### Interventions of eHealth technologies integrated with non-physician health workers for improving management of hypertension: Systematic review and meta-analysis

#### Rajshree Thapa<sup>1,2</sup>, Wubet Takele<sup>1</sup>, Amanda Thrift<sup>2</sup>, Ayse Zengin<sup>2</sup>

<sup>1</sup>Health System and Equity Unit, Eastern Health Clinical School, Monash University, Box Hill VIC 3128, Melbourne, Australia.

<sup>2</sup>Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC 3168, Melbourne, Australia.

**Correspondence to:** Ayse Zengin, PhD, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 5/Block E, Monash Medical Centre, 246 Clayton Road, Clayton VIC 3168, Australia. E-mail: <u>Ayse.Zengin@monash.edu</u>

#### Contents

| Supplementary Table S1: Search Strategy2                                                     |
|----------------------------------------------------------------------------------------------|
| Supplementary Table S2: Characteristics of the included studies                              |
| Supplementary Figure S1: Reduction in systolic blood pressure by duration of intervention 16 |
| Supplementary Figure S2: Reduction in systolic blood pressure reduction by type of eHealth   |
| technologies17                                                                               |
| Supplementary Figure S3: Reduction in systolic blood pressure reduction by type of country   |
| income19                                                                                     |
| Supplementary Figure S4: Reduction in systolic blood pressure reduction by involvement of    |
| physician intervention                                                                       |
| Supplementary Figure S5: Reduction in diastolic blood pressure reduction by duration of      |
| intervention                                                                                 |
| Supplementary Figure S6: Reduction in diastolic blood pressure reduction by type of eHealth  |
| technologies                                                                                 |
| Supplementary Figure S7: Reduction in diastolic blood pressure reduction by country24        |
| Supplementary Figure S8: Reduction in diastolic blood pressure reduction by engagement of    |
| physician intervention                                                                       |
| Supplementary Figure S9A: Contoured enhanced plot for publication bias for systolic blood    |
| pressure                                                                                     |

| Supplementary Figur | e S9B: Contoured er | nhanced plot for | publication l | oias for diastol | ic blood |
|---------------------|---------------------|------------------|---------------|------------------|----------|
| pressure            |                     |                  |               |                  | 27       |

### Supplementary Table S1: Search Strategy

| 1 | community health workers.mp. or exp health auxiliary/                        |
|---|------------------------------------------------------------------------------|
| 2 | community health nursing/ or nurse/                                          |
|   | ((Community adj3 health adj3 worker*) or CHW* or extension worker* or        |
|   | health extension worker* or outreach worker or outreach worker* or village   |
|   | health worker* or community health-care worker* or allied health worker* or  |
|   | lay health worker or lay health worker* or lay health-care worker* or (lay   |
|   | adj3 health adj3 volunteer*) or (lay adj3 healthcare adj3 volunteer*) or     |
|   | Primary health care worker* or primary healthcare worker* or primary         |
|   | health-care worker* or community worker* or community health care            |
|   | worker* or community healthcare worker* or bare foot health care worker* or  |
|   | barefoot doctor* or community health practitioner* or community health       |
|   | volunteer or community health volunteer* or health volunteer or (health adj3 |
|   | volunteer*) or (community adj3 health adj3 volunteer*) or Female             |
|   | Community Health Volunteer* or FCHV or Accredited Social Health              |
| 3 | Activist* or ASHA or aganwadi* or agents communitaria de saude or agents     |
|   | communitaria de salud or embajadoras or colaborador voluntary schema or      |
|   | colaborador voluntary* or family welfare assistant* or Consejera or lay      |
|   | volunteer* or "care worker*" or health promotor* or community health         |
|   | provider* or emergency medical technician* or home health aides or trained   |
|   | personnel or "community resource person*" or health promotor* or frontline   |
|   | health worker* or promotora* or volunteer health worker* or "community       |
|   | health agent*" or community health surveyor* or community health assistant*  |
|   | or community health promoter*OR village health volunteer or close-to-        |
|   | community provider*vOR community-based practitioner*vOR lady Health          |
|   | worker* or Community Practitioner* or promotoras de salud or Animatrice or   |
|   | Barangay health worker or Barangay health workers or Basic health worker or  |
|   | Basic health workers or Brigadista or Colaborador voluntario* or Community   |

|   | health agent* or rural health auxiliaries or rural health auxiliary or      |
|---|-----------------------------------------------------------------------------|
|   | Community health representative* or Female multipurpose health worker* or   |
|   | Kader or Monitora or Mother coordinator or Outreach educator* or Health     |
|   | Surveillance Assistant* or Nutrition Counselor* or Peer Educator* or        |
|   | Shasthya Shebika or Socorrista or Animator* or Community Case               |
|   | Management Worker* or Community Health Extension Worker* or Village         |
|   | health helper* or Village drug-kit manager* or Accompagnateur or Care       |
|   | Group Volunteer* or Community Case Management Worker or Community           |
|   | Case Management Worker* or auxiliary nurse-midwives or Auxiliary Nurse-     |
|   | midwife or Family Health Worker* or Care Group Volunteer* or Health         |
|   | Surveillance Assistant* or Family Planning Agent* or Family Welfare         |
|   | Assistant* or Family Welfare Assistant* or Maternal Child Health Worker*    |
|   | or Mobile Clinic Team* or Nutrition Agent* or Community HealthCare          |
|   | Provider*).mp. [mp=title, abstract, heading word, drug trade name, original |
|   | title, device manufacturer, drug manufacturer, device trade name, keyword   |
|   | heading word, floating subheading word, candidate term word]                |
|   |                                                                             |
|   |                                                                             |
|   |                                                                             |
|   |                                                                             |
|   | ((licensed practical nurse* adj5 community) or nursing assistant* or        |
|   | community nurse or community nurse* or (community adj5 nurse) or            |
|   | community health nurse* or (community adj5 heath adj5 nurse*) or            |
|   | (community health adj5 nurse) or primary health care nurse* or (primary     |
|   | health care adj5 nurse) or (pharmacy technician* adj3 community) or health  |
| 4 | auxiliary or ANM or auxiliary nurse midwi* or midwi* or auxiliary midwives  |
|   | or community pharmacist or (community adj3 pharmacist*) or community        |
|   | drug distributor* or (non-physician health worker* adj5 community) or (non- |
|   | physician adj5 community) or (non-physician adj5 community) or (health      |
|   | care workforce adj5 community) or (health workforce adj5 community) or      |
|   | (health care worker* adj5 community) or (extended scope practice adj5       |
|   | community) or (healthcare provider* adj3 community)).mp.                    |
| 5 | exp Hypertension/di, ep, pc [Diagnosis, Epidemiology, Prevention & Control] |

|    | (Hypertension or hypertens\$ or blood pressure or bloodpressure or BP or     |
|----|------------------------------------------------------------------------------|
| 6  | raised blood pressure or high blood pressure or pre hypertens* or pre-       |
|    | hypertens* or raised blood pressure).mp.                                     |
| 7  | exp non communicable disease/di, dm, ep, pc [Diagnosis, Disease              |
| /  | Management, Epidemiology, Prevention]                                        |
|    | (Noncommunicable diseases or chronic disease or non-communicable disease     |
|    | or noncommunicable disease or NCD).mp. [mp=title, abstract, heading word,    |
| 8  | drug trade name, original title, device manufacturer, drug manufacturer,     |
|    | device trade name, keyword heading word, floating subheading word,           |
|    | candidate term word]                                                         |
|    | (mobile Health or digital health or telemedicine or telehealth or technology |
|    | enabled or eHealth or mHealth or SMS or messaging).mp. [mp=title, abstract,  |
| 9  | heading word, drug trade name, original title, device manufacturer, drug     |
|    | manufacturer, device trade name, keyword heading word, floating subheading   |
|    | word, candidate term word]                                                   |
| 10 | 1 or 2 or 3 or 4                                                             |
| 11 | 5 or 6 or 7 or 8                                                             |
| 12 | 9 and 10 and 11                                                              |

