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Abstract
Surgery faces a paradigm shift since it has developed rapidly in recent decades, becoming a high-tech discipline. 
Increasingly powerful technological developments such as modern operating rooms, featuring digital and 
interconnected equipment and novel imaging as well as robotic procedures, provide several data sources resulting 
in a huge potential to improve patient therapy and surgical outcome by means of Surgical Data Science. The 
emerging field of Surgical Data Science aims to improve the quality of surgery through acquisition, organization, 
analysis, and modeling of data, in particular using machine learning (ML). An integral part of surgical data science 
is to analyze the available data along the surgical treatment path and provide a context-aware autonomous action 
by means of ML methods. Autonomous actions related to surgical decision-making include preoperative decision 
support, intraoperative assistance functions, as well as robot-assisted actions. The goal is to democratize surgical 
skills and enhance the collaboration between surgeons and cyber-physical systems by quantifying surgical 
experience and making it accessible to machines, thereby improving patient therapy and outcome. The article 
introduces basic ML concepts as enablers for autonomous actions in surgery, highlighting examples for such 
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actions along the surgical treatment path.

Keywords: Surgical data science, robot-assisted surgery, artificial intelligence in surgery, cognitive surgical 
robotics, computer-aided surgery

INTRODUCTION
Surgical complications are the third leading contributor to death worldwide[1]. According to current studies, 
around nine million serious complications occur in an estimated 300 million operations each year[2]. Surgery 
faces a paradigm shift since it has developed rapidly in recent decades, becoming a high-tech discipline. 
Increasingly powerful technological developments such as modern operating rooms (OR), featuring digital 
and interconnected equipment and novel imaging as well as robotic procedures, provide a huge potential to 
improve patient therapy and surgical outcome. Although such devices and data are available, the human 
ability to use these possibilities, especially in a complex and time-critical situation such as surgery, is limited 
and is extremely dependent on the experience of the surgical staff[3].

Machine learning (ML), in particular deep learning, has recently seen major success in the medical domain, 
such as prediction of kidney failure[4], detection of molecular alterations on histopathology slides[5], or skin 
lesion classification[6]. The field of surgery is, however, not affected in a similar fashion yet. In surgery, 
unlike the aforementioned examples, we have procedural multimodal data in a dynamic environment 
including the patient, different devices and sensors in the OR, and the OR team; of course, the high 
variability of the patient (e.g., anatomy, tumor localization, comorbidities, etc.) and surgical team (e.g., 
surgical procedure, surgical strategy, surgical experience, etc.) characteristics have to be considered as well. 
This poses several challenges regarding technical infrastructure for data acquisition, storage and access, data 
annotation and sharing, data analytics, and aspects related to clinical translation as identified by the Surgical 
Data Science Initiative[7]. The international Surgical Data Science Initiative (http://www.surgical-data-
science.org/) was founded in 2015 with the mission to pave the way for artificial intelligence (AI) success 
stories in surgery by “improving the quality of interventional healthcare and its value through capturing, 
organization, analysis, and modeling of data”[8]. An integral part of surgical data science is to analyze the 
available data along the surgical treatment path and provide a context-aware autonomous action by means 
of ML methods. Autonomous actions related to surgical decision-making include preoperative decision 
support, intraoperative assistance functions, as well as robot-assisted actions. The goal is to democratize 
surgical skills and enhance the collaboration between surgeons and cyber-physical systems by quantifying 
surgical experience and making it accessible to machines, thereby improving patient therapy and outcome.

In the following, basic ML concepts will be introduced as enablers for autonomous actions in surgery, 
highlighting examples for such actions along the surgical treatment path. Moreover, we will discuss ongoing 
challenges in the field of AI-based surgery. Figure 1 provides an overview of the importance of ML in 
autonomous actions in surgery.

MACHINE LEARNING AS AN ENABLER FOR AUTONOMOUS ACTIONS 
AI is a research area in computer science working on developing intelligent agents in the form of computer 
programs that aim to mimic the cognitive functions of humans, that is, by acting or by thinking like a 
human. ML is a sub-field of AI that focuses on imitating the human ability to learn. For this, ML relies 
mainly on data and using algorithms to learn from this data and draw conclusions, such as how to act in a 
traffic situation or distinguish healthy tissue from cancerous tissue. ML comprises different algorithms that 
can be used to learn from data. ML algorithms are generally divided into three different categories based on 
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Figure 1. Autonomous actions in surgery along the surgical treatment path based on machine learning and clinical integration as a 
prerequisite.

their level of supervision: unsupervised, supervised, and reinforcement learning[9].

Supervised learning
Supervised learning methods require labeled data. This means that a label has to be provided for each data 
point in a dataset, such as an image, time series data, or sound. Based on the labeled data, supervised 
learning methods will then learn a function that maps data points onto those labels. Labeled data is often 
acquired through manual annotation by experts, though approaches for automatically generating labels 
from unlabeled data exist. An example might be that a laparoscopic image showing a liver might be 
associated with the label “liver”, while an image of a “kidney” should be associated with the label “kidney”. 
Supervised learning methods analyze the data to determine patterns that will allow the algorithm to 
generalize from the given, labeled data to new data, thereby being able to assign given, unlabeled data the 
correct label. Supervised learning methods can deal with symbolic labels (classification), such as “liver” or 
“non-cancerous tissue,” and with numerical sub-symbolic labels (regression), such as temperatures, size, or 
age. Some examples of supervised learning methods are random forests, neural networks, or support vector 
machines[9]. In surgery, supervised learning may be used to detect the presence of instruments or organs in 
laparoscopic surgery videos or predict survival after cancer surgery.

Unsupervised learning
In contrast to supervised learning methods, unsupervised learning methods do not require labeled data. 
Unsupervised learning methods aim to discover patterns in unlabeled data, with the goal of learning useful 
representations of the data. Such representations could then be used to determine irregularities in data (e.g., 
to discover fraud in credit card data using a clustering method such as k-means) or as a pre-processing step 
for supervised learning (e.g., by realigning data to make it easier separable using the Principal Component 
Analysis)[9]. In surgery, unsupervised learning may be used to detect deviations from a standardized 
treatment path that may lead to complications.
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Reinforcement learning
Algorithms for supervised learning learn from annotated examples, meaning that data must be labeled in 
order to be accessible to the algorithms. Labeling a sufficient amount of data is not always feasible. Consider 
teaching an agent how to play a complex game like chess, which possesses an almost immeasurable number 
of possible combinations of board states (about 1040). It is infeasible to collect labels for anything but an 
insignificant fraction of these states, describing what might be a “good” or a “bad” move in each case. An 
alternative for learning to navigate such complex problems is reinforcement learning. In contrast to 
supervised learning, reinforcement learning does not require labeled data; instead, it depends on rewards, 
which occur depending on what actions (e.g., a chess move) are taken in an environment (e.g., a game 
board). Rewards are awarded after an action was taken, for example, a reward of “1” after the winning move 
in a game of chess or of “0” after the losing move. The aim of reinforcement learning is then to learn a 
policy that enables the agent to take actions that should maximize the cumulative reward[10,9]. In surgery, 
reinforcement may be used to train surgical robots how to perform context-aware autonomous actions in 
laparoscopic surgery.

Neural networks and deep learning
Artificial neural networks are a subset of ML inspired by biological neurons and the connections they form. 
Artificial neural networks generally consist of multiple layers of artificial neurons, where neurons are 
connected to neurons of one another. These layers can be divided into input layers, output layers, and 
intermediate layers (also called hidden layers), which connect the input to the output [see Figure 1]. If the 
input is an image, the first layer could, for example, learn to detect straight lines in the image, and the next 
layer might use those lines to determine if certain geometric primitives are visible. Depending on the flow of 
data, neural networks can be divided into feed-forward networks [see Figure 2 Left], in which the data only 
flows into the direction of the output, and recurrent networks [see Figure 2 Right], in which data from 
hidden and output layers can flow back into the network as input. Recurrent networks therefore possess an 
internal state, or memory, while feed-forward networks are stateless[9,11]. For analyzing data in which spatial 
relationships exist, such as time series data, images, videos, and volume data, a specialized layer type, the 
convolutional layer, was developed[12,13]. These layers incorporate spatial information on data points (e.g., 
which pixels in an image are neighbors), and make it possible to analyze these data points within their 
spatial context, providing a powerful tool for data analysis. Neural networks that include such convolutional 
layers are referred to as convolutional neural networks (CNNs).

Neural networks with multiple hidden layers are considered deep neural networks and form the basis of 
“deep learning”. Increasing the depth of a neural network can learn more complex features and model more 
complex problems. While more depth can potentially increase the performance of neural networks, it also 
leads to more open parameters that must be learned, which means that more data is required to train the 
network.

As deep learning requires vast amounts of data for training, new approaches to utilizing unlabeled data 
during training are actively being developed. One approach to employing unlabeled data is so-called “self-
supervised learning”. This generally is a two-step approach. First, a neural network is trained to solve a 
secondary task on unlabeled data by leveraging labels inherent to the data. Examples for such a task could 
be learning to colorize grayscale laparoscopic images[14] or determining if and how far an image was 
rotated[15]. In a second step, these neural networks are then trained further on labeled data for the primary 
task, such as segmenting instruments in laparoscopic images or identifying objects in natural images. The 
rationale behind this approach is that by first solving the secondary task, the network has to learn to extract 
features that are useful in solving the primary task, thereby boosting performance.
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Figure 2. Left: Feed-forward neural network with two hidden layers; Right: recurrent neural network.

A different approach to coping with limited data that current research focuses on is few-shot learning. In 
few-shot learning, the model is tasked with learning to classify new data by only seeing a few training 
examples. One way of accomplishing this is via meta-learning, where a model is trained on several different 
tasks simultaneously to help solve unrelated tasks[16].

This ability to model complex problems makes deep neural networks extremely powerful and versatile, so 
they are currently state of the art for many problems in ML, such as computer vision tasks like image and 
video recognition, natural language processing, and reinforcement learning[9,17].

Uncertainty & explainable AI
Two of the bigger issues in applying ML algorithms, especially deep learning, to problems in critical fields, 
such as surgery, are determining how certain (or uncertain) the algorithm is of its prediction and 
determining why the algorithm arrived at a certain prediction. For example, an algorithm trained to 
distinguish between organs in laparoscopic surgery, such as “liver'' and “kidney.” While the algorithm can 
solve this problem with high accuracy, its behavior is unpredictable when given an image of anything else, 
such as images from a urological surgery where the prostate can be seen. Standard deep neural networks, for 
example, generally do not have an output option for “I don’t know” and will therefore sort any given data 
into the categories that it is aware of. To help deal with such errors, methods for dealing with uncertainty in 
deep learning have been developed (e.g., Bayesian deep learning)[18]. When talking about uncertainty 
quantification, literature distinguishes between epistemic and aleatoric uncertainty. Epistemic uncertainty 
arises due to inappropriate or incomplete training data (i.e., ignorance of our model towards certain data 
points), a problem that can be solved with more training. The prior example is a case of epistemic 
uncertainty. Aleatoric uncertainty, on the other hand, arises from stochastic processes (e.g., measurement 
errors or sensor noise) and cannot be combated with more data[19]. The third type of uncertainty that is 
gaining increasing attention in the literature is the potential inherent ambiguity of a problem. State-of-the-
art ML approaches typically provide so-called point estimates (i.e., one solution) and neglect the fact that 
the problem may be inherently ambiguous. For example, matching intra-operative limited-view data to 
preoperative data may have two different, mathematically similarly plausible solutions. For instance, such 
problems can be addressed with invertible neural networks[20,21].

Due to the complexity of deep learning models, their output is not easily interpretable, rendering them 
something akin to a black box. Recent research in the area of eXplainable AI (XAI) aims to make the 
predictions of ML models, especially deep learning models, and the reasoning behind those predictions 
more transparent. Here different approaches are being explored, for example generating text-based 
explanations of the results, visual explanation techniques that attempt to visualize how a model reached a 
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conclusion, or via explanation by example, where representative examples are used to illustrate the 
reasoning of a model[22].

AUTONOMOUS ACTIONS IN SURGERY
Autonomous actions related to surgical decision-making include preoperative decision support, 
intraoperative assistance functions as well as robot-assisted actions. Examples for such actions along the 
surgical treatment path are given and discussed in the following.

Preoperative decision support 
In medicine, clinical decisions are made on the basis of standardized procedures, evidence-based medicine 
and individual experience of the physicians. The goal is a personalized therapeutic pathway for each patient, 
the results of which currently depend largely on the experience of the treating physicians. In surgery, the 
multitude and variability of diagnostic data and the potentially disruptive nature of major surgical 
procedures pose special challenges to healthcare professionals as compared to other medical fields. The 
research field of Surgical Data Science addresses this issue in order to achieve objective patient-specific 
therapy through data-driven treatment using ML[8].

In this context, decision support systems have two main tasks: balancing the variable level of knowledge and 
experience of surgeons through objective and patient-specific analysis of patient data and highlighting 
clinically relevant correlations that are usually not recognized by physicians. Relevant questions can be, for 
example, if an oncological tumor resection with a required multivisceral resection should be performed at 
all or if an alternative oncological therapy promises a better outcome in a multimorbid patient with locally 
advanced cancer.

Currently, work on decision support is mainly limited to risk stratification of surgical treatment or its 
complications[23]. However, such risk calculations can only be considered as an adjunct to the physician-
patient discussion and indication for surgery. On the contrary, ML techniques enable the processing of even 
more comprehensive patient data sets, which can be transferred into mathematical models and enriched 
with medical background knowledge to recommend or advise against a specific therapy.

In non-surgical specialties, there are already a large number of medical publications investigating AI in 
terms of prognosis or therapy recommendations, showing that such systems already have clinical relevance. 
In particular, there are numerous studies on the superiority of AI-based algorithms over physicians in the 
evaluation of radiological image data, such as in mammography[24].

In contrast, studies on ML and AI in surgical oncology are mainly limited to the feasibility to predict 
oncologic outcomes[25], postoperative complications[26], and prediction of mortality and survival[27]. 
Comparative studies focused on improving treatment decision-making are few[28]. For example, Rice et al.[28] 
investigated survival after esophagectomy with and without neoadjuvant or adjuvant therapy to recommend 
multimodality therapy. However, data from previous studies were only retrospectively analyzed without 
prospective validation. Furthermore, successful clinical translation requires the integration of ML 
algorithms into a user-friendly application that is integrated into the clinical workflow [Figure 1]. As long as 
the algorithms explored are only in the form of text line programs, they will not be used by physicians and 
will not help improve treatment.

There have been commercial attempts to address this problem, most famously, IBM Watson for Oncology 
(WFO), which learns from test cases and experts of the Memorial Sloan Kettering Cancer Center. However, 
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studies have revealed a low concordance between the WFO treatment recommendations and actual surgical 
treatments, which may contribute to the lack of clinical trials to date[29]. On the other hand, Google’s Deep 
Mind was criticized for its lack of transparency and remaining problems regarding privacy and power 
concerns[30]. Both cases highlight the complexity of challenges regarding processing data and the complexity 
of surgical decision-making in general, which represent a hurdle even for the biggest players in the tech 
industry. Thus, with respect to "data-driven decision support," there are currently an increasing number of 
publications linking surgical oncology data with ML. However, the work that actually addresses clinically 
relevant decision support is scarce, and the integration of AI systems into the clinic is still in its infancy. 
Such work, however, has the potential to fundamentally change surgical oncology treatment decisions by 
making them not only evidence-based but also data-based in the future.

Intraoperative assistance
As data monitoring in the modern OR grows more complex, traditional processing techniques may not be 
able to handle the large amounts of generated data[31]. ML not only allows for the processing of large data 
sets, but also for combining the different data streams obtained during the treatment of a surgical patient, 
that is, individual patient data, device data, and case knowledge[7]. The following section gives an overview 
of the intraoperative use of ML to assist surgeons. It covers the ML guided streamlining of OR management 
and scheduling to increase efficiency and reