifen therapy towards breast cancer cells[165]. MRP3 was found to be more highly 
expressed in NSCLC than in SCLC, and NRF2 dependent MRP3 over expression causes intrinsic resistance 
of NSCLCs to anticancer drugs like vincristine, etoposide and Cisplatin[162]. MRP4 overexpression was 
found be one of the causes of Cisplatin resistance in gastric cancer cells[166]; NRF2 dependant MRP 5 
upregulation contributes to Doxorubicin resistance in hepatocarcinoma[93,167,168]. BCRP has been reported 
to induce drug resistant phenotype of NRF2 dependance by increasing the efflux of 5-FU in breast cancer 
cells[33] and Irinotecan, Topotecan and Mitoxantrone in colorectal cancer cells[32,34].

Phase 0 solute carrier transporters
Solute carrier (SLC) transporters which function mainly as influx transporters of hydrophilic drugs are 
another group of membrane transporters involved in drug resistance. SLC transporters could be beneficial 
for delivery drugs to cancer cells. Unfortunately, often the drug influx transporters are downregulated in 
drug resistant cancer cells. Nearly 30 SLC transporters are found to be involved in chemoresistance and 
several of them were identified as being controlled by NRF2[169-171]. Elaborative gene microarray studies 
of drug (Methotrexate, Cisplatin, Doxorubicin, Vincristine, Topotecan and Paclitaxel) resistant ovarian 
cancer cells has identified dysregulation of several NRF2 regulated SLC transporter genes after resistance 
development. These include SLC7A11 downregulation in Topotecan and Paclitaxel resistant cell line; 
SLC16A6 downregulation in paclitaxel resistant cell line with an upregulation of the same in Cisplatin, 
Doxorubicin, Methotrexate and Vincristine resistant cell line; SLC3A2 was upregulated in Methotrexate 
and Vincristine resistant cell line[172]. Another report suggests that the upregulation of SLC3A2 and SLCA11 
are important in maintaining high levels of GSH contributing to Cisplatin resistance ovarian cancer 
cells[173].

Other NRF2 regulated genes/proteins
Overexpression of HO-1 has been observed in various drug resistant cancers such as breast cancer, 
gastric cancer, lung cancer and myeloid leukemia[140,174-176]. NRF2-induced GCLM expression up-regulates 
GSH synthesis and associated Imatinib resistance in chronic leukaemia cells has been reported[24,177]. The 
enzymes involved in the pentose phosphate pathway (PPP) including glucose-6-phosphate dehydrogenase, 
isocitrate dehydrogenase 1, malic enzyme 1, transketolase isoform 1 and transaldolase 1 were found to 
be regulated by NRF2[178-181]. Anticancer drug induced NRF2 hyperactivation transcriptionally activates 
these genes and facilitates PPP. This metabolic network adaptions helps in compensating drug induced 
metabolic block leading to apoptosis resistance[35]. Histone acetyltransferases-hMOF can physically interact 
with NRF2 and acetylates NRF2 at Lys588 which supports the maintenance of nuclear NRF2 leading to 
resistance of lung cancer cells towards Cisplatin, 5-FU and Bleomycin[182]. MicroRNA (miRNA), small 
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non-coding RNA sequences that post-transcriptionally regulate mRNA sequences are also reported to be 
regulated by NRF2 and their contribution in drug resistance has also been noted [Table 3][183]. For instance, 
NRF2 downregulation of miR200c and chemo resistance due to downregulation of miR200c have been 
reported in breast, ovarian and skin cancers[184-186].

