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Abstract
Action is currently being taken globally to mitigate global warming.The objective of reducing CO2 emissions is not a 
burden for society but is a significant opportunity for evolution in various industries for the sustainable production 
of energy and the essential minerals, metals, and materials required for modern society. CO2 mineralization is one 
of the most promising methods to effectively reduce CO2 emissions via the formation of stable mineral carbonates. 
Accelerated mineral carbonation requires high capital costs for implementation. Accordingly, it has thus far not 
been economically feasible to carry out accelerated CO2 mineralization alone. Accelerated CO2 mineralization must 
be combined with other associated technologies to produce high-value products. The technical developments in 
enhanced metal recovery, nanomaterials, enhanced flotation, H2 production and applications in the cement 
industry may be suitable options. The utilization and generation of valuable byproducts may determine the 
economic feasibility of CO2 mineralization processes. The need for CO2 reduction and utilization can contribute to 
driving the development of many innovative and sustainable technologies for the future benefit of society. The 
implementation of carbon taxation may also significantly motivate the development of these technologies and their 
potential application.
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INTRODUCTION
With the approval of the Paris Agreement, more than 197 countries have agreed to reach carbon neutrality
in order to achieve a temperature increase of less than 1.5 °C compared to the pre-industrial temperature
level[1]. Actions to achieve this common goal include increasing carbon tax rates, decreasing the usage of
fossil fuels in energy grids, encouraging the usage of renewable energies and the development of electric
vehicles, and decreasing carbon emissions from industry. CO2 mineralization[2-4], also known as mineral
carbonation[5], is one of the most promising methods to effectively decrease CO2 emissions. CO2

mineralization transforms CO2, as a greenhouse gas, into stable mineral carbonates, as shown in Eqs. (1)
and (2), where “Me” represents a divalent metal, such as Mg2+, Fe2+ or Ca2+, and the corresponding MeCO3

represents MgCO3 (magnesite), FeCO3 (siderite) or CaCO3 (calcite), respectively. Suitable feed materials for
CO2 mineralization are abundant globally, including various divalent metal-containing silicate minerals,
e.g., geological rocks of peridotites (ultramafic rocks containing < 45% SiO2) and basalts (mafic rocks
containing 45%-52% SiO2), and oxide minerals, e.g., industrial waste of steel slags and fly ashes.

                                                               Me2SiO4 + CO2 = 2MeCO3 + SiO2                                                           (1)

   MeO + CO2 = MeCO3                                                                                                                                (2)

CO2 mineralization reactions can occur naturally but with very slow kinetics[6]. In order to have an impact
on global warming mitigation, the current work focuses on how to accelerate natural CO2 mineralization
reactions[7]. Owing to the different methods and considerations, CO2 mineralization can be subcategorized
as passive[8-14], in-situ[15-25], ex-situ direct[2,3,5,26,27] or ex-situ indirect carbonation[6,28,29], as shown in Figure 1.
Despite the different pathways to carbonation, the dissolution of silicates or oxides is generally the rate-
limiting step for CO2 mineralization[26,30-33]. Wang et al.[26] reported the variations of CO2 mineralization of
(Mg,Fe)2SiO4 (olivine) dependent on CO2 pressure (PCO2) and concentration of sodium salts, as shown in
Figure 2. For a sodium salt concentration of < 0.32 mol/kg, the CO2 mineralization is limited by diffusion
through a silica-rich passivation layer. With a sodium salt concentration of > 0.32 mol/kg but a PCO2 of > 21
bar, the rate-limiting step shifts to diffusion through a uniform carbonate passivation layer. With a sodium
salt concentration of > 0.32 mol/kg and a PCO2 of > 21 bar, the passivation layers disappear and the rate-
limiting step becomes the dissolution of olivine. In fact, all the CO2 mineralization pathways have enhanced
the rate and extent of the dissolution of silicates and oxides.

Despite being a significant method of carbon capture, utilization and storage, CO2 mineralization is
dependent on the strict requirements of a high-pressure CO2 supply, high temperature (> 150 °C), fine
particle size (µm) and the usage of pressure autoclave reactors, and thus is still far from being cost-effective
for commercial applications. It, therefore, may be necessary to combine it with other technologies to
minimize capital costs. In this work, we review not only the status of the CO2 mineralization but also the
prospects for its future utilization for associated technologies.

