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Abstract
Aim: To investigate the cytotoxic effects of tamoxifen on the breast cancer cell line (MCF7). 

Methods: The cytotoxic effects of tamoxifen on MCF7 cells were investigated using caspase-9 activity and high content 

screening assays. Apoptosis mechanisms following tamoxifen treatment were also investigated. 

Results: The most significant cytotoxic effect of tamoxifen in MCF7 cells was a half-maximal inhibitory concentration 

(IC50) of 4.506 µg/mL. A significant increase in caspase-9 activity was also observed when MCF7 cells were treated with 

tamoxifen (5 µg/mL). Furthermore, increased cell membrane permeability, cytochrome c level, and nuclear intensity were 

observed with tamoxifen (100 µg/mL) compared with doxorubicin (20 µg/mL) treatment. However, a noticeable decrease 

in cell viability and mitochondrial membrane permeability was observed with tamoxifen (100 µg/mL) treatment compared 

with doxorubicin (20 µg/mL) as a positive control. 

Conclusion: Tamoxifen showed in vitro  cytotoxic effects in MCF7 cells as demonstrated by high-content screening and 

caspase-9 activity assays. Tamoxifen inhibits estrogen mechanisms, although toxic effect was observed.
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INTRODUCTION
Cancer is a common cause of death nationwide[1], with the number of new cases of cancer in the US was 
estimated to be ca. 1.7 million in 2016[2]. Although the number of cancer deaths was estimated at more than 



half a million in the US in 2016, this number has dropped by ca. 23% since 1991[2]. Health care for cancer 
patients requires extensive financial resources. For example, the health care costs for cancer patients in 
the US were ca. $156 billion in 2010, and are expected to increase further to $156 billion by 2020[3]. Breast 
cancer is projected to be among the most common cancer[3], and is the most frequent malignant neoplasm 
in women[4].

Metastasis is the main cause of death from breast cancer and is responsible for 90% of total breast cancer 
deaths[5,6]. Although progress has been made in cancer treatment and techniques used to detect its 
progression, breast cancer continues to have a high mortality among women[7,8]. Radiation, chemotherapy, 
and surgery can be used to control tumor growth, but these options need to be effective to manage breast 
cancer metastases[9-12]. Protease enzymes such as caspases exhibit cysteine protease activity and play an 
important role in apoptosis or programmed cell death[13,14].

Caspases are capable of cleaving various proteins in different cells[15]. Such processes can control the 
activation and/or inactivation of other proteins. In addition, caspases participate in nuclear fragmentation, 
chromatin condensation, creation of active signaling molecules, cell contraction, and other biochemical 
changes associated with apoptosis[15-17]. Various types of caspases are classified primarily based on their 
roles in apoptosis and mode of action[16]. For example, caspase-8 and -9 are known as initiator caspases, 
while caspase-3, -6, and -7 are known as executioner caspases[16]. Progress has been made in the early 
diagnosis and treatment of cancer, and in particular, breast cancer[18-22]. The MCF7 cancer cell line can be 
used to sensitively detect the response of estrogen[23,24]. We have previously investigated the cytotoxicity and 
anticancer activities of several aryl phosphonates on MCF7 cells[25]. Recently, we also reported the cytotoxic 
activities of anastrozole in several cancer cell lines[26,27]. In the current study, we report the cytotoxic effects 
of tamoxifen in MCF7 cancer cells.

METHODS
Data
Data were collected using Excel (Microsoft Office 2010, Microsoft Corp., Redmond, WA). SPSS software 
(IBM Software, version 22) was used to analyze the data.

Cell culture
The MCF7 cancer cell line was purchased from the American Type Culture Collection (ATCC, Manassas, 
VA, USA). Cells were cultured in Dulbecco’s Modified Eagle medium (Life Technologies, Inc., Rockville, 
MD, USA) supplemented with heat-inactivated fetal bovine serum (10%; Sigma-Aldrich, St. Louis, MO, 
USA), streptomycin, penicillin (1%), and glutamine (2 mmol/L).

Biological activity
Methylthiazol tetrazolium (MTT) assays were carried out at the Biotechnology Research Centre, Al-Nahrain 
University, Baghdad, Iraq between October 2016 and February 2017. Caspase-9 and high content screening 
(HCS) assays were carried out at the Natural Product Research and Drug Discovery Centre, Department of 
Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia between October 2016 
and February 2017. The MTT and HCS assays were performed as described previously[28].