ROLE OF NRF2 IN CANCER: DYSREGULATION-CONSEQUENCES-DRUG RESISTANCE
Several studies have reported an increased expression of NRF2 in cancers compared to normal cells, 
with this being one of the chemoprotective roles of NRF2 in cancers[85,187-192]. Evidence indicates that a 
dysregulated NRF2/KEAP1 system, for example KEAP1 mutation[76,193] or NRF2 mutation[194], can be 
responsible for NRF2 overexpression in cancers leading to enhanced cellular proliferation and chemores
istance[76,187,193-195]. NRF2 tends to be overexpressed in cancers when it is freed from KEAP1 anchoring in 
the cytoplasm at the oxidative state and then translocates to the nucleus, where it heterodimerizes with 
sMAF and binds to ARE. This, in turn, leads to the expression of cytoprotective and detoxifying genes, 
such as NQO1 and heme oxygenase-1 (HO-1). This confers protection to cancer cells against ROS-induced 
apoptosis and DNA damage, thereby enabling cancer cell survival and growth. Nuclear NRF2 expression 
due to activation of NRF2-ARE signalling may promote tumor progression and drug resistance, and hence 
NRF2 inhibition could be a strategic path in cancer treatment[54,58,196]. 

Studies have now focussed on the inhibition of NRF2 to overcome the prolonged or uncontrolled activation 
of NRF2 in causing tissue damage or cancer progression and chemoresistance. However, the screening, 
discovery and development of specific, potent, and non-toxic NRF2 inhibitors, including retinoids (e.g., 
Retinoic Acid, RA and Bexarotene) remains challenging. Potential strategies for developing specific 
inhibitors include: (1) transcriptional down-regulation of NRF2; (2) increased degradation of NRF2 mRNA 
for subsequently decreased translation; (3) enhancement of NRF2 degradation, through up-regulation 
of KEAP1-CUL3 complex, β-TrCP-SCF or HRD1; (4) blocking the translocation of NRF2 to the nucleus 
leading to antagonising or blocking the dimerization of NRF2 with sMAF proteins; and (5) blocking the 
NRF2-sMAF DNA-binding domain[54,58,196]. It is also worth noting that the Cullin-RING ligases, which 
are involved in KEAP1 binding and degradation of NRF2, play important roles in human physiology and 
pathology including cancer[197,198]. These molecules also represent potential targets for therapy[199,200].

Table 3. miRNAs regulated by NRF2a

aLocation in the chromosome and identified target genes are provided. TSG- tumor suppressor gene (adapted from[183])

miRNA Chromosome location Gene targets
miR 193b/365 Chr16, 

14397824-14397906 (miR193b) 
14403142-14403228 (miR-365)

TTf1 - oncogenic 
BCL2 - TSG 
Cyclin D- TSG, uPa

miR-29b Chr7, 130562218-130562298 Sp-1 
MCL-1 - oncogenic 
TCL1 - oncogenic

miR-181c Chr19, 13985513-13985622 SIRT1- oncogenic and TSG 
KRAS - oncogenic 
TGFβ - TSG 
TNF - TSG 
NOTCH - oncogenic and TSG

miR-617 Chr12, 81226312-81226408 N/A
miR-592 Chr7, 126698142-126698238 N/A
miR-1207 Chr8 129061398-129061484 HBEGF
miR-32 Chr9- 111808509-111808578 PIK3IP1 - TSG 

BTG2 - TSG
miR-200c Chr12, 7072862-7072929 ZEB1, FHOD1, PPM1F, 

TUBB3-TBK1, BMI1-oncogenic 
PPP2R1B - TSG

miR-550 Chr7, 30329410-30329506 CPEB4
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A review by Namani et al.[54] described retinoids as structurally related to vitamin A and other natural and 
synthetic signalling compounds including retinol, retinal, RA and retinyl esters. They are reported to have 
an anti-cancer effect because of their proapoptotic and antioxidant activities. Retinoids interact with two 
different nuclear receptor families, namely retinoic acid receptors (RARs) and retinoid X receptors (RXRs), 
and these are members of the steroid/thyroid hormone receptor super-family. The RARs themselves 
contain the three isotypes RARα, RARβ, and RARγ encoded by the RARA, RARB, and RARG genes, and 
function as ligand-dependent TFs. There are two important isoforms of RARα (α1 and α2) and RARγ (γ1 
and γ2) with vital functions; however, RARβ has β1, β2, β3, β4, and β1′ isoforms) resultant from differential 
use of promoters and alternative splicing[54,58,196].