PASSIVE CO 2 MINERALIZATION
For passive CO2 mineralization, mineral carbonation occurs under atmospheric conditions without 
artificially using agitated reactors. The passive method utilizes the characteristics of natural weathering 
processes. Exposed rock is contacted with a CO2-containing atmosphere, and slow carbonation occurs to 
remove CO2 from the atmosphere. An example of passive mineral carbonation has been observed in 
Oman[34,35], as shown in Figure 3. Kelemen and Matter[34,35] estimated that the peridotite in the Sultanate of 
Oman alone may carbonate more than 1 billion tons of CO2 per year. Owing to the minimum capital costs, 
passive CO2 mineralization may be the optimal choice for mining industries with respect to waste 



Page 3 of Wang et al. Miner Miner Mater 2022;1:4 https://dx.doi.org/10.20517/mmm.2022.02 17

Figure 1. Schematic diagram of CO2 mineralization methods.

Figure 2. Variations of CO2 mineralization mechanism dependent on CO2 pressure and concentration of sodium salts (reproduced from 
Wang et al.[26]).

utilization. Mining and metallurgical activities produce significant amounts of mine tailings with reduced 
particle size containing various silicate minerals, such as olivine, serpentine and pyroxene, which are 
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Figure 3. Natural CO2 mineralization in Oman with white carbonate veins shown in (A), (B) and (C) (reproduced from Kelemen and 
Matter[34]).

suitable for CO2 mineralization. Therefore, mining and extraction companies are expected to utilize mine
tailings to passively react with CO2 from the atmosphere to form mineral carbonates for permanent storage.

Power et al.[8] found that the passive CO2 mineralization rate is highly dependent on the brucite [Mg(OH)2]
content in mine tailings[36]. The amount of brucite may account for 1 wt.%-15 wt.% of ultramafic mine
tailings[8]. If all the brucite is reacted, as shown in Eq. (3), a substantial amount of emitted CO2 can be
removed from the atmosphere. In addition to the original brucite content, natural weathering of olivine to
serpentine [Mg3Si2O5(OH)4] can also generate brucite for CO2 mineralization, as shown in Eq. (4).

                                                              Mg(OH)2 + CO2 = MgCO3 + H2O                                                            (3)

                                                   2Mg2SiO4 + 3H2O = Mg(OH)2 + Mg3Si2O5(OH)4                                                                                      (4)

Since the surface area of mine tailings in tailing ponds exposed to air is limited for the effective
mineralization reaction, research has been focused on increasing the interactive area between mine tailings
and CO2. One of the corresponding solutions for passive CO2 mineralization involves drilling boreholes in
tailings and pumping air through the boreholes to enhance the weathering process[12,37,38]. An alternative
solution is to utilize a CO2-rich aqueous solution (carbonic acid) flowing through tailings to enhance the
dissolution of divalent metals from silicate minerals, such as serpentine. With the consumption of protons
from carbonic acid, the pH values gradually increase and the dissolved divalent metals finally precipitate as
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mineral carbonates[11,39,40]. The corresponding chemical reactions [Eqs. (5)-(7)] occur in sequence. The
dissolution of CO2 from air to water provides protons to dissolve serpentine, and the produced mineral
carbonate is usually hydrated since it is formed at atmospheric temperature.

                                              CO2 + H2O = H2CO3 = H+ + HCO3
- = 2H+ + CO3

2-                                                                                           (5)

                                                Mg3Si2O5(OH)4 + 6H+ = 3Mg2+ + 2SiO2 + 5H2O                                                    (6)

                                                       Mg2+ + CO3
2- + xH2O = MgCO3·xH2O                                                             (7)

If considering CO2 mineralization alone, the passive pathway may be the optimal option, owing to the low
costs of carbon capture, pressurization, storage and transportation. Stakeholders in the mining industries,
however, may attempt to enhance economic feasibility by utilizing the products of CO2 mineralization. The
future development of passive CO2 mineralization may be combined with enhanced product utilization, in
addition to enhancing the natural weathering process itself. The potential utilization may be enhanced metal
recovery[11] and the formation of aggregates for the manufacturing of cement and construction materials[41,42].