|    |            |          |        | Samp  | le  |        |                        |         |                             |           |              |
|----|------------|----------|--------|-------|-----|--------|------------------------|---------|-----------------------------|-----------|--------------|
|    | A 41       |          |        | size  |     |        |                        | Durati  |                             | Type of   |              |
| S. | Aution     | Publishe | Countr |       |     | Age    | Population/disease     | on of   | Type of Intervention        | eHealth   | Type of non- |
| Ν  | and        | d year   | У      | Inter | Со  | (years | condition              | follow- | Type of Intervention        | technolo  | physician    |
|    | reference  |          |        | venti | ntr | )      |                        | up      |                             | gy        |              |
|    |            |          |        | on    | ol  |        |                        |         |                             |           |              |
|    |            |          |        |       |     |        | At least 2 metabolic   |         |                             |           |              |
|    |            |          |        |       |     |        | abnormalities:waist    |         |                             |           |              |
|    |            |          |        |       |     |        | circumference (male:   |         |                             |           |              |
|    |            |          |        |       |     |        | ≥90 cm; female: ≥80    |         |                             |           |              |
|    |            |          |        |       |     |        | cm), blood pressure    |         |                             |           |              |
|    |            |          |        |       |     |        | (systolic: ≥135 mmHg;  |         |                             |           |              |
|    |            |          |        |       |     |        | diastolic: ≥85 mmHg),  |         |                             |           |              |
|    |            |          |        |       |     |        | triglyceride ≥150      |         |                             |           | Certified    |
|    |            |          |        |       |     |        | mg/dL, high-density    |         |                             |           | exercise     |
|    |            |          |        |       |     |        | lipoprotein (HDL)      |         | App-based self-logging and  |           | regimen      |
|    |            |          |        |       |     |        | cholesterol (male: <40 |         | personalized coaching from  | Mobile    | coordinators |
|    | Cho et al, |          | South  |       |     |        | mg/dL; female: <50     | 6       | professional dieticians and | applicati | and clinical |
| 1  | 2020       | 2020     | Korea  | 43    | 41  | 30-59  | mg/dL), and fasting    | months  | exercise coordinators group | on        | dieticians   |

### Supplementary Table S2: Characteristics of the included studies

|    |            |          |        | Samp  | le  |        |                         |         |                                    |           |              |
|----|------------|----------|--------|-------|-----|--------|-------------------------|---------|------------------------------------|-----------|--------------|
|    | Author     |          |        | size  |     | Age    |                         | Durati  |                                    | Type of   |              |
| S. | and        | Publishe | Countr |       | T   | (years | Population/disease      | on of   | n of<br>Type of Intervention       | eHealth   | Type of non- |
| Ν  | reference  | d year   | У      | Inter | Co  |        | condition               | follow- |                                    | technolo  | physician    |
|    | reference  |          |        | venti | ntr | )      |                         | up      |                                    | gy        |              |
|    |            |          |        | on    | ol  |        |                         |         |                                    |           |              |
|    |            |          |        |       |     |        | glucose level ≥100      |         |                                    |           |              |
|    |            |          |        |       |     |        | mg/dL                   |         |                                    |           |              |
|    |            |          |        |       |     |        |                         |         | Home BP monitor, scale, and        |           |              |
|    |            |          |        |       |     |        |                         |         | dietitian team care. Follow-up     |           |              |
|    |            |          |        |       |     |        | BMI>26,                 |         | occurred via secure messaging to   |           |              |
|    |            |          |        |       |     |        | elevated BP, and 10%-   |         | report BP, weight, and fruit and   |           |              |
|    | Green et   |          |        |       |     |        | 25% 10-year             | 6       | vegetable intake and receive       | Web-      |              |
| 2  | al, 2014   | 2014     | USA    | 51    | 50  | 30-69  | Framingham CVD risk     | months  | ongoing feedback.                  | based     | Dieticians   |
|    |            |          |        |       |     |        | those with uncontrolled |         | Six individual weekly education    |           |              |
|    |            |          |        |       |     |        | blood pressure, who     |         | and consultation sessions          |           |              |
|    |            |          |        |       |     |        | were taking             |         | provided by a nurse in the first 6 | Mobile    |              |
|    | Ma et al,  |          |        |       | 10  |        | antihypertensive        | 3       | weeks and a researcher-developed   | applicati |              |
| 3  | 2022       | 2022     | China  | 105   | 5   | 26-73  | medications,            | months  | smartphone application             | on        | Nurses       |
|    | Margolis,  |          |        |       | 16  |        | adult patients with     | 12      | Telehealth care using best         | Telemon   | Clinical     |
| 4  | et al 2022 | 2022     | USA    | 1423  | 48  | 18-85  | moderately severe       | months  | practices and adding home BP       | itoring   | pharmacist   |

|    |            |          |        | Samp  | le  |        |                         |         |                                 |           |              |
|----|------------|----------|--------|-------|-----|--------|-------------------------|---------|---------------------------------|-----------|--------------|
|    | Author     |          |        | size  |     | Age    |                         | Durati  |                                 | Type of   |              |
| S. | and        | Publishe | Countr |       |     | (vears | Population/disease      | on of   | Type of Intervention            | eHealth   | Type of non- |
| Ν  | reference  | d year   | У      | Inter | Co  |        | condition               | follow- |                                 | technolo  | physician    |
|    |            |          |        | venti | ntr | ,      |                         | up      |                                 | gy        |              |
|    |            |          |        | on    | ol  |        |                         |         |                                 |           |              |
|    |            |          |        |       |     |        | hypertension            |         | telemonitoring coordinated by a |           |              |
|    |            |          |        |       |     |        | (BP≥150/95 mm Hg):      |         | clinical pharmacist             |           |              |
|    |            |          |        |       |     | Mean   |                         |         |                                 |           |              |
|    |            |          |        |       |     | age    |                         |         |                                 |           |              |
|    |            |          |        |       |     | for    |                         |         |                                 |           |              |
|    |            |          |        |       |     | interv |                         |         |                                 |           |              |
|    |            |          |        |       |     | ention |                         |         |                                 |           |              |
|    |            |          |        |       |     | =69.9  |                         |         |                                 |           |              |
|    |            |          |        |       |     | Mean   |                         |         |                                 |           |              |
|    |            |          |        |       |     | age    |                         |         |                                 | Telephon  |              |
|    |            |          |        |       |     | for    |                         |         |                                 | e-based   |              |
|    | Ogren et   |          |        |       | 34  | contro | Patients with stroke or | 36      | Telephone-based follow-up and   | counselli |              |
| 5  | al, 2018   | 2018     | Sweden | 320   | 0   | l=69.3 | TIA                     | months  | counselling by nurses           | ng        | Nurse        |
|    | Persell et |          |        |       | 25  |        | Systolic blood pressure | 12      | Electronic health record-based  | Electroni |              |
| 6  | al , 2018  | 2018     | USA    | 278   | 4   | 18+    | of at least 135 mmHg    | months  | medication management tools     | c health  | Nurse        |

|    |           |          |        | Samp  | le       |        |                              |         |                                     |            |              |  |
|----|-----------|----------|--------|-------|----------|--------|------------------------------|---------|-------------------------------------|------------|--------------|--|
|    | Author    |          |        | size  |          | Age    |                              | Durati  |                                     | Type of    |              |  |
| S. | and       | Publishe | Countr |       |          | (vears | Population/disease           | on of   | on of<br>Type of Intervention       | eHealth    | Type of non- |  |
| Ν  | reference | d year   | У      | Inter | Inter Co |        | condition                    | follow- | - <b>J</b> F                        | technolo   | physician    |  |
|    | renerence |          |        | venti | ntr      | )      |                              | up      |                                     | gy         |              |  |
|    |           |          |        | on    | ol       |        |                              |         |                                     |            |              |  |
|    |           |          |        |       |          |        | or diastolic blood           |         | (medication review sheets at visit  | record     |              |  |
|    |           |          |        |       |          |        | pressure of at least 85      |         | check-in, lay medicationnurse-led   | tools      |              |  |
|    |           |          |        |       |          |        | mmHg or 130 mmHg             |         | medication management support       |            |              |  |
|    |           |          |        |       |          |        | or 80 mmHg for those         |         | (EHR plus education group),         |            |              |  |
|    |           |          |        |       |          |        | with diabetes                |         | information sheets printed after    |            |              |  |
|    |           |          |        |       |          |        |                              |         |                                     | visits and |              |  |
|    |           |          |        |       |          |        |                              |         | Patients in the IG received a Blue- |            |              |  |
|    |           |          |        |       |          |        |                              |         | toothed UA-767Plus BT Blue-         |            |              |  |
|    |           |          |        |       |          |        |                              |         | toothed BP device and               |            |              |  |
|    |           |          |        |       |          |        |                              |         | smartphone with an App for          |            |              |  |
|    |           |          |        |       |          |        | Confirmed stroke of <1       |         | monitoring BP measurements and      |            |              |  |
|    |           |          |        |       |          |        | month and uncontrolled       |         | medication                          | Mobile     |              |  |
|    | Sarfo et  |          |        |       |          |        | hypertension                 | 9       | intake under nurse guidance for     | applicati  |              |  |
| 7  | al , 2018 | 2018     | Ghana  | 30    | 30       | 18+    | $(SBP \ge 140 \text{ mmHg})$ | months  | three month                         | on         | Nurse        |  |