Cytotoxicity assay (MTT assay)
The MTT assay was carried out in the MCF7 cell line to determine the anticancer activity of tamoxifen. 
Tamoxifen was dissolved in dimethyl sulfoxide (DMSO) to produce a stock solution and serial dilutions were 
prepared (0.78125-200 μg/mL). Tamoxifen (100 μL) and doxorubicin, as a control, were added to MCF7 cells 
and the cell cultures were incubated for 24 h in a CO

2
 incubator. MTT (5 μg/mL) was added to each well and 

the plates were incubated further for 1-4 h. The media was removed and DMSO was added to each well to 
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solubilize the formazan crystals. The absorbance was measured by the use of a Hidex Chameleon microplate 
reader (LabLogic Systems Ltd., Sheffield, United Kingdom) at 575 nm.

High-content screening
A Thermo Scientific Cellomics multi-parameter cytotoxicity 3 kit (Thermo Scientific, Japan) was 
used for the simultaneous detection of cell viability, nuclear intensity, cell membrane permeability, 
mitochondrial membrane potential, and cytochrome c level in the MCF7 cell line. The kit contained 
cytochrome c as a primary antibody, DyLight™ 649 conjugated goat anti-mouse IgG, Hoechst dyes, wash 
buffer (10× Dulbecco’s phosphate buffered saline [PBS]), permeabilization buffer (10× Dulbecco’s PBS 
with 1% Triton® X-100), and a blocking buffer (10×). The distribution and intensity of f luorescence within 
cells were imaged (n = 5) using an HCS system (Thermo Scientific, Japan). The system was attached 
to a computerized imaging microscope equipped with a Zeiss 40× (0.75 NA) Plan-Neofluar objective 
lens. Cells were treated with tamoxifen for 24 h followed by the addition of mitochondrial membrane 
potential (MMP) and the cell permeability dyes and incubated for 30 min at 37 °C. Cells were fixed and 
permeabilized using a standard procedure[28].

Hoechst 33342 staining assay
MCF7 cells were cultured in 6-well plates for 24 h. Changes in MCF7 cell nuclear morphology were observed 
using a Zeiss Axio Observer microscope (Thermo Scientific, Japan).

RESULTS
Cytotoxic effects of tamoxifen on MCF7 cell viability
The cytotoxic effects of tamoxifen were measured in the MCF7 cell line using the MTT method[26]. MCF7 
cells were treated with various concentrations of tamoxifen (200, 100, 50, 25, 12.5, 6.25, 3.125, 1.5625, and 
0.78125 μg/mL) for 24 h at 37 °C. The viability rate of MCF7 cells treated with tamoxifen is shown in Figure 1, 
and it was found to be 15.28%, 15.60%, 15.29%, 14.58%, 14.42%, 27.65%, 69.65%, 85.73%, and 100%, respectively. 
Tamoxifen cytotoxicity thus increased with increasing concentration, and the highest cytotoxic activity (15.60%) 
was observed at a concentration of 100 µg/mL with an IC

50
 of 4.506 µg/mL.

Effects of tamoxifen on MCF7 cell caspase-9 activity
A significant increase in the mean activity of caspase-9 (105,428 ± 24,628) was observed in MCF7 cells 
treated with tamoxifen (5 µg/mL), at an IC

50
 of 4.506 µg/mL [Figure 2].

Cytotoxic effects of tamoxifen on MCF7 cells using HCS
The cytotoxicity of tamoxifen in MCF7 cells over 24 h was evaluated by HCS. Five tamoxifen concentrations 
(100, 50, 25, 12.5, and 6.25 µg/mL) were used to detect changes in MCF7 cell viability, nuclear intensity, 
membrane permeability, MMP, and cytochrome c. Table 1 shows the changes in these 5 parameters in 
addition to the least significant differences (LSD). The highest significant changes in valid cell count, nuclear 
intensity, MMP, and cytochrome c were observed at a tamoxifen concentration of 100 µg/mL, compared 
with doxorubicin (20 µmol/L) as a positive control (P ˂ 0.01). Lower concentrations of tamoxifen (12.5 and 
6.25 µg/mL) did not cause noticeable changes in the evaluated parameters and results were similar to those 
obtained for untreated cells (negative control).

Cell viability
As shown in Figure 3A, a significant reduction in MCF7 cell viability was observed with increasing tamoxifen 
concentration over 24 h. The percentage cell viability in cells treated with tamoxifen was 33.19% (100 µg/mL), 
23.8% (50 µg/mL), 26.46% (25 µg/mL), 18.76% (12.5 µg/mL), and 16.11% (6.25 µg/mL). The differences between 
the results obtained for the positive control and those for all other experimental groups were statistically 
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significant. The most significant reduction (P = 0.0101) in cell count (854.5) compared with doxorubicin 
(519.5) was observed with 100 µg/mL tamoxifen (P = 0.0003).