IN-SITU  CO 2 MINERALIZATION
Similar to the passive pathway, in-situ CO2 mineralization injects CO2-rich gas, a gas mixture or aqueous 
fluid underground to facilitate the carbonation reaction between CO2 and underground mineralization 
without any mining activities. Thus far, the most successful example of this pathway is the CarbFix project 
in Iceland[15-23]. The CarbFix project dissolves pure CO2 gas, or more recently, CO2-H2S gas mixtures, into 
down-flowing waters and pumps the aqueous fluid underground through a drilling well (2000 m deep), as 
shown in Figure 4. The target reactive rocks are basalts, which are some of the most common types of rocks 
on Earth[23]. In order to monitor the reaction status underground, several monitoring wells have also been 
drilled. It is found that ~95% of the injected CO2 was successfully mineralized to stable mineral carbonates 
in less than two years[23]. The corresponding fundamentals are similar to passive carbonation, i.e., the basalt 
rocks dissolved to release divalent metal ions, mainly Ca2+, with the attack of CO2-dissolved water fluid. 
With the consumption of protons by basalts, the pH increased and the released divalent metal ions 
precipitated as mineral carbonates.

Motivated by the success of the CarbFix project, in-situ mineralization is also being applied across the USA 
through the Big Sky Carbon Sequestration Partnership[43]. Peridotites, another very common type of rock on 
Earth[25,44], have also been tested for in-situ mineralization. Different from basalts, peridotites usually have 
low permeability and porosity[25]. As a result, in-situ CO2 mineralization with peridotites has not achieved 
obvious progress yet[45]. In the future, the in-situ pathway may continue to play an important role in CO2 
mineralization in geological fields. The potential application may depend on the suitability of silicate 
resources, seismic activities, permeability and porosity in geology and mineralogy. In addition, in-situ CO2 
mineralization may also be utilized for enhanced oil recovery to increase credits[46-49].

EX-SITU  DIRECT CO 2 MINERALIZATION
Since both passive and in-situ CO2 mineralization still require the carbonation reaction, which takes several 
years to complete, many researchers are trying to accelerate the process for completion in hours for 
achieving effective global warming mitigation. Nowadays, ex-situ direct CO2 mineralization is the most 
popular research work at the laboratory scale. Since the chemical reaction in an aqueous matrix or at least 
with water vapor is much faster than the direct gas-solid reaction[50-52], ex-situ direct CO2 mineralization 
generally occurs within an aqueous solution. To maximize the kinetics, the ex-situ direct aqueous CO2 
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Figure 4. Schematic diagram of in-situ CO2 mineralization of CarbFix project in Iceland (reproduced from Snæbjörnsdóttir et al.[15]).

mineralization usually needs strict reaction requirements, including high temperature and CO2 pressure, 
fine particle size and the usage of pressure reactors (autoclaves). Sodium salts, for example, sodium 
bicarbonate and sodium chloride, may also be added to the solution for carbonation to significantly 
accelerate the mineral carbonation process[26,27,53-57].

Wang et al.[5,26,27] used pure olivine for CO2 mineralization and achieved a 78% carbonation efficiency (based 
on the reacted olivine fraction) in 5 h under the conditions of PCO2 = 34.5 atm, 175 °C, particle sizes of < 25 
µm, sodium bicarbonate and sodium chloride at one molality and a 10% pulp density (% solid fraction in 
the slurry mixture). Around 84 kg CO2 per ton of olivine per hour were stabilized as mineral carbonates. A 
high PCO2 and concentration of sodium salts were important for addressing the difficulty of diffusion 
through passivation layers. As shown in Figure 2, Wang et al.[26] further explained that the addition of 
sodium salts can accelerate the carbonation reaction via the dissolution of aqueous silica (H4SiO4) from 
olivine to the bulk solution, which subsequently decomposed into solid amorphous silica and quartz. High 
PCO2 can enhance the supply of protons for the enhanced dissolution of olivine and the supply of 
(bi-)carbonate  ions for crystalline mineral carbonate precipitates. The conditions of high PCO2 and 
elevated temperature resulted in the usage of a pressure autoclave vessel, which markedly increased the 
capital costs for CO2 mineralization[58]. An energy reactor[59-62] was designed to meet the requirements of 
high pressure and temperature by utilizing gravity and exothermic reactions of CO2 mineralization and to 
replace the autoclave usage. The application of the energy reactor utilizes differences in altitude in the 
terrain of sites. Similarly, a concurrent grinding method was designed to remove surface passivation layers 
under ambient pressure to avoid using an autoclave vessel[31,63-67].