|    |            |          |         | Samp                 | le              |      |                    |                 |                                     |                    |              |
|----|------------|----------|---------|----------------------|-----------------|------|--------------------|-----------------|-------------------------------------|--------------------|--------------|
| S. | Author     | Publishe | Countr  | size<br>r            |                 | Age  | Population/disease | Durati<br>on of | True of Intervention                | Type of<br>eHealth | Type of non- |
| Ν  | reference  | d year   | у       | Inter<br>venti<br>on | Co<br>ntr<br>ol | )    | condition          | follow-<br>up   | Type of Intervention                | technolo<br>gy     | physician    |
|    |            |          |         |                      |                 |      |                    |                 | An mHealth smartphone app and       |                    |              |
|    |            |          |         |                      |                 |      |                    |                 | a nurse case management model       |                    |              |
|    |            |          |         |                      |                 |      | Chronic pain,      |                 | in partnership with a health-social | Mobile             |              |
|    | Wong et    |          | Hong    |                      |                 |      | hypertension, or   | 3               | care team composed of social        | applicati          |              |
| 8  | al, 2022   | 2022     | Kong    | 74                   | 76              | 60 + | diabetes.          | months          | workers and general practitioners   | on                 | Nurse        |
|    |            |          |         |                      |                 |      |                    |                 | Participants were instructed to     |                    |              |
|    |            |          |         |                      |                 |      |                    |                 | download and use the 4-free apps    |                    |              |
|    |            |          |         |                      |                 |      |                    |                 | to facilitate the self-monitoring   |                    |              |
|    |            |          |         |                      |                 |      |                    |                 | and detect BP and behavior          | Mobile             |              |
|    | Alsaqer et |          |         |                      |                 |      | Diagnosed with     | 3               | changes and public health nursing   | applicati          |              |
| 9  | al, 2022   | 2022     | Jordan  | 37                   | 37              | 55+  | hypertension       | months          | intervention                        | on                 | Nurse        |
|    |            |          |         |                      |                 |      |                    |                 | Community health worker-led         |                    |              |
|    |            |          |         |                      |                 |      |                    |                 | home intervention (health           |                    | Community    |
|    | He et al,  |          | Argenti |                      | 68              |      | Uncontrolled       | 18              | coaching, home BP monitoring,       | SMS text           | health       |
| 10 | 2017       | 2017     | na      | 743                  | 9               |      | hypertension       | months          | and BP audit and feedback), a       | messages           | workers      |

|    |             |          |        | Samp                 | le              |      |                          |                 |                                     |                    |              |
|----|-------------|----------|--------|----------------------|-----------------|------|--------------------------|-----------------|-------------------------------------|--------------------|--------------|
| S. | Author      | Publishe | Countr | size                 |                 | Age  | Population/disease       | Durati<br>on of | Tune of Intervention                | Type of<br>eHealth | Type of non- |
| Ν  | reference   | d year   | У      | Inter<br>venti<br>on | Co<br>ntr<br>ol | )    | condition                | follow-<br>up   | Type of fintervention               | technolo<br>gy     | physician    |
|    |             |          |        |                      |                 |      |                          |                 | physician intervention, and a text- |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | messaging intervention              |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | teractive physician educational     |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | programs                            |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | In-person health education along    |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | with a health education booklet     |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | and SMS text messaging to           |                    |              |
|    |             |          |        |                      |                 |      |                          |                 | develop awareness and               |                    | Community    |
|    | Jahan et    |          | Bangla |                      | 21              |      |                          | 5               | knowledge, and motivate behavior    | SMS text           | health       |
| 11 | al , 2020   | 2020     | desh   | 209                  | 1               | > 35 | Hypertension             | months          | changes                             | messages           | workers      |
|    |             |          |        |                      |                 |      | Self-reported history of |                 |                                     | Electroni          |              |
|    |             |          |        |                      |                 |      | (1) coronary heart       |                 | Two therapeutic lifestyle           | с                  |              |
|    |             |          | China  |                      |                 |      | disease, (2) stroke, (3) |                 | modifications (smoking cessation    | decision           | Community    |
|    | Tain et al, |          | and    |                      | 99              |      | diabetes mellitus,       | 12              | and salt reduction) and the         | support            | health       |
| 12 | 2015        | 2015     | India  | 1095                 | 1               | ≥40  | and/or (4) measured      | months          | appropriate prescription of two     | system             | workers      |

|    |             |                    |        | Samp  | le  |        |                                 |         |                                   |           |              |
|----|-------------|--------------------|--------|-------|-----|--------|---------------------------------|---------|-----------------------------------|-----------|--------------|
|    | Author      | Publishe<br>d year |        | size  |     | Age    |                                 | Durati  |                                   | Type of   |              |
| S. | S. and      |                    | Countr |       | 1   | (years | Population/disease<br>condition | on of   | Type of Intervention              | eHealth   | Type of non- |
| Ν  | reference   |                    | У      | Inter | Co  |        |                                 | follow- |                                   | technolo  | physician    |
|    |             |                    |        | venti | ntr | ,      |                                 | up      |                                   | gy        |              |
|    |             |                    |        | on    | ol  |        |                                 |         |                                   |           |              |
|    |             |                    |        |       |     |        | systolic blood pressure         |         | medications (blood pressure-      |           |              |
|    |             |                    |        |       |     |        | (SBP) ≥160 mm Hg                |         | lowering agents and aspirin. The  |           |              |
|    |             |                    |        |       |     |        |                                 |         | management program was            |           |              |
|    |             |                    |        |       |     |        |                                 |         | delivered by                      |           |              |
|    |             |                    |        |       |     |        |                                 |         | trained community health workers  |           |              |
|    |             |                    |        |       |     |        |                                 |         | in the intervention group on a    |           |              |
|    |             |                    |        |       |     |        |                                 |         | monthly basis with the assistance |           |              |
|    |             |                    |        |       |     |        |                                 |         | of electronic decision support    |           |              |
|    |             |                    |        |       |     |        |                                 |         | system in the form of an Android- |           |              |
|    |             |                    |        |       |     |        |                                 |         | based app installed on            |           |              |
|    |             |                    |        |       |     |        |                                 |         | smartphones                       |           |              |
|    |             |                    |        |       |     |        |                                 |         | (1) CHW-participant telehealth    |           |              |
|    |             |                    |        |       |     |        |                                 |         | communication via mobile health   |           | Community    |
|    | Vuaghan     |                    |        |       |     |        | Type 2                          | 12      | (mHealth) for 12 months, (2)      | Telehealt | health       |
| 13 | et al, 2021 | 2021               | USA    | 44    | 45  | >18    | diabetes.                       | months  | CHW-led monthly group visits for  | h support | workers      |

|    |               |                    |        | Samp  | Sample<br>size Age Durati |        |                    |         |                                     |          |              |
|----|---------------|--------------------|--------|-------|---------------------------|--------|--------------------|---------|-------------------------------------|----------|--------------|
|    | Author<br>and | Publishe<br>d year |        | size  |                           |        |                    | Durati  |                                     | Type of  |              |
| S. |               |                    | Countr | ountr |                           | (years | Population/disease | on of   | Type of Intervention                | eHealth  | Type of non- |
| Ν  | reference     |                    | У      | Inter | Co                        |        | condition          | follow- |                                     | technolo | physician    |
|    |               |                    |        | venti | ntr                       | ,      |                    | up      |                                     | gy       |              |
|    |               |                    |        | on    | ol                        |        |                    |         |                                     |          |              |
|    |               |                    |        |       |                           |        |                    |         | 6 months, and (3) weekly CHW-       |          |              |
|    |               |                    |        |       |                           |        |                    |         | physician diabetes training and     |          |              |
|    |               |                    |        |       |                           |        |                    |         | support via telehealth (video       |          |              |
|    |               |                    |        |       |                           |        |                    |         | conferencing).                      |          |              |
|    |               |                    |        |       |                           |        |                    |         |                                     |          |              |
|    |               |                    |        |       |                           |        |                    |         | The first component comprised       |          |              |
|    |               |                    |        |       |                           |        |                    |         | personal consultations by trained   |          |              |
|    |               |                    |        |       |                           |        |                    |         | pharmacy students. The second       |          |              |
|    | Zhai et al,   |                    |        |       | 19                        |        | diagnosed with     | 3       | component was SMS text              | SMS text |              |
| 14 | 2020          | 2020               | China  | 192   | 2                         | >18    | hypertension       | months  | messages sent at 3-day intervals    | messages | Pharmacist   |
|    |               |                    |        |       |                           |        |                    |         | The active SMS which included       |          |              |
|    |               |                    |        |       |                           |        |                    |         | information on the management       |          |              |
|    |               |                    |        |       |                           |        |                    |         | of hypertension as well as advice   |          | Community    |
|    | Tobe et al,   |                    |        |       |                           |        | Those with         | 12      | to follow-up with the participant's | SMS text | health       |
| 15 | 2018          | 2018               | Canada | 64    | 58                        | >18    | hypertension       | months  | health care provider if the         | messages | workers      |