Generally, RARs form heterodimers with RXRs and in the absence of ligand, an RAR/RXR heterodimer 
can interact with multiple co-repressor proteins such as the nuclear receptor co-repressor and silencing 
mediator of RA that regulates the transcription of target genes[54,58,196]. Also, endogenous ligands such as 
RAs act as agonists and activate the RAR/RXR heterodimer complex, leading to a reduction in the affinity 
between the co-repressor and the complex. The coactivator proteins such as steroid receptor coactivators 
SRC-1, SRC-2, and SRC-3 and proteins that have histone acetyltransferase activity similar to p300-CBP, 
P300/CBP-associated factor, have general control of amino acid synthesis protein 5-like 2. This will 
then subsequently interact with high affinity for the RAR/RXR heterodimer, which transactivates the 
genes targeted by RA through binding to downstream DNA response elements, known as RA response 
elements[54,58,196].

The nuclear receptors are regulated either in a ligand-dependent or a ligand-independent manner, for 
example, RXRα physically interacts with NRF2, forms a protein-protein complex and then negatively 
regulates ARE gene expression. Studies have reported that nuclear receptors play dual roles in the aetiology 
of cancer. For example, PPARγ has been reported to play the role of both tumor promoter and tumor 
inhibitor in cancers[54,58,196].

The application of siRNA to overcome resistance to chemotherapy and radiotherapy provides a promising 
therapeutic modality for cancer and other diseases[201-205]. A combination of siRNA-mediated gene silencing 
with natural products has been reported to down-regulate the NRF2-dependent response and partly 
sensitise MCF-7/TAM cells to tamoxifen in a synergistic manner[205]. Another study by Duong et al.[204] 
reported that NRF2-mediated silencing using siRNA reduced the level of aldehyde dehydrogenase 1 family, 
member A1 and aldehyde dehydrogenase 3 family and member A1; as well as glutamate-cysteine ligase 
catalytic subunit expression leading to enhanced antiproliferative effects of the chemotherapeutic agent, 
5-FU in pancreatic cancer cells. 

NRF2 AND ITS INTERACTION WITH DNA DAMAGE PATHWAYS
DNA damage response pathways protect normal cells from environmental damage however these pathways 
are also major contributors to drug resistance, since they repair the intended damage produced by DNA-
targeted cytotoxic drugs. Key DNA damage response pathways include the homologous repair and base 
excision repair pathways[206] and several modes of co-operative interaction between NRF2 and these 
pathways have been identified. Mechanisms of interaction include: (1) binding of DNA damage response 
molecules to NRF2 to stabilise NRF2; (2) co-operation between DNA damage response pathway molecules 
and NRF2 to enhance gene transcription; and (3) NRF2 regulated transcription of DNA damage response 
gene expression.

Mutations in the BRCA1 tumor suppressor gene (a component of homologous recombination repair) are 
associated with increased genomic stability and suggested to account for up to 10% of breast and ovarian 
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cancers[207]. BRCA1 regulates NRF2 signalling by at least two mechanisms - it can physically interact with 
NRF2, thereby promoting its stability and activation[207] and it can bind to NRF2’s promoter and regulate 
NRF2’s transcription[208]. BRCA-1 deficient cells therefore have increased ROS levels as a result of reduced 
NRF2-mediated antioxidant signalling[207]. In an intriguing study using genetically engineered mice, this 
interaction between NRF2 and BRCA1 has been proposed to explain why BRCA1 deficiency results in an 
increased incidence of breast or ovarian cancers[209]. Since mutation of BRCA1 results in loss of its ability 
to partner and stabilise NRF2, this would normally lead to cell death from oxidative stress. However, 
oestrogen, acting via the PI3K/Akt pathway in breast and ovarian cancer cells, can stimulate NRF2 in 
BRCA1-deficient cells and help sustain these cells which increase their genomic instability eventually 
leading to malignancy[210].