Nuclear intensity
MCF7 cell nuclear intensity [Figure 3B] was significantly increased (64.55%; P = 0.0005) with 100 µg/mL tamoxifen 
compared with doxorubicin (20 μg/mL) as a positive control. Nuclear intensities following treatment with 
other tamoxifen concentrations (50-6.25 µg/mL) showed no significant difference (25.49%-4.10%) compared with 
the control (P < 0.0001). Similar results were previously obtained following treatment of MCF7 cells with 
anastrozole[27].
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Figure 1. Cytotoxicity effect of tamoxifen on MCF7 cells (n  = 3). MCF7: breast cancer cell line
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Figure 2. Caspase-9 activity in the MCF7 cells (n  = 3). MCF7: breast cancer cell line

Table 1. Cytotoxic effects of tamoxifen on cellular parameters by HCS

Concentration 
(µg/mL)

HCS parameter (mean ± SD)
CV NI CP MMP CC

Untreated cells (0) 1279 ± 5.657a 402.0 ± 16.97d 72.00 ± 8.485c,d 384.0 ± 41.01b 212.5 ± 31.82d

6.25 1073 ± 66.47b 418.5 ± 3.536d 85.50 ± 7.778c 376.5 ± 47.38b 211.5 ± 26.16d

12.5 1039 ± 86.97b 422.5 ± 3.536d 70.00 ± 18.38c,d 416.0 ± 18.38a 225.0 ± 14.14d

25 940.5 ± 16.26b,c 407.5 ± 10.61d 61.50 ± 21.92d 418.5 ± 16.26a 191.0 ± 36.77d

50 974.0 ± 73.54b,c 504.5 ± 7.778c 86.00 ± 4.243c 299.0 ± 11.31c 283.5 ± 23.33c

100 854.5 ± 181.7c 661.5 ± 67.18b 112.0 ± 12.73b 174.0 ± 24.04d 421.0 ± 55.15b

Doxorubicin 519.5 ± 89.80d 951.5 ± 54.45a 187.5 ± 17.68a 99.00 ± 5.657e 650.0 ± 70.71a

LSD value* 178.371 48.227 22.194 46.842 48.053

MCF7: breast cancer cell line; MMP: mitochondrial membrane potential; CV: cell viability; NI: nuclear intensity; CP: cell permeability; 
CC: cytochrome c; LSD: least significant difference. Doxorubicin (20 μg/mL) was used as a positive control; superscript letters a, b, c, d, 
and e indicate significant differences (P  < 0.01) within the same column. Percentage inhibition rate was calculated as OD sample - OD 
medium/OD control - OD medium μ 100, where OD is the optical density. *Significant differences (P  < 0.01)

Page 4 of 9                                    Hassan et al. J Unexplored Med Data 2018;3:3  I  http://dx.doi.org/10.20517/2572-8180.2017.25



Cell membrane permeability
MCF7 cell membrane permeability [Figure 3C] was significantly increased (55.56%; P = 0.0072) following 
treatment with 100 µg/mL tamoxifen, compared with doxorubicin (20 μg/mL). MCF7 cell membrane 
permeability at other tamoxifen concentrations (50-6.25 µg/mL) showed no significant difference (25.49%-4.10%) 
compared with control (P = 0.0004).

Mitochondrial membrane permeability
MCF7 MMP intensity increased with increasing tamoxifen concentration [Figure 3D]. The highest MMP 
intensity (54.68%) was detected at tamoxifen dose of 100 µg/mL compared to that of the standard (P < 0.0001).

Cytochrome c
Treatment of MCF7 cells with tamoxifen led to a dose-dependent increase in the intensity of cytochrome 
c released [Figure 3E]. At a dose of 100 μg/mL of tamoxifen, cytochrome c intensity was 64.80% compared 
with the intensity obtained with the control (20 μg/mL doxorubicin). There were no significant differences 
between the different concentrations of tamoxifen, and all values were significantly lower than the positive 
control (P < 0.0001).