|    |               |          |        | Sample |          |        |                    |         |                                 |          |              |
|----|---------------|----------|--------|--------|----------|--------|--------------------|---------|---------------------------------|----------|--------------|
|    | Author<br>and |          |        | size   | size Age |        |                    | Durati  |                                 | Type of  |              |
| S. |               | Publishe | Countr |        |          | (vears | Population/disease | on of   | Type of Intervention            | eHealth  | Type of non- |
| Ν  | reference     | d year   | У      | Inter  | Co       |        | condition          | follow- |                                 | technolo | physician    |
|    | 1010101100    |          |        | venti  | ntr      | ,      |                    | up      |                                 | gy       |              |
|    |               |          |        | on     | ol       |        |                    |         |                                 |          |              |
|    |               |          |        |        |          |        |                    |         | measured BP was above target.   |          |              |
|    |               |          |        |        |          |        |                    |         | Individual BP measure-          |          |              |
|    |               |          |        |        |          |        |                    |         | ments were taken by community   |          |              |
|    |               |          |        |        |          |        |                    |         | health workers using an         |          |              |
|    |               |          |        |        |          |        |                    |         | automated BP device with        |          |              |
|    |               |          |        |        |          |        |                    |         | Bluetooth transmission          |          |              |
|    |               |          |        |        |          |        |                    |         | capability                      |          |              |
|    |               |          |        |        |          | Mean   |                    |         |                                 |          |              |
|    |               |          |        |        |          | age;   |                    |         |                                 |          |              |
|    |               |          |        |        |          | Interv |                    |         |                                 |          |              |
|    |               |          |        |        |          | ention |                    |         | Community health workers with   |          |              |
|    |               |          |        |        |          | =58.6  |                    |         | tailored behavioral             |          | Community    |
|    | Vedanthan     |          |        |        | 49       | Mean   | Those with         | 15      | communication, using smartphone | mHealth  | health       |
| 16 | et al, 2019   | 2019     | Kenya  | 469    | 1        | age;   | hypertension       | months  | technology                      | tool     | workers      |

|    |             | Publishe<br>d year | Countr | SamplesizeCountr     |                 |                  |                    |                 |                                    |                    |              |
|----|-------------|--------------------|--------|----------------------|-----------------|------------------|--------------------|-----------------|------------------------------------|--------------------|--------------|
| S. | Author      |                    |        |                      |                 | Age              | Population/disease | Durati<br>on of | Tune of Intervention               | Type of<br>eHealth | Type of non- |
| Ν  | reference   |                    | У      | Inter<br>venti<br>on | Co<br>ntr<br>ol | )                | condition          | follow-<br>up   | Type of Intervention               | technolo<br>gy     | physician    |
|    |             |                    |        |                      |                 | contro<br>l=61.3 |                    |                 |                                    |                    |              |
|    |             |                    |        |                      |                 |                  |                    |                 | CD nurse used a tablet computer    |                    |              |
|    |             |                    |        |                      |                 |                  |                    |                 | installed with the mWellcare       |                    |              |
|    |             |                    |        |                      |                 |                  |                    |                 | system to collect data on patient  |                    |              |
|    |             |                    |        |                      |                 |                  |                    |                 | history, blood pressure, blood     | Electroni          |              |
|    |             |                    |        |                      |                 |                  |                    |                 | glucose, depression, tobacco and   | с                  |              |
|    | Prabhakar   |                    |        |                      |                 |                  | Hypertension and   |                 | alcohol use, and current           | decision           |              |
|    | an et al,   |                    |        |                      | 18              | ≥30              | diabetes           | 12              | medications for a decision support | support            |              |
| 18 | 2018        | 2018               | India  | 1856                 | 42              | years            | mellitus           | months          | recommendations.                   | system             | Nurse        |
|    |             |                    |        |                      |                 |                  |                    |                 | Telemonitoring participants were   |                    |              |
|    |             |                    |        |                      |                 |                  |                    |                 | also asked to telephonically send  |                    |              |
|    |             |                    |        |                      |                 |                  |                    |                 | their BP readings to the           |                    |              |
|    | Artinian et |                    |        |                      | 19              | ≥18              |                    | 12              | intervention nurse and their care  | Telemon            |              |
| 19 | al, 2007    | 2007               | USA    | 194                  | 3               | years            | Hypertension       | months          | providers                          | itoring            | Nurse        |

|    |                            |          |          | Sample  |      |        |                    |         |                                    |           |              |
|----|----------------------------|----------|----------|---------|------|--------|--------------------|---------|------------------------------------|-----------|--------------|
|    | Author<br>and<br>reference |          |          | size    | size |        |                    | Durati  |                                    | Type of   |              |
| S. |                            | Publishe | Countr   |         |      | (vears | Population/disease | on of   | Type of Intervention               | eHealth   | Type of non- |
| Ν  |                            | d year   | У        | Inter C | Co   | )      | condition          | follow- | Type of Intervention               | technolo  | physician    |
|    |                            |          |          | venti   | ntr  |        |                    | up      |                                    | gy        |              |
|    |                            |          |          | on      | ol   |        |                    |         |                                    |           |              |
|    |                            |          |          |         |      |        |                    |         | A practice nurse-led preventive    |           |              |
|    |                            |          |          |         |      |        |                    |         | health check, a mobile application |           |              |
|    |                            |          |          |         |      |        |                    |         | and telephone coaching.            |           |              |
|    |                            |          |          |         |      |        |                    |         | A lifestyle app (mysnapp)          |           |              |
|    |                            |          |          |         |      |        |                    |         | designed to help patients and      |           |              |
|    |                            |          |          |         |      |        |                    |         | consumers to manage their health   |           |              |
|    |                            |          |          |         |      |        |                    |         | and                                | Mobile    |              |
|    | Parker et                  |          | Australi |         |      |        |                    | 6       | health coaching via the "Get       | applicati |              |
| 20 | al, 2022                   | 2022     | a        | 95      | 64   | 40–74  | BMI ≥28            | months  | Healthy" telephone coaching        | on        | Nurse        |