Molecular co-operation between NRF2 and PARP-1 (involved in base excision repair) has also been 
demonstrated. While PARP1 does not physically interact with NRF2 or promote NRF2 expression, it has 
been shown to directly bind to both ARE and small Maf proteins, thereby enhancing NRF2 binding to the 
ARE and upregulating NRF2 target gene transcription. Hence, PARP1 acts as a transcriptional co-activator 
indicating a novel function for PARP-1[211].

Analysis of genes regulated by NRF2 has identified multiple genes involved in DNA damage repair 
pathways. Regulation of these genes by NRF2 is therefore likely to inf luence resistance. Expression of 
both Ataxia telangiectasia mutated (ATM) and Ataxia telangiectasia and Rad3 related (ATR) are under 
NRF2 control[212]. The repression of total ATM and ATR protein levels following NRF2 inhibition suggests 
transcriptional regulation of these kinases by NRF2. NRF2 may directly bind to ATM and ATR promoter 
regions and repress their expression, or act via indirect means, whereby, it might transcribe another 
protein, which in turn might regulate ATM and ATR transcription[212]. NRF2 has also been associated with 
the regulation of basal transcription of BRCA1[213]. Overexpression of NRF2 increased BRCA1 expression 
while knockdown of NRF2 attenuated BRCA1 expression. NRF2 was also shown to interact with CBP 
and p300 to form a transcription complex that bound to the ARE site on the BRCA1 promoter[213]. BLAST 
analysis has been performed on upstream regions of DNA repair genes to identify AREs and it has been 
demonstrated that many repair genes that are involved in the homologous recombination pathway may 
be regulated by NRF2[214]. These include RAD51D, RAD52 and RAD51C. Other genes that participate in 
homologous recombination that have ARE sequences in their promoter regions include DMC1, SHFM1, 
RBBP8 and XRCC3/RAD51C. NRF2 inhibition led to significant reduction in mRNA levels of RAD51[214].

NRF2 AND TARGETED THERAPY 
Most cancer types have been found to overexpress NRF2 and targeting NRF2 pathway could lead to the 
identification of a better therapy for NRF2 overexpressing cancers. Inhibition of NRF2 signalling pathway 
can be achieved by the transcriptional downregulation of NRF2, increased degradation of NRF2 mRNA 
or decreased translation, enhancement of NRF2 degradation through upregulation/activation of KEAP1-
CUL3, β‐TrCP‐SCF, or HRD1; blocking the dimerization of NRF2 with small Maf proteins; and blocking 
the NRF2-sMaf DNA‐binding domain[215]. In addition to targeted immunotherapy, the use of small 
molecule kinase inhibitors was also found to be successful in treating various types of cancers. Protein 
kinases are the most attractive group of drug targets after G-protein-coupled receptors and can be found 
downstream or upstream of oncogenes or tumor suppressors[216,217]. Receptor tyrosine kinases (RTKs) acts 
as relay points for signalling pathways and are important targets for tyrosine kinase inhibitor (TKI) agents. 
TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as 
small molecules that have a favourable safety profile in disease treatment[218]. More than 30 different RTKs 
have been implicated in cancer and epidermal growth factor receptor (EGFR) system has been reported to 
be the most prevalent deregulated RTKs which enables them to be chosen as a prototype for drug discovery 
target[217,219]. 
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The EGFR system is a family of related receptors such as ErbB1 (HER1), ErbB2 (HER2), ErbB3 (HER3), 
and ErbB4 (HER4) which share ligands and form heterodimers to initiate various signalling events in cell 
proliferation and survival[220-223]. Various studies have shown that NRF2 plays a significant role in action 
mechanism of many of the targeted therapeutic agents including TKIs. Notably, we have reported that HER 
receptor targeting immunotherapeutic (Trastuzumab and Pertuzumab) and chemotherapeutic (Erlotinib 
and Lapatinib) agents act through NRF2 inhibition[26,27]. Previously, our group has reported a new 
mechanism of crosstalk between NRF2 mediated antioxidant response pathway and HER2/HER3 pathway 
with the use of gene transcriptional reporter assays, pharmacological activation or SiRNA knockdown 
of NRF2, and HER2/HER3 functional inhibition and activation strategies[224]. Inhibition of NRF2 by 
Pertuzumab and Trastuzumab or their combination leads to disruption of the antioxidant pathway and 
attenuation of HER2/HER3 signalling[26]. Further, we could demonstrate that Erlotinib and Lapatinib could 
lead to both transcriptional and translational repression of HER1[27] and HER4 (unpublished data) [Figure 4].

Therapies that target the proteasome are also demonstrated to involve NRF2 modulation [Figure 5]. One 
proteasome inhibitor, Bortezomib has been shown to induce NRF2 levels, and NRF2 overexpression 
proteasome maturation protein axis leads to its resistance in multiple myeloma[31]. Mechanistic target of 
rapamycin (mTOR) is a master growth regulator and its inhibition is one of the best options to treat several 
cancer types. One of the mTOR targeting agent, Temsirolimus has been reported to elicit its effectiveness 
as an anticancer agent by inhibiting NRF2 in acute myelogenous leukemia stem cells[29]. Another family of 
kinases, the Proviral Integration site for Moloney murine leukemia virus (PIM) kinases are associated with 
cell growth, differentiation and apoptosis. Overexpression of these kinases has been demonstrated to relate 
to poor prognosis in various cancers[30]. 

Small molecule pan-PIM kinase inhibitors such as AZD1208 and LGB321 have been reported to inhibit 
nuclear accumulation and transcriptional activity of NRF2 which could be responsible for their cytotoxic 

Figure 4. Cooperativity of NRF2 and HER family receptors in cellular proliferation and cancer. The NRF2-ARE pathway cross-talks with 
the HER family receptor and other signalling pathways. This provides rationale and justification for the use and design of anticancer 
drugs and/or molecules that target HER family receptors and/or target NRF2 to enhance the action and effectiveness of HER targeting 
anticancer therapies and delay or overcome resistance. NRF2: nuclear factor E2-related factor 2 
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effect in prostrate and colon cancer cells[225]. Further, it has been demonstrated that various other receptor 
kinases such as PI3K and mitogen-activated protein kinases also exploit NRF2 inhibition as one of their 
mechanisms of action. PIK-75, a PI3K inhibitor was reported to inhibit NRF2 and augment the sensitivity 
of gemcitabine in pancreatic cancer cells[226]. Several pharmacological inhibitors of MAPK family such 
as PD98059, MEK1 inhibitor; SB202190 and SB203580, p38 inhibitor; U0126, MEK1/2 inhibitor and 
SP6000125, JNK inhibitor were reported to be capable of NRF2 inhibition while eliciting their action[227-230].
 

ROLE OF NRF2 IN THE MECHANISM OF ACTION AND EFFECTIVENESS OF ANTICANCER 

DRUGS
Anticancer drug induced responses can be influenced by TFs like NRF2, which can induce transient or 
acquired drug resistance. Several mechanisms are proposed to account for the drug resistance phenotype 
and many of the genes reported to play roles in drug resistance are identified with a functional link with 
NRF2[13]. In anticancer chemotherapy, NRF2 and NRF-dependent genes have been implicated in the 
cellular resistance to a wide range of anticancer agents (e.g., tamoxifen, Cisplatin, Oxaliplatin, Cisplatin, 
Doxorubicin, and Etoposide) and cancer types[18-25]. Likewise, the NRF2-centred system and signalling 
pathway is shown to modulate the action and effectiveness of certain receptor targeted therapies[26-28,224,231,232] 
and potentially promoting cancer resistance to such interventions as Trastuzumab, Pertuzumab, Erlotinib, 
Lapatinib, imatinib, Gefitinib, Afatinib and Osimertinib. In both anticancer chemotherapy and receptor 
target therapy, the inhibition of NRF2 and its function seemingly and contextually enhanced drug 
sensitisation of cancers and/or helped to overcome drug resistance.

Certain drugs conventionally used to treat nonmalignant diseases are currently repurposed to treat cancer, 
as many of the drugs have been reported to possess potential anticancer actions. Interestingly, some of 
these drugs have been reported to be NRF2 modulators. Combining these NRF2 modulating repurposed 

Figure 5. NRF2 modulators with anticancer activity. Small molecule compound or drugs that directly or indirectly modulate NRF2 activity 
by either activating or inhibiting NRF2 activity and functions. The benefits and risks of modulating NRF2 pathway activity in patients are 
not fully captured and understood. However, the development of novel NRF2 inhibitors used in combination with existing anticancer 
drugs could be rational strategy to arrest and mitigate the emergence of chemoresistance to anticancer agents. NRF2: nuclear factor E2-
related factor 2

Paramasivan et al . Cancer Drug Resist  2019;2:490-515  I  http://dx.doi.org/10.20517/cdr.2019.57                                       Page 503



drugs with conventional anticancer chemotherapy and/or receptor target therapeutics has improved the 
action and effectiveness of these anticancer agents. For example, one of the standard first line therapies 
for type 2 diabetes mellitus, metformin possesses anti-mitotic, anti-angiogenic and anti-inf lammatory 
activities[216,233]. It has been depicted that NRF2 downregulation is involved in metformin mediated reversal 
of Cisplatin resistance in lung cancer cells[215]. Further, high dismal overall survival and breast cancer-
specific survival rate has been observed in breast cancer patients with type 2 diabetes mellitus who 
received metformin with decreased cytoplasmic NRF2 levels[234]. Clobetasol propionate, a drug used to 
treat dermatological diseases has been identified to possess anticancer activity. Choi and colleagues have 
reported Clobetasol propionate to be a potent NRF2 inhibitor and used it to sensitize lung cancer cells to 
Rapamycin[235].
 
Retinoids and rexinoids have been elucidated to be sensitizing chemotherapeutics through NRF2 
inhibition. Bexarotene used in the treatment of cutaneous T cell lymphoma is a specific ligand for RXR and 
has been reported to be an efficacious NRF2 inhibitor. Our previous studies have shown that Bexarotene 
sensitizes ovarian cancer cells to HER targeted therapeutics such as Erlotinib and Lapatinib through NRF2 
inhibition[27]. Retinoic acid also has been informed to be improving the sensitivity of ovarian cancer cells 
to Trastuzumab and Pertuzumab[26] and of breast cancer cells to Cisplatin or Taxol[236] through NRF2 
inhibition via a mechanism possibly involving RARs (38/243)[80,237].
 

NRF2 AND EPIGENETIC MODULATION 
Anticancer agents not only inhibit NRF2 but there are a large group of drugs that activate NRF2. In 2014, 
Mcmahon et al.[58] tested a panel of 152 anticancer agents and found that 10% of the tested drugs were 
NRF2 inducers. Among them, preclinical targeted therapeutic agents such as insulin like growth factor 1 
receptor inhibitor, NVP-AEW541; PIM-1 kinase inhibitor, PIM-1 inhibitor 2; polo like kinase 1 inhibitor, 
BI 2536 and importantly seven of nine tested HDAC inhibitors were noted to be NRF2 activators[58]. This 
opens up the fact that NRF2 is epigenetically regulated and understanding the mechanism of action of 
epigenetic modulating anticancer agents in NRF2-ARE pathway is critical for successful cancer treatment. 
Aberrant activation of NRF2 by epigenetic modulations leads to high expression of cytoprotective proteins 
thereby decreasing the efficacy of chemotherapy in cancers. Transmission of phenotypic changes from one 
generation to another with no accompanying alterations in the DNA sequence is known as epigenetics. 
Epigenetic modulations include the following; DNA methylation/demethylation by DNA methyl 
transferases (DNMTs), histone modifications by HDACs, and miRNA mediated regulation[238]. These 
epigenetic dysregulations may lead to modifications in the transcription and expression of genes involved 
in the regulation of cell proliferation and differentiation, cell cycle, and apoptosis[239-243].