Wang et al.[5] also investigated the direct aqueous CO2 mineralization of natural silicate samples and 
discovered that olivine was the dominant reactive mineral, while the other silicate minerals, including 
serpentine and pyroxene, were not involved in the CO2 mineralization reaction. Therefore, the current 
direct carbonation work in slurry systems focuses on using olivine to represent reactive silicates. 
Correspondingly, serpentine minerals required heat pre-treatment to convert to olivine for effective 
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carbonation[55,58]. The capital cost, therefore, may further increase[68,69]. After heat treatment at ~650 °C, 
serpentine became reactive for carbonation and exhibited faster kinetics, even when compared to olivine. 
The specific surface area was increased owing to the fractures of particles during heat treatment. Wood 
et al.[70] further discovered the effects of Fe(II) content in olivine on CO2 mineralization. Fe(II) in olivine 
may convert to hematite (Fe2O3) during carbonation and thus show a competitive reaction to prevent the 
CO2 mineralization process. As a result, the higher the Fe(II) content in olivine, the more difficult the CO2 
mineralization. A reductive gas, 1% H2, has been recommended as a supply for the mineralization system to 
inhibit the oxidation of Fe(II) and accelerate the CO2 mineralization process. This finding was verified by 
the work of Wang et al.[71], where a gas mixture of 5% H2S and 95% CO2 can increase the carbonation 
efficiency of olivine by up to 26% compared with a pure CO2 gas supply. This may also be the reason why 
the CarbFix project uses a CO2-H2S gas mixture sequestered over 95% CO2 in a shorter period than 
expected.

In addition to natural silicate minerals, industrial waste can also be utilized for direct aqueous CO2 
mineralization, such as steel-making slags[72-75] and blast furnace slags[76], coal fly and bottom ashes[77,78] and 
smelter waste (lead and copper slags)[79]. The mineral carbonation of industrial waste may be more 
interesting for both CO2 emission reduction and waste hazard management because the waste usually shows 
higher chemical reactivity than natural silicates and fine particles.

However, there has still been no significant decrease in capital costs due to the characteristics of the strict 
requirements thus far. Therefore, it is not suitable to carry out ex-situ direct aqueous CO2 mineralization 
alone[3]. The product value may be the main driver for mineral carbonation[60]. In the future, research into 
direct aqueous CO2 mineralization may be concentrated on the utilization of products or its combination 
with other associated technology.

EX-SITU  INDIRECT CO 2 MINERALIZATION
Since the dissolution of divalent metal-containing silicates and oxides is usually the rate-limiting step, ex-
situ indirect CO2 mineralization has also been developed. The silicates or oxides are first dissolved to release 
divalent metals, followed by precipitation as mineral carbonates under varied conditions. The typical routes 
for the ex-situ indirect pathway are the temperature swing process[29,80] and the pH swing process[81].

Zevenhoven et al.[80,82,83] developed the Åbo Akademi (ÅA) route on the temperature-swing process. As 
shown in Figure 5, the silicate mineral is first dissolved as magnesium sulphate at ~400 °C by ammonium 
sulphate, followed by magnesium extraction as magnesium hydroxide at < 100 °C and CO2 mineralization at 
~450 °C. The advantages of the ÅA route are the utilization of the released heat of the CO2 mineralization 
reaction and the recycling reagent of ammonium sulphate.