|                                                                                 |       |              |            | Mean difference         | Weight |
|---------------------------------------------------------------------------------|-------|--------------|------------|-------------------------|--------|
| Study                                                                           |       |              |            | with 95% CI             | (%)    |
| Up to 3 months                                                                  |       |              |            |                         |        |
| Alsaque et al, 2022                                                             |       | •            |            | -12.00 [ -19.04, -4.96] | 3.43   |
| Ma et al, 2022                                                                  |       | •            |            | -11.48 [ -14.08, -8.88] | 6.43   |
| Wong et al , 2022                                                               |       |              |            | -4.86 [ -12.42, 2.70]   | 3.17   |
| Zhai et al, 2020                                                                |       | •            | -          | -6.20 [ -9.27, -3.13]   | 6.09   |
| Heterogeneity: $\tau^2$ = 7.11, $I^2$ = 61.55%, $H^2$ = 2.60                    |       |              |            | -8.84 [ -12.34, -5.33]  |        |
| Test of $\theta_i = \theta_j$ : Q(3) = 8.50, p = 0.04                           |       |              |            |                         |        |
| 4-6 months                                                                      |       |              |            |                         |        |
| Parker et al, 2022                                                              |       |              |            | -2.20 [ -7.75, 3.35]    | 4.31   |
| Jahan et al, 2020                                                               |       | -            |            | -2.60 [ -5.61, 0.41]    | 6.14   |
| Cho et al, 2020                                                                 |       |              |            |                         | 4.54   |
| Green et al, 2014                                                               |       |              |            | -2.70 [ -8.16, 2.76]    | 4.37   |
| Heterogeneity: $\tau^2$ = 3.46, $I^2$ = 38.17%, $H^2$ = 1.62                    |       |              |            | -1.15 [ -4.09, 1.80]    |        |
| Test of $\theta_i = \theta_j$ : Q(3) = 4.90, p = 0.18                           |       |              |            |                         |        |
| 7-12 months                                                                     |       |              |            |                         |        |
| Artinian et al, 2007                                                            |       |              | •          | -3.10 [ -7.42, 1.22]    | 5.17   |
| Persall et al, 2018                                                             |       |              |            | 0.10 [ -3.33, 3.53]     | 5.83   |
| Prabhakaran et al, 2018                                                         |       |              | <b>•</b> • | -2.00 [ -3.14, -0.86]   | 7.23   |
| Sarfo et al, 2018                                                               | -     | •            |            | -6.50 [ -15.27, 2.27]   | 2.64   |
| Tobe et al, 2018                                                                |       |              |            | 0.60 [ -4.37, 5.57]     | 4.70   |
| Tian et al, 2015                                                                |       | -            | •          | -3.25 [ -5.56, -0.94]   | 6.62   |
| Vuaghan et al, 2021                                                             |       | •            |            | -6.01 [ -11.76, -0.26]  | 4.18   |
| Margolis et al, 2022                                                            |       | •            |            | -9.10 [ -12.37, -5.83]  | 5.95   |
| Heterogeneity: $\tau^2 = 7.17$ , $I^2 = 74.98\%$ , $H^2 = 4.00$                 |       | •            |            | -3.38 [ -5.72, -1.05]   |        |
| Test of $\theta_i = \theta_j$ : Q(7) = 22.67, p = 0.00                          |       |              |            |                         |        |
| > 12 months                                                                     |       |              |            |                         |        |
| Ogren et al, 2018                                                               |       | •            | -          | -6.10 [ -9.42, -2.78]   | 5.91   |
| He et al, 2017                                                                  |       | - •          | -          | -5.30 [ -6.99, -3.61]   | 6.98   |
| Vedanthan et al, 2019                                                           |       |              |            | -0.60 [ -3.37, 2.17]    | 6.31   |
| Heterogeneity: $\tau^2 = 6.58$ , $I^2 = 79.77\%$ , $H^2 = 4.94$                 |       |              |            | -4.01 [ -7.28, -0.74]   |        |
| Test of $\theta_i = \theta_j$ : Q(2) = 9.31, p = 0.01                           |       |              |            |                         |        |
| Overall                                                                         |       |              |            | -4.09 [ -5.87, -2.32]   |        |
| Heterogeneity: $\tau^2$ = 10.98, I <sup>2</sup> = 82.31%, H <sup>2</sup> = 5.65 |       |              |            |                         |        |
| Test of $\theta_i = \theta_j$ : Q(18) = 89.61, p = 0.00                         |       |              |            |                         |        |
| Test of group differences: $Q_b(3) = 11.18$ , p = 0.01                          | _     |              |            |                         |        |
|                                                                                 | -20   | -10          | 0          | 10                      |        |
| Random-effects REML model                                                       | Favou | irs interven | tion Favou | irs control             |        |

### Supplementary Figure S1: Reduction in systolic blood pressure by duration of intervention

# Supplementary Figure S2: Reduction in systolic blood pressure reduction by type of eHealth technologies

| Study                                                                 |                         | Mean difference<br>with 95% Cl | Weight |
|-----------------------------------------------------------------------|-------------------------|--------------------------------|--------|
| Decision support                                                      | :                       |                                | (/0)   |
| Persall et al. 2018                                                   |                         | 0 10 [ -3 33 3 53]             | 5 83   |
| Prabhakaran et al. 2018                                               |                         | -2 00 [ -3 14 -0 86]           | 7 23   |
| Tian et al. 2015                                                      |                         | -3 25 [ -5 56 -0 94]           | 6.62   |
| Vedanthan et al. 2019                                                 | <b>—</b>                | -0.60 [ -3.37 2.17]            | 6.31   |
| Green et al. 2014                                                     |                         | -2 70 [ -8 16, 2 76]           | 4.37   |
| Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$        |                         | -1.91 [ -2.831.00]             |        |
| Test of $\theta_i = \theta_j$ : Q(4) = 3.57, p = 0.47                 |                         |                                |        |
| Mobile Application                                                    |                         |                                |        |
| Alsaque et al, 2022                                                   |                         | -12.00 [ -19.04, -4.96]        | 3.43   |
| Ma et al, 2022                                                        |                         | -11.48 [ -14.08, -8.88]        | 6.43   |
| Parker et al, 2022                                                    |                         | -2.20 [ -7.75, 3.35]           | 4.31   |
| Sarfo et al, 2018                                                     |                         | -6.50 [ -15.27, 2.27]          | 2.64   |
| Wong et al, 2022                                                      | <b>_</b>                | -4.86 [ -12.42, 2.70]          | 3.17   |
| Cho et al, 2020                                                       |                         | 3.91 [ -1.30, 9.12]            | 4.54   |
| Heterogeneity: $r^2$ = 31.70, $I^2$ = 80.91%, $H^2$ = 5.24            |                         | -5.53 [ -10.69, -0.37]         |        |
| Test of $\theta_i = \theta_j$ : Q(5) = 33.04, p = 0.00                |                         |                                |        |
| SMS                                                                   |                         |                                |        |
| Tobe et al, 2018                                                      | <u> </u>                | — 0.60 [ -4.37, 5.57]          | 4.70   |
| He et al, 2017                                                        |                         | -5.30 [ -6.99, -3.61]          | 6.98   |
| Jahan et al, 2020                                                     |                         | -2.60 [ -5.61, 0.41]           | 6.14   |
| Zhai et al, 2020                                                      |                         | -6.20 [ -9.27, -3.13]          | 6.09   |
| Heterogeneity: $\tau^2 = 3.72$ , $I^2 = 63.37\%$ , $H^2 = 2.73$       | •                       | -3.95 [ -6.38, -1.51]          |        |
| Test of $\theta_i = \theta_j$ : Q(3) = 7.59, p = 0.06                 |                         |                                |        |
| Telemedicine                                                          |                         |                                |        |
| Artinian et al, 2007                                                  |                         | -3.10 [ -7.42, 1.22]           | 5.17   |
| Ogren et al, 2018                                                     |                         | -6.10 [ -9.42, -2.78]          | 5.91   |
| Vuaghan et al, 2021                                                   |                         | -6.01 [ -11.76, -0.26]         | 4.18   |
| Margolis et al, 2022                                                  |                         | -9.10 [ -12.37, -5.83]         | 5.95   |
| Heterogeneity: $\tau^{-} = 2.89$ , $l^{-} = 41.37\%$ , $H^{-} = 1.71$ |                         | -6.34 [ -8.94, -3.73]          |        |
| Test of $\theta_i = \theta_j$ : Q(3) = 4.90, p = 0.18                 |                         |                                |        |
| Overall                                                               | ↓ 1                     | -4.09 [ -5.87, -2.32]          |        |
| Heterogeneity: $\tau^2$ = 10.98, $I^2$ = 82.31%, $H^2$ = 5.65         |                         |                                |        |
| Test of $\theta_i = \theta_j$ : Q(18) = 89.61, p = 0.00               |                         |                                |        |
| Test of group differences: $Q_b(3) = 12.48$ , p = 0.01                |                         |                                |        |
|                                                                       | -20 -10 0               | 10                             |        |
| Tanuom-ellecis REIVIL model                                           | ravours intervention Fa | vours control                  |        |

Decision support is defined as those tools and apps that support clinial decision and used by non-physician health workers such as lectronic health record tools, smartphone for community health workers or electronic decision support system Mobile application are the smart-phone based application used by articipants for selfmonitorng

SMS, short text message service

Telemedicine is defined as telephone based coaching, video-conferncing and phone based follow-ups other than text messaging