Earlier our group demonstrated that the inhibition of HDAC by Trichostatin A and DNMT by 
5-azacytidine induced NRF2, HO-1 and transcriptional antioxidant response, and disrupted 
immunotherapy (Trastuzumab and/or Pertuzumab) dependent repression of NRF2. Epigenetic study of 
NRF2 promoter involving CpG methylation profiling confirmed the epigenetic regulation of NRF2 in 
ovarian cancer cells while receiving HER2 inhibition therapy[26]. Another epigenetic modifier Sulforaphane 
(an HDAC inhibitor) has been reported to activate NRF2 not only by interacting with Keap1 but also by 
epigenetic mechanisms. Sulforaphane inhibits DNMTs (1 and 3a), and HDACs (1,4,5,7) which reduced 
CpGs methylation level and increased histone 3 acetylation at the NRF2 promoter[244-247]. A study by 
Kang and colleagues has shown that high NRF2 expression resulting from oxidative stress-induced DNA 
demethylation promotes 5-FU resistance in colon cancer cells[248]. Tri-methylation on K4 of histone H3 by 
the mixed lineage leukemia (MLL) protein leads to transcriptional activation[249] and the MLL knockdown 
in colon cancer cells leads to NRF2 and HO-1 down regulation further supporting the epigenetic 
regulation of NRF2[248]. In addition, there are reports on the epigenetic modification (CpG demethylation) 
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of NRF2 by anticancer phytochemicals such as Curcumin, 3,3′-diindolylmethane, Z-Ligustilide, Apigenin, 
or Tanshinone IIA while eliciting anticancer effect[245,250-253]. 
 

NRF2-FEEDBACK AND FEED FORWARD LOOPS
The mechanism behind how cells can achieve a balance between maintaining physiological redox 
homeostasis and activating the antioxidant system to remove oxidative stress is still unclear. It is proposed 
that NRF2, one of the master regulators of the antioxidant system through regulating its own degradation 
to maintain the cellular NRF2 level by an auto regulatory feedback loop will lead to redox homeostasis 
[Figure 6]. 

Lee and colleagues have noticed that there was an increase in KEAP1 levels in addition to NRF2 
activation when the Hepa-1 cells were exposed to t-BHQ, a known NRF2 activator. KEAP1 promoter and 
NRF2 knockdown/overexpression studies confirmed that NRF2 could induce KEAP1 promoter activity 
through binding to an ARE in the reverse strand of proximal promoter. The study further confirmed the 
transcriptional regulation of KEAP1 by NRF2 whereas KEAP1 controls NRF2 by its degradation[254]. A 
positive feedback loop of NRF2 regulation was NRF2-JNK1 system. JNK1 phosphorylates and induces 
NRF2 nuclear translocation and whereas NRF2 can transcriptionally induce a battery of stress responsive 
genes including JNK1[255,256]. Another positive feedback loop between p62/SQSTM1 (sequestosome 1) 
protein, a cargo receptor for autophagic degradation of ubiquitinated targets and NRF2 has been reported. 
P62 upregulation by oxidative stress is mediated by binding of NRF2 on ARE in the p62 promoter. 
In addition, it has also been demonstrated that p62 binds directly onto KEAP1 leading to autophagic 
degradation of KEAP1 and inhibits NRF2 degradation[257].

Another systems-level resource for NRF2 interactome and regulome including 289 protein-protein, 7469 
TF-DNA and 85 miRNA interactions has been described. This study identified that 35 TFs regulated 
by NRF2 influence 63 miRNAs that down-regulate NRF2. Among 224 NRF2 interacting proteins 39 of 
them were found to have regulatory feedback connections with NRF2. In the case of positive feedback, 
it is signal up regulation whereas in the case of negative feedback it is signal down regulation. NRF2 
regulated proteins such as BACH1, ENC1 and ERα has found to be under negative feedback loop whereas 
the proteins such as ABCC2, ATF4, CBR3, COX-2, GCLM, JNK1, MafF, MafG, PI3K and VEGF were 
under positive feedback loop[258]. Using experimental and systems biology approach, previously our group 
has elucidated that the basal levels of NRF2 and KEAP1 were cell line specific and maintained in tight 
correlation with their growth rates and redox status. Our mathematical model of oxidative stress integrates 
NRF2-KEAP1 signaling in the cytoplasm and genetic regulation of NRF2-dependent antioxidant enzymes 
and involves negative feedback between these two control systems[259].
 

Figure 6. Positive and negative feedback loops in NRF2 signalling. A: The positive feedback regulatory loop of NRF2 and other proteins 
and signalling pathways that upregulate NRF2 and functions. Showing, in part, the mutual regulatory loop between NRF2 and HER family 
receptors; B: The negative feedback regulatory loop of NRF2 and other proteins and signalling pathways that repress NRF2 and functions. 
NRF2: nuclear factor E2-related factor 2
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CONCLUSION
NRF2 is classically recognised as the master regulator of the cellular antioxidant and cytoprotective 
defense systems, which confer cellular proliferation, differentiation, migration, organisation and survival 
of both normal and cancer cells. This role has been paradoxically extended to implicate NRF2 in cellular 
protection against cancer processes (carcinogenesis) in accelerating and maintaining cancer malignancy 
following tumor initiation. Generally, the dysregulation and activation of the NRF2 systems are common 
contributing responsibilities for the pathogenesis of cancers. Further, these NRF2 roles have been 
recognised or established in several in vitro and in vivo cancer models, including in pre-clinical and clinical 
settings. Moreover, the NRF2-dependent defense systems support survival of cancer cells during treatment 
with chemotherapeutic and target therapeutic agents, as many genes and pathways reported to play roles in 
anticancer drug resistance seemed to have a regulatory and functional link with NRF2. Collectively, these 
results imply that upregulation and functional activation of the NRF2 systems are responsible, at least 
in part, for protection against cancer, for cancer maintenance and progression, and for drug resistance 
observed during the course of many anticancer therapies. Thus, NRF2 is emerging to be recognised as an 
oncogene and an as important node and target to modulate and achieve positive outcomes in anticancer 
therapeutics.

The NRF2 system has therefore appeared to serve as a fundamental redox interconnectivity node and 
interface between ROS and the regulation of functions in a broad spectrum of cellular physiological 
and pathological processes including NRF2 cross talk with other signalling and receptor pathways and 
carcinogenesis. However, it is unclear how cells can achieve a balance between maintaining physiological 
or pathological redox homeostasis and robustly activate the NRF2 systems to remove exogenous and 
endogenous ROS to protect cells, or retain some tolerable levels of ROS to confer malignancy or to confer 
anticancer therapeutic resistance. Several anticancer chemotherapeutic and HER receptor targeting 
therapies appeared to depend on ROS to effect cytotoxic killing of cancerous cells. Interestingly, some 
elements of our experimental and modelling work (Khalil et al.[259]) have indicated that both normal 
and cancer cells are subjected to oxidative signals that are directed to execute cellular processes such as 
proliferation, and perhaps cell death, up to a critical threshold, which is defined by an S-type regulation 
curve. It is conceivable that further developments and future refinements to this NRF2 systems and 
centred model could lead to a tool to evaluate, predict, tailor, manipulate and manage ROS and to inform 
physiological or pathological redox homeostasis, cellular behavior state and form, as well as therapeutic 
strategies like anticancer therapies. Furthermore, it is increasingly clear that NRF2 and its function can 
be modulated, pharmacologically or genetically, to enhance the action and effectiveness of anticancer 
chemotherapeutic and/or receptor targeting therapeutics. This has presented the possibility and potentiality 
of investigating and identifying novel modulators of NRF2 from existing clinical drugs through 
repositioning or repurposing, which can be directed in combination therapy to augment the action and 
effectiveness of certain anticancer therapeutic agents, as well as to overcome anticancer therapeutic 
resistance. Overall, there is unequivocal emerging role of NRF2 in the mechanism of action and resistance 
to many anticancer therapies and NRF2 is an important candidate target for the design and development 
of anticancer therapies.
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