The other typical process is based on the pH-swing route[28,84-86]. The silicate or oxide minerals are firstly 
dissolved by an acid at a low pH value to release divalent metal ions in the aqueous solution, followed by 
adding an alkali to increase the pH and precipitating as mineral carbonates. During the pH-swing process, 
the acid and alkali reagents are difficult to recycle. Thus, the overall costs may still be a concern during the 
process because they simply shift from equipment and operation to the consumption of reagents. Therefore, 
the application of pH-swing CO2 mineralization is highly dependent on the recyclability of the reagents. 
Ammonium chloride might be a good choice for recycling, as stated by Hosseini et al.[87]. In addition to 
natural silicates and oxides, indirect CO2 mineralization can be tested on various slags and waste[51,88,89].
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Figure 5. Schematic diagram of typical ÅA route (reproduced from Fagerlund et al.[82]). ÅA: Åbo Akademi.

In the future, ex-situ indirect CO2 mineralization may continue to play an important role, owing to meeting 
the general sequence of CO2 mineralization and high carbonation efficiency. Nevertheless, challenges 
remain in reducing the capital costs of reagent consumption to make the whole CO2 mineralization process 
economical. Similar to direct CO2 mineralization, the utilization of byproducts or its combination with 
other technologies represent promising routes for development.

CO 2 MINERALIZATION IN CEMENT INDUSTRY
Although there is no difference in the CO2 mineralization method used in the cement industry, CO2 
emissions in cement and concrete represented ~27% of global industrial CO2 emissions[90] at 1.45 ± 0.20 Gt 
CO2/year in 2016[91]. Based on the current cement consumption level, global cement production may further 
grow by 12%-23% by 2050 to meet the needs of the rising global population, urbanization and infrastructure 
developments[90]. Therefore, it is necessary to consider CO2 emission reduction in the cement industry[92] for 
the common carbon neutral goal by 2050. The main reactive material of cement is calcium silicate hydrate 
(C-S-H), which is also suitable for CO2 mineralization[90,93,94]. Liu et al.[94] investigated the carbonation 
behavior of C-S-H in cement and confirmed that it has promising potential for CO2 mineralization. Wang 
et al.[93] reviewed the carbonation work of cement-based materials and found that CO2 mineralization could 
improve the mechanical performance of recycled aggregates and concretes. Thonemann et al.[95] also 
reported that direct aqueous CO2 mineralization, carbonation mixing and curing in the cement industry are 
significant for CO2 emission reduction. The products of direct aqueous CO2 mineralization can be utilized 
as supplementary cementitious materials or as aggregates in concretes. The carbonation curing of cement-
based products in a pressurized CO2 atmosphere can form a hybrid binder structure of C-S-H and calcite. 
Carbonation mixing, i.e., purging CO2 gas into the mixture of cement, aggregates, water and admixtures, 
can form CaCO3 nanoparticles and can thus increase the compressive strength of the concrete or reduce the 
usage of the binder in turn.

CO 2 MINERALIZATION AND UTILIZATION
Thus far, almost all CO2 mineralization work has proved not to be economically profitable. It is therefore 
not sustainable for stakeholders to carry out CO2 mineralization without the motivation of profits. There 
has been a consensus that accelerated CO2 mineralization should be utilized with other technologies to 
minimize costs[3,5,48,60]. The other technologies include, but are not limited to, enhanced metal 
recovery[5,48,71,96,97], nanomaterials[98,99], enhanced flotation[100] and H2 production[101-104].
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Wang et al.[71] tried to utilize the ex-situ direct aqueous CO2 mineralization of pure olivine for concurrent
enhanced nickel recovery, as shown in Figure 6. With the supply of a gas mixture containing 95% CO2 and
5% H2S, the released nickel (and cobalt) ions from olivine, owing to the CO2 mineralization reaction, which
were previously considered as non-recoverable, were converted to nickel sulfide together with limited
ferrous sulfide precipitates, whereas the magnesium and ferrous ions of olivine precipitated as stable
mineral carbonates. The gas mixture supply of CO2 containing 5% H2S can make the sulfidization of nickel
(cobalt) selective over iron and magnesium. Wang et al.[97] further tested the CO2 mineralization and
concurrently enhanced metal recovery on the real tailings of a copper-nickel-sulfide mine under
development in Minnesota. The test results also proved that the utilization of CO2 mineralization with
concurrently enhanced metal recovery is suitable for ultramafic mine tailings. We are currently working on
CO2 mineralization and the concurrent metal extraction from laterites.

Zappala et al.[105] also utilized ex-situ indirect aqueous CO2 mineralization for nickel leaching from a
saprolite laterite, as shown in Figure 7. A triethylamine reagent was used for recyclability by varying the
temperature. The laterite was first leached by dilute sulfuric acid to leach out the metals, followed by the
gradual addition of triethylamine to raise the pH values and thus precipitate impurities, including iron and
aluminum. Nickel can be precipitated by varying the pH, owing to the gradual addition of triethylamine,
while magnesium remained in the aqueous solution. The magnesium ions from the aqueous solution can
precipitate as magnesite with the further addition of triethylamine and a supply of CO2-containing flue gas.
The added triethylamine can be recovered as gas by increasing the temperature to 100 °C and
correspondingly a dilute sulfuric acid solution was regenerated. Olivine was the dominant reactive mineral
during the process. In this case, the consumption of acid and reagent can be reduced. The flow sheet in
Figure 7 was further optimized more recently by emerging the regeneration step into the leaching step[105].
Hamilton et al.[11] also suggested the use of passive CO2 mineralization of ultramafic mine tailings through
heap leaching for potential metal recovery.

Stopic et al.[98] synthesized nanosilica through the ex-situ direct aqueous CO2 mineralization of olivine at 175
°C and > 100 bar PCO2. Yin et al.[99] utilized the direct aqueous CO2 mineralization of fly and waste ashes to
synthesize nanoscale calcium carbonate in a matrix of sodium glycinate or monoethanolamine solutions
with a surfactant (cetyl trimethyl ammonium bromide). Bashir Wani et al.[100] used CO2 as a conditioning
agent for the froth flotation of nickel sulfide from an ultramafic nickel ore. With the inclusion of CO2 prior
to flotation, some monohydroxide complexes (CaOH+ and MgOH+) reacted with CO2 to form mineral
carbonates and increase the electrostatic repulsion between the nickel-containing mineral pentlandite and
gangue minerals. As a result, the nickel pentlandite recovery and grade can also increase by 10% and 4%,
respectively. Wang et al.[101-104] even utilized the hydrothermal reaction of olivine at 300 °C within a sodium
bicarbonate aqueous solution to simultaneously achieve CO2 mineralization and H2 production. The overall
reaction is shown in Eq. (8). At 300 °C, olivine transformed into serpentine, brucite and magnetite, and H2

gas was released through an enhanced serpentinization process. The formed brucite can easily sequester
CO2 to produce magnesite as a stable carbonate. Wang et al.[101] further showed that pyroxene can accelerate
this hydrothermal reaction for H2 production, as shown in Figure 8.

                                                                   (Mg, Fe)2SiO4(olivine) + nH2O→

                                                       x(Mg, Fe2+, Fe3+)3(Si, Fe3+)2O5(OH)4(serpentine) +

                                               y(My, Fe)(OH)2(brucite) + zFe3O4(Magnetite) + (n - 2x - y)H2                                                (8)
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Figure 6. Schematic diagram of CO2 mineralization and concurrent nickel sulfidization (reproduced from Wang et al.[71]).

Figure 7. Process flow diagram of ex-situ indirect aqueous CO2 mineralization for nickel leaching from a saprolite laterite (reproduced 
from Zappala et al.[105]). Et3N represents triethylamine.

There are numerous possibilities for simultaneously achieving CO2 mineralization and the corresponding 
utilization. The utilization may determine whether the CO2 mineralization process is economically 
favorable. There is also no doubt that further process developments are needed for future scalability[106]. CO2 
emission reduction should be considered as an opportunity for evolution in various industrial productions. 
The need for CO2 reduction and utilization can contribute to considerable developments in many 
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Figure 8. Schematic diagram of ex-situ direct aqueous CO2 mineralization and utilization for H2 production (reproduced from Wang 
et al.[101]).

innovative and sustainable technologies.