Supplementary Figure S3: Reduction in systolic blood pressure reduction by type of country income

| Study                                                            |                |                     |          | Mean difference<br>with 95% Cl | Weight<br>(%) |
|------------------------------------------------------------------|----------------|---------------------|----------|--------------------------------|---------------|
| High-income countries                                            |                |                     | Ξ        |                                |               |
| Artinian et al, 2007                                             |                | . <u> </u>          | •        | -3.10 [ -7.42, 1.22]           | 5.17          |
| Ogren et al, 2018                                                |                | •                   | - 1      | -6.10 [ -9.42, -2.78]          | 5.91          |
| Parker et al, 2022                                               |                |                     | •        | -2.20 [ -7.75, 3.35]           | 4.31          |
| Persall et al, 2018                                              |                |                     |          | — 0.10 [ -3.33, 3.53]          | 5.83          |
| Tobe et al, 2018                                                 |                |                     | •        | 0.60 [ -4.37, 5.57]            | 4.70          |
| Wong et al, 2022                                                 |                |                     |          | -4.86 [ -12.42, 2.70]          | 3.17          |
| Vuaghan et al, 2021                                              |                | •                   |          | -6.01 [ -11.76, -0.26]         | 4.18          |
| Margolis et al, 2022                                             |                | •                   | Ē        | -9.10 [ -12.37, -5.83]         | 5.95          |
| Cho et al, 2020                                                  |                |                     |          | 3.91 [ -1.30, 9.12]            | 4.54          |
| Green et al, 2014                                                |                |                     | •        | -2.70 [ -8.16, 2.76]           | 4.37          |
| Heterogeneity: $\tau^2 = 10.65$ , $I^2 = 67.11\%$ , $H^2 = 3.04$ |                | •                   |          | -3.06 [ -5.59, -0.52]          |               |
| Test of $\theta_i = \theta_j$ : Q(9) = 29.44, p = 0.00           |                |                     | Ē        |                                |               |
| Low-income countries                                             |                |                     | Ē        |                                |               |
| Alsaque et al, 2022                                              |                | -                   | Ē        | -12.00 [ -19.04, -4.96]        | 3.43          |
| Prabhakaran et al, 2018                                          |                |                     |          | -2.00 [ -3.14, -0.86]          | 7.23          |
| Sarfo et al, 2018                                                | _              | •                   |          | 6.50 [ -15.27, 2.27]           | 2.64          |
| Jahan et al, 2020                                                |                | _                   | •        | -2.60 [ -5.61, 0.41]           | 6.14          |
| Tian et al, 2015                                                 |                | _                   | •        | -3.25 [ -5.56, -0.94]          | 6.62          |
| Vedanthan et al, 2019                                            |                |                     |          | -0.60 [ -3.37, 2.17]           | 6.31          |
| Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 0.00\%$ , $H^2 = 1.00$   |                |                     | <u>ا</u> | -2.31 [ -3.21, -1.40]          |               |
| Test of $\theta_i = \theta_j$ : Q(5) = 10.57, p = 0.06           |                |                     | Ē        |                                |               |
| Middle-income countries                                          |                |                     | Ē        |                                |               |
| Ma et al, 2022                                                   |                | •                   |          | -11.48 [ -14.08, -8.88]        | 6.43          |
| He et al, 2017                                                   |                | - •                 |          | -5.30 [ -6.99, -3.61]          | 6.98          |
| Zhai et al, 2020                                                 |                | • •                 | -        | -6.20 [ -9.27, -3.13]          | 6.09          |
| Heterogeneity: $\tau^2 = 9.70$ , $I^2 = 86.58\%$ , $H^2 = 7.45$  |                |                     | Ē        | -7.61 [ -11.42, -3.81]         |               |
| Test of $\theta_i = \theta_j$ : Q(2) = 15.57, p = 0.00           |                |                     | Ē        |                                |               |
| Overall                                                          |                |                     | Ē        | -4.09 [ -5.87, -2.32]          |               |
| Heterogeneity: $\tau^2$ = 10.98, $I^2$ = 82.31%, $H^2$ = 5.65    |                |                     | Ē        |                                |               |
| Test of $\theta_i = \theta_j$ : Q(18) = 89.61, p = 0.00          |                |                     | Ē        |                                |               |
| Test of group differences: $Q_b(2) = 7.18$ , p = 0.03            |                |                     |          |                                |               |
| Random-effects RFML model                                        | -20<br>Favours | -10<br>intervention | Ó        | 10<br>Favours control          |               |

Supplementary Figure S4: Reduction in systolic blood pressure reduction by involvement of physician intervention

| Study                                                           |     |                    |          |               | Mean diff.<br>with 95% Cl | Weight<br>(%) |
|-----------------------------------------------------------------|-----|--------------------|----------|---------------|---------------------------|---------------|
| No active physician intervention included                       |     |                    | -        |               |                           |               |
| Alsaque et al, 2022                                             |     | <b>—</b>           | ÷        |               | -12.00 [-19.04, -4.96]    | 3.43          |
| Ma et al, 2022                                                  |     |                    | :        |               | -11.48 [-14.08, -8.88]    | 6.43          |
| Artinian et al, 2007                                            |     |                    | <b>—</b> |               | -3.10 [ -7.42, 1.22]      | 5.17          |
| Parker et al, 2022                                              |     |                    | •        |               | -2.20 [ -7.75, 3.35]      | 4.31          |
| Sarfo et al, 2018                                               |     |                    |          | _             | -6.50 [-15.27, 2.27]      | 2.64          |
| Tobe et al, 2018                                                |     | +                  | •        | <b> </b>      | 0.60 [ -4.37, 5.57]       | 4.70          |
| Wong et al, 2022                                                |     |                    |          | _             | -4.86 [-12.42, 2.70]      | 3.17          |
| Jahan et al, 2020                                               |     |                    |          |               | -2.60 [ -5.61, 0.41]      | 6.14          |
| Tian et al, 2015                                                |     |                    | H.       |               | -3.25 [ -5.56, -0.94]     | 6.62          |
| Margolis et al, 2022                                            |     | •                  | -        |               | -9.10 [-12.37,-5.83]      | 5.95          |
| Zhai et al, 2020                                                |     |                    | ÷        |               | -6.20 [ -9.27, -3.13]     | 6.09          |
| Cho et al, 2020                                                 |     |                    | -        |               | 3.91 [ -1.30, 9.12]       | 4.54          |
| Green et al, 2014                                               |     |                    | ÷        | _             | -2.70 [ -8.16, 2.76]      | 4.37          |
| Heterogeneity: $\tau^2$ = 14.87, $I^2$ = 78.84%, $H^2$ = 4.73   |     | -                  |          |               | -4.59 [ -7.07, -2.11]     |               |
| Test of $\theta_i = \theta_j$ : Q(12) = 57.43, p = 0.00         |     |                    |          |               |                           |               |
| In combination with physician intervention                      |     |                    |          |               |                           |               |
| Ogren et al, 2018                                               |     |                    | . :      |               | -6.10 [ -9.42, -2.78]     | 5.91          |
| Persall et al, 2018                                             |     | -                  | •        | <u> </u>      | 0.10 [ -3.33, 3.53]       | 5.83          |
| Prabhakaran et al, 2018                                         |     | 1                  | •        |               | -2.00 [ -3.14, -0.86]     | 7.23          |
| He et al, 2017                                                  |     | - • -              | ÷        |               | -5.30 [ -6.99, -3.61]     | 6.98          |
| Vedanthan et al, 2019                                           |     | -                  | •        | -             | -0.60 [ -3.37, 2.17]      | 6.31          |
| Vuaghan et al, 2021                                             |     | <b>-</b>           |          |               | -6.01 [-11.76,-0.26]      | 4.18          |
| Heterogeneity: $\tau^2 = 4.84$ , $I^2 = 77.75\%$ , $H^2 = 4.49$ |     |                    |          |               | -3.12 [ -5.25, -0.99]     |               |
| Test of $\theta_i = \theta_j$ : Q(5) = 20.39, p = 0.00          |     |                    |          |               |                           |               |
| Overall                                                         |     | •                  |          |               | -4.09 [ -5.87, -2.32]     |               |
| Heterogeneity: $\tau^2$ = 10.98, $I^2$ = 82.31%, $H^2$ = 5.65   |     |                    |          |               |                           |               |
| Test of $\theta_i = \theta_j$ : Q(18) = 89.61, p = 0.00         |     |                    | :        |               |                           |               |
| Test of group differences: $Q_b(1) = 0.78$ , p = 0.38           |     |                    |          |               |                           |               |
| Pandam affaata PEMI madal                                       | -20 | -10                | Ó        | 1             | 0                         |               |
|                                                                 |     | avours interventio | лі Н     | avours contro | 1                         |               |

| Study                                                            |                                              | Mean difference<br>with 95% Cl | Weight<br>(%) |
|------------------------------------------------------------------|----------------------------------------------|--------------------------------|---------------|
| Up to 3 months                                                   | :                                            |                                |               |
| Alsaque et al, 2022                                              |                                              | -3.51 [ -7.25, 0.23]           | 4.49          |
| Ma et al, 2022                                                   | E                                            | -6.70 [ -8.48, -4.92]          | 0.33          |
| Wong et al, 2022                                                 |                                              | -1.03 [ -5.38, 3.32]           | 3.75          |
| Zhai et al, 2020                                                 |                                              | 1.00 [ -0.93, 2.93]            | 7.51          |
| Heterogeneity: $\tau^2$ = 3.48, $I^2$ = 46.27%, $H^2$ = 1.86     |                                              | -0.94 [ -3.72, 1.85]           |               |
| Test of $\theta_i = \theta_j$ : Q(3) = 5.11, p = 0.16            |                                              |                                |               |
| 4-6 months                                                       |                                              |                                |               |
| Parker et al, 2022                                               |                                              | -5.10 [ -8.36, -1.84]          | 5.16          |
| Jahan et al, 2020                                                |                                              | -1.70 [ -3.36, -0.04]          | 8.04          |
| Cho et al, 2020                                                  |                                              | 1.08 [ -2.39, 4.55]            | 4.86          |
| Green et al, 2014                                                |                                              | -0.60 [ -4.45, 3.25]           | 4.35          |
| Heterogeneity: $\tau^2 = 3.34$ , $I^2 = 60.46\%$ , $H^2 = 2.53$  |                                              | -1.66 [ -4.00, 0.67]           |               |
| Test of $\theta_i = \theta_j$ : Q(3) = 6.95, p = 0.07            |                                              |                                |               |
| 7-12 months                                                      |                                              |                                |               |
| Artinian et al, 2007                                             | ÷ <b>P</b>                                   | 0.30 [ -2.26, 2.86]            | 6.33          |
| Prabhakaran et al, 2018                                          |                                              | -1.50 [ -2.22, -0.78]          | 9.54          |
| Sarfo et al, 2018                                                |                                              | — 3.20 [ -2.44, 8.84]          | 2.64          |
| Tobe et al, 2018                                                 |                                              | -1.00 [ -4.02, 2.02]           | 5.55          |
| Vuaghan et al, 2021                                              |                                              | -2.95 [ -6.62, 0.72]           | 4.58          |
| Margolis et al, 2022                                             | -                                            | 0.30 [ -0.90, 1.50]            | 8.86          |
| Heterogeneity: $\tau^2 = 0.73$ , $I^2 = 47.03\%$ , $H^2 = 1.89$  | •                                            | -0.64 [ -1.75, 0.47]           |               |
| Test of $\theta_i = \theta_j$ : Q(5) = 10.56, p = 0.06           |                                              |                                |               |
| >12 months                                                       |                                              |                                |               |
| Ogren et al, 2018                                                |                                              | -3.50 [ -5.69, -1.31]          | 7.02          |
| He et al, 2017                                                   |                                              | -4.20 [ -5.33, -3.07]          | 8.97          |
| Vedanthan et al, 2019                                            |                                              | 1.20 [ -0.47, 2.87]            | 8.01          |
| Heterogeneity: $\tau^2 = 8.03$ , $I^2 = 92.20\%$ , $H^2 = 12.83$ |                                              | -2.17 [ -5.53, 1.18]           |               |
| Test of $\theta_i = \theta_j$ : Q(2) = 28.13, p = 0.00           |                                              |                                |               |
| Overall                                                          |                                              | -1.25 [ -2.31, -0.18]          |               |
| Heterogeneity: $\tau^2$ = 2.97, $I^2$ = 75.69%, $H^2$ = 4.11     |                                              |                                |               |
| Test of $\theta_i = \theta_j$ : Q(16) = 63.81, p = 0.00          |                                              |                                |               |
| Test of group differences: $Q_b(3) = 1.17$ , p = 0.76            |                                              |                                |               |
| Random-effects REML model F                                      | -10 -5 0 5<br>avours intervention Favours co | 10<br>ontrol                   |               |

### Supplementary Figure S5: Reduction in diastolic blood pressure reduction by duration of intervention

| Study                                                           | Mean differen<br>with 95% Cl                    | l <b>ce Weight</b><br>I (%) |
|-----------------------------------------------------------------|-------------------------------------------------|-----------------------------|
| Decision support                                                |                                                 |                             |
| Prabhakaran et al, 2018                                         | -1.50 [ -2.22, -0                               | ).78] 9.54                  |
| Vedanthan et al, 2019                                           | 1.20 [ -0.47, 2                                 | 2.87] 8.01                  |
| Green et al, 2014                                               | -0.60 [ -4.45, 3                                | 3.25] 4.35                  |
| Heterogeneity: $\tau^2$ = 1.96, $I^2$ = 72.98%, $H^2$ = 3.70    | -0.37 [ -2.30, 1                                | .57]                        |
| Test of $\theta_i = \theta_j$ : Q(2) = 8.50, p = 0.01           |                                                 |                             |
| Mobile application                                              |                                                 |                             |
| Alsaque et al, 2022                                             | -3.51 [ -7.25, 0                                | ).23] 4.49                  |
| Ma et al, 2022                                                  | -6.70 [ -8.48, -4                               | .92] 0.33                   |
| Parker et al, 2022                                              | -5.10 [ -8.36, -1                               | .84] 5.16                   |
| Sarfo et al, 2018                                               | 3.20 [ -2.44, 8                                 | 3.84] 2.64                  |
| Wong et al, 2022                                                | -1.03 [ -5.38, 3                                | 3.32] 3.75                  |
| Cho et al, 2020                                                 | 1.08 [ -2.39, 4                                 | 1.55] 4.86                  |
| Heterogeneity: $\tau^2 = 6.08$ , $I^2 = 55.07\%$ , $H^2 = 2.23$ | -1.54 [ -4.32, 1                                | .24]                        |
| Test of $\theta_i = \theta_j$ : Q(5) = 10.80, p = 0.06          |                                                 |                             |
| SMS                                                             |                                                 |                             |
| Tobe et al, 2018                                                | -1.00 [ -4.02, 2                                | 2.02] 5.55                  |
| He et al, 2017                                                  | -4.20 [ -5.33, -3                               | 3.07] 8.97                  |
| Jahan et al, 2020                                               | -1.70 [ -3.36, -0                               | ).04] 8.04                  |
| Zhai et al, 2020                                                | 1.00 [ -0.93, 2                                 | 2.93] 7.51                  |
| Heterogeneity: $\tau^2 = 4.33$ , $I^2 = 84.44\%$ , $H^2 = 6.43$ | -1.60 [ -3.86, 0                                | ).67]                       |
| Test of $\theta_i = \theta_j$ : Q(3) = 23.08, p = 0.00          |                                                 |                             |
| Telemedicine                                                    |                                                 |                             |
| Artinian et al, 2007                                            | 0.30 [ -2.26, 2                                 | 2.86] 6.33                  |
| Ogren et al, 2018                                               | -3.50 [ -5.69, -1                               | .31] 7.02                   |
| Vuaghan et al, 2021                                             | -2.95 [ -6.62, 0                                | ).72] 4.58                  |
| Margolis et al, 2022                                            |                                                 | .50] 8.86                   |
| Heterogeneity: $\tau^2$ = 3.04, $I^2$ = 71.30%, $H^2$ = 3.48    | -1.25 [ -3.33, 0                                | ).82]                       |
| Test of $\theta_i = \theta_j$ : Q(3) = 10.94, p = 0.01          |                                                 |                             |
| Overall                                                         | -1.25 [ -2.31, -0                               | .18]                        |
| Heterogeneity: $\tau^2 = 2.97$ , $I^2 = 75.69\%$ , $H^2 = 4.11$ |                                                 |                             |
| Test of $\theta_i = \theta_j$ : Q(16) = 63.81, p = 0.00         |                                                 |                             |
| Test of group differences: $Q_b(3) = 0.85$ , p = 0.84           | I =                                             |                             |
| -10<br>Random-effects REML model Favor                          | ) -5 0 5 10<br>Irs Intervention Favours Control |                             |

### Supplementary Figure S6: Reduction in diastolic blood pressure reduction by type of eHealth

technologies

Decision support is defined as those tools and apps that support clinial decision and used by non-physician health workers such as lectronic health record tools, smartphone for community health workers or electronic decision support system Mobile application are the smart-phone based application used by articipants for selfmonitorng

SMS, short text message service

Telemedicine is defined as telephone based coaching, video-conferncing and phone based follow-ups other than text messaging

| Study                                                           |                |                    |        |                     | Mean difference<br>with 95% Cl | Weight<br>(%) |
|-----------------------------------------------------------------|----------------|--------------------|--------|---------------------|--------------------------------|---------------|
| High-income countries                                           |                |                    | -      |                     |                                |               |
| Artinian et al, 2007                                            |                | -                  | -      |                     | 0.30 [ -2.26, 2.86]            | 6.33          |
| Ogren et al, 2018                                               |                |                    | ÷.     |                     | -3.50 [ -5.69, -1.31]          | 7.02          |
| Parker et al, 2022                                              |                | •                  | ÷.     |                     | -5.10 [ -8.36, -1.84]          | 5.16          |
| Tobe et al, 2018                                                |                |                    | •      | -                   | -1.00 [ -4.02, 2.02]           | 5.55          |
| Wong et al, 2022                                                |                |                    | •      |                     | -1.03 [ -5.38, 3.32]           | 3.75          |
| Vuaghan et al, 2021                                             |                |                    |        |                     | -2.95 [ -6.62, 0.72]           | 4.58          |
| Margolis et al, 2022                                            |                |                    | -      |                     | 0.30 [ -0.90, 1.50]            | 8.86          |
| Cho et al, 2020                                                 |                | -                  | -      | <u> </u>            | 1.08 [ -2.39, 4.55]            | 4.86          |
| Green et al, 2014                                               |                |                    | •      |                     | -0.60 [ -4.45, 3.25]           | 4.35          |
| Heterogeneity: $\tau^2 = 2.34$ , $I^2 = 56.49\%$ , $H^2 = 2.30$ |                |                    |        |                     | -1.30 [ -2.71, 0.10]           |               |
| Test of $\theta_i = \theta_j$ : Q(8) = 18.92, p = 0.02          |                |                    |        |                     |                                |               |
| Low-income countries                                            |                |                    |        |                     |                                |               |
| Alsaque et al, 2022                                             | -              | •                  |        |                     | -3.51 [ -7.25, 0.23]           | 4.49          |
| Prabhakaran et al, 2018                                         |                |                    | E.     |                     | -1.50 [ -2.22, -0.78]          | 9.54          |
| Sarfo et al, 2018                                               |                |                    | 1      |                     | - 3.20 [ -2.44, 8.84]          | 2.64          |
| Jahan et al, 2020                                               |                |                    | H.     |                     | -1.70 [ -3.36, -0.04]          | 8.04          |
| Vedanthan et al, 2019                                           |                |                    | -      | F                   | 1.20 [ -0.47, 2.87]            | 8.01          |
| Heterogeneity: $\tau^2$ = 2.06, $I^2$ = 72.04%, $H^2$ = 3.58    |                | •                  |        |                     | -0.81 [ -2.44, 0.82]           |               |
| Test of $\theta_i = \theta_j$ : Q(4) = 12.72, p = 0.01          |                |                    |        |                     |                                |               |
| Middle-income countries                                         |                |                    |        |                     |                                |               |
| Ma et al, 2022                                                  |                |                    | Ē      |                     | -6.70 [ -8.48, -4.92]          | 0.33          |
| He et al, 2017                                                  |                | - • -              | Ē      |                     | -4.20 [ -5.33, -3.07]          | 8.97          |
| Zhai et al, 2020                                                |                |                    |        | <b>—</b>            | 1.00 [ -0.93, 2.93]            | 7.51          |
| Heterogeneity: $\tau^2$ = 11.24, $I^2$ = 89.69%, $H^2$ = 9.70   |                |                    | $\geq$ |                     | -1.96 [ -6.60, 2.68]           |               |
| Test of $\theta_i = \theta_j$ : Q(2) = 20.85, p = 0.00          |                |                    |        |                     |                                |               |
| Overall                                                         |                | •                  |        |                     | -1.25 [ -2.31, -0.18]          |               |
| Heterogeneity: $\tau^2$ = 2.97, $I^2$ = 75.69%, $H^2$ = 4.11    |                |                    | Ē      |                     |                                |               |
| Test of $\theta_i = \theta_j$ : Q(16) = 63.81, p = 0.00         |                |                    |        |                     |                                |               |
| Test of group differences: $Q_b(2) = 0.33$ , p = 0.85           |                |                    |        | 1                   |                                |               |
| Random-effects RFML model                                       | -10<br>Favours | -5<br>Intervention | 0<br>F | 5<br>avours Control | 10                             |               |

### Supplementary Figure S7: Reduction in diastolic blood pressure reduction by country income

| Study                                                        |     |                  |                    |                             | Mean diff. Weight<br>with 95% Cl (%) |
|--------------------------------------------------------------|-----|------------------|--------------------|-----------------------------|--------------------------------------|
| No active physician intervention included                    |     |                  |                    | -                           |                                      |
| Alsaque et al, 2022                                          |     |                  | _                  |                             | -3.51 [ -7.25, 0.23] 4.49            |
| Ma et al, 2022                                               |     |                  |                    |                             |                                      |
| Artinian et al, 2007                                         |     |                  |                    | -                           | 0.30 [ -2.26, 2.86] 6.33             |
| Parker et al, 2022                                           |     |                  | -                  |                             | -5.10 [ -8.36, -1.84] 5.16           |
| Sarfo et al, 2018                                            |     |                  |                    | -                           | — 3.20 [ -2.44, 8.84] 2.64           |
| Tobe et al, 2018                                             |     |                  |                    |                             | -1.00 [ -4.02, 2.02] 5.55            |
| Wong et al, 2022                                             |     |                  |                    | <b></b>                     | -1.03 [ -5.38, 3.32] 3.75            |
| Jahan et al, 2020                                            |     |                  |                    |                             | -1.70 [ -3.36, -0.04] 8.04           |
| Margolis et al, 2022                                         |     |                  |                    | •                           | 0.30 [ -0.90, 1.50] 8.86             |
| Zhai et al, 2020                                             |     |                  |                    | -                           | 1.00 [ -0.93, 2.93] 7.51             |
| Cho et al, 2020                                              |     |                  |                    |                             | 1.08 [ -2.39, 4.55] 4.86             |
| Green et al, 2014                                            |     |                  |                    |                             | -0.60 [ -4.45, 3.25] 4.35            |
| Heterogeneity: $\tau^2$ = 1.50, $I^2$ = 45.79%, $H^2$ = 1.84 |     |                  |                    | •                           | -0.66 [ -1.78, 0.46]                 |
| Test of $\theta_i = \theta_j$ : Q(11) = 19.54, p = 0.05      |     |                  |                    | ÷                           |                                      |
| In combination with physician intervention                   |     |                  |                    |                             |                                      |
| Ogren et al, 2018                                            |     |                  |                    |                             | -3.50 [ -5.69, -1.31] 7.02           |
| Prabhakaran et al, 2018                                      |     |                  |                    |                             | -1.50 [ -2.22, -0.78] 9.54           |
| He et al, 2017                                               |     |                  |                    |                             | -4.20 [ -5.33, -3.07] 8.97           |
| Vedanthan et al, 2019                                        |     |                  |                    |                             | 1.20 [ -0.47, 2.87] 8.01             |
| Vuaghan et al, 2021                                          |     |                  | -                  |                             | -2.95 [ -6.62, 0.72] 4.58            |
| Heterogeneity: $\tau^2$ = 4.16, $I^2$ = 88.90%, $H^2$ = 9.01 |     |                  |                    | •                           | -2.12 [ -4.11, -0.14]                |
| Test of $\theta_i = \theta_j$ : Q(4) = 32.50, p = 0.00       |     |                  |                    |                             |                                      |
| Overall                                                      |     |                  |                    | •                           | -1.25 [ -2.31, -0.18]                |
| Heterogeneity: $\tau^2$ = 2.97, $I^2$ = 75.69%, $H^2$ = 4.11 |     |                  |                    | -                           |                                      |
| Test of $\theta_i = \theta_j$ : Q(16) = 63.81, p = 0.00      |     |                  |                    |                             |                                      |
| Test of group differences: $Q_b(1) = 1.57$ , p = 0.21        |     | 1                |                    |                             |                                      |
| Random-effects REML model                                    | -30 | -20<br>Favours ( | -10<br>CHW interve | 0<br><sub>ention</sub> Favo | 10<br>urs control                    |

# Supplementary Figure S8: Reduction in diastolic blood pressure reduction by engagement of physician intervention

Supplementary Figure S9A: Contoured enhanced plot for publication bias for systolic blood pressure



Supplementary Figure S9B: Contoured enhanced plot for publication bias for diastolic blood pressure