Figure 3. Effect of tamoxifen treatment on (A) cell viability, (B) nuclear intensity, (C) cell membrane permeability, (D) mitochondrial 
membrane potential, and (E) cytochrome c in MCF7 cells (n  = 5). MCF7: breast cancer cell line
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Images of MCF7 cells treated with tamoxifen (100 μg/mL), doxorubicin (20 μg/mL) as a positive control, 
and culture medium as a negative control for 24 h at 37 °C are shown in Figure 4. Cells were stained with 
Hoechst 33342 dye (excitation 330/emission 420), which enables monitoring of cell loss, cell membrane 
permeability dye (excitation 491/emission 509), MMP dye (excitation 552/emission 576) for mitochondrial 
membrane potential changes, and goat anti-mouse secondary antibody conjugated with DyLightTM 649 for 
cytochrome c release. Tamoxifen (100 μg/mL) stained the MCF7 cells, and the level of staining was similar 
to that of doxorubicin (20 μg/mL).

DISCUSSION
Caspase-9 activity directly correlates with the toxic effects of tamoxifen. Tamoxifen can affect the cell 
membranes, causing rapid changes in membrane permeability. Such effects can lead to cell death and a 
reduction in cell viability[29]. In addition, tamoxifen rapidly inhibits estrogen-dependent protein kinase C 
in MCF7 cells[30] and induces rapid mitochondrial death in estrogen receptor-positive MCF7 cells[31]. In this 
study, a significant decrease in the mean caspase-9 activity was observed when MCF7 cells were treated 
with tamoxifen (10 µg/mL). Tamoxifen is a potent antagonist of estrogen and induces apoptosis in estrogen 
receptor-positive cells. However, at concentrations higher than 5 μg/mL, it shows estrogenic behavior and 
acts as an agonist of estrogen[32]. The tamoxifen-induced activation of the intrinsic caspase pathway in breast 
cancer cells was statistically significant (P < 0.0001 at 5 µg/mL). Compelling evidence has shown that the 
majority of cytotoxic drugs initiate apoptosis by triggering the cytochrome c/Apaf-1/caspase-9-dependent 
pathway through the mitochondrion[33].

Cell viability is an important toxicity assay parameter and is directly associated with the toxic effects of 
a drug[34]. Tamoxifen induced a reduction in cell viability in MCF7 cells. The reduction was found to be 

Figure 4. Multiparameter cytotoxicity analysis of MCF7 cells treated with tamoxifen. MCF7: breast cancer cell line; MMP: mitochondrial 
membrane potential
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dependent on cell density and tamoxifen concentration. Such effects may be attributed to cytostatic and/or 
cytocide effects that might down-regulate telomerase activity[35].

Changes in cell membrane permeability are often associated with a toxic or apoptotic response[36]. In 
addition, cytotoxicity can lead to the loss of cell membrane integrity[36]. Tamoxifen can alter the composition 
and physical order of lipids within intracellular and plasma membranes. Such effects lead to a change in 
plasma membrane permeability due to second messenger formation through the phospholipase pathway and 
the sustained activation of protein kinase C[37]. The increased plasma membrane permeability, along with the 
sustained protein kinase C activity, can affect the binding of rod outer segments[37].

The intensity of MCF7 mitochondrial membrane permeability increased with increasing tamoxifen 
concentration, possibly because cells underwent either necrosis or apoptosis accompanied by changes in 
mitochondrial function. Such changes could lead to the loss of mitochondrial membrane potential and the 
release of cytochrome c from the mitochondria[38].

Cytochrome c intensity also increased with increasing tamoxifen concentration. Caspase-9 activation may 
lead to caspase-3 formation, which in turn causes apoptosis and increases extracellular signal-regulated 
kinase (ERK) phosphorylation[39]. The findings of the present study suggest that tamoxifen has cytotoxic 
effects in MCF7 cells. Cytotoxicity was apparent at 100 µg/mL of tamoxifen, with a 33.19% cell loss and a 
64.55% change in the nuclear morphology. 

Cytochrome c plays an important role in apoptosis and can be released into the cytosol from the 
mitochondria[40]. MCF7 cells treated with tamoxifen showed strong nuclear staining for cytochrome c 
compared with doxorubicin [Figure 4]. Clearly, the use of tamoxifen to treat breast cancer cells can imitate 
the cytochrome c from the mitochondria to the cytosol.

In conclusion, tamoxifen exhibits cytotoxic effects in MCF7 breast cancer cells. The effect of tamoxifen on 
apoptosis was shown as an increase in caspase-9 activity at a concentration of 5 µg/mL and IC

50
 of 4.506 µg/mL. 

The HCS assay showed that tamoxifen has toxic effects in MCF7 cells at 100 μg/mL in a dose-dependent manner, 
with increased cell nuclear intensity, membrane permeability, and cytochrome c observed. Furthermore, cell 
viability was decreased, along with a change in mitochondrial membrane potential.
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