CARBON TAXATION
The development of CO2 mineralization and the evolution of various industrial productions are closely 
related to governmental policies. Ex-situ direct aqueous CO2 mineralization has so far not been 
economically feasible. The corresponding capital cost for using olivine and serpentine considering a 3%-5% 
inflation rate is $68-$112 and $150-$300 per ton of sequestered CO2, respectively[58,107]. Carbon taxation is 
one of the most important and direct policies to affect the developments in carbon mineralization. At 
present, many countries have implemented carbon tax to encourage efforts on CO2 emission reduction. The 
federal government of Canada has passed the Reference re Greenhouse Gas Pollution Pricing Act and set the 
carbon tax at Canadian Dollar (CAD) $50/ton CO2 in 2022 but will reach CAD $95 by 2025 and CAD $170 
by 2030 with an increasing rate of CAD $15 each year, as shown in Figure 9. Although no carbon taxation 
has formally been approved in the USA, there have been numerous proposals, including the Climate Action 
Rebate Act (Coons-Feinstein), the America Wins Act (Larson), and so on[108]. For example, based on the 
Climate Action Rebate Act, a carbon tax in the USA would be USD $45 in 2022 and reach USD $165 by 2022 
and USD $240 by 2035 with an increasing rate of USD $15 each year, as shown in Figure 9. Similar to the 
carbon tax, China implemented a national carbon trading scheme at ~25 yuan/ton in 2021, which will likely 
increase to 35.5 and 46.5 yuan/ton by 2025 and 2030, respectively[109]. In Europe, the European Union 
Emissions Trading System allows the trade of greenhouse gas emissions on the market[110,111]. In 2022, the 
carbon permits trading in the EU market is expected to reach €69-€98/ton CO2

[111]. With the motivation of 
carbon credits, the CO2 mineralization process may become economically feasible after 2026 based on 
carbon taxation in the USA.

The utilization of the CO2 mineralization process may considerably accelerate the feasibility of its 
economics. For example, the carbonation of olivine containing 0.27% nickel may be utilized for nickel 
recovery[71,97]. If each ton of CO2 sequestered through carbon mineralization of olivine can achieve 5 kg of 
nickel recovery, then the nickel credits can reach $112/ton of CO2 based on the current nickel price on the 
market of $11/lb. As a result, the total benefits owing to CO2 mineralization can outweigh the corresponding 
capital cost of the carbonation process, as shown in Figure 9. If the direct utilization of CO2 mineralization 
can be applied to laterites, which contain > 1% nickel, the total benefits may far outweigh the capital cost 
and thus may be applicable. Therefore, both the carbon taxation and utilization of carbon mineralization are 
significant for its potential application. In contrast, it is a sign for industrial production to evolve and meet 
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Figure 9. Carbon price in Canada and USA and potential CO2 mineralization benefits including carbon credits and nickel credits. The 
capital cost of ex-situ direct aqueous CO2 mineralization is based on Huijgen et al.[107] and O’Connor et al.[58] and recalculated with a 3%-
5% inflation rate. The potential nickel credit is based on a nickel content of 0.27% in olivine, nickel recovery by utilizing mineral 
carbonation and the current nickel price on the market of $11/lb.

carbon emission reductions at least by 2030, otherwise they may need to address the increasing pressure 
from carbon taxation.

CONCLUSION
This review has considered various CO2 mineralization technologies and their prospects for potential 
developments in their utilization and in the cement industry. The utilization may determine whether the 
CO2 mineralization process is economically favorable. Thus far, passive CO2 mineralization may be the 
dominant method before the other methods are applied into commercialization, because of its low capital 
cost for carbon capture, pressurization, storage and transportation. In-situ CO2 mineralization is important 
and depends on the suitability of silicate resources, seismic activities, permeability and porosity in 
mineralogy and geology. Ex-situ CO2 mineralization, especially the direct approach, and the corresponding 
utilization are under rapid development and may play a dominant role in CO2 emission reduction in the 
forthcoming decades. Suitable utilization may include enhanced metal recovery, hydrogen production and 
nanomaterials production. The application of CO2 mineralization in the cement industry is also important 
to effectively reduce CO2 emissions. Carbon taxation can accelerate the economic feasibility of applying for 
CO2 mineralization. Overall, CO2 emission reduction should be considered as an opportunity for evolution 
in various industrial productions. The need for CO2 reduction and utilization can contribute to the 
considerable development of many innovative and sustainable technologies for a better world in the future.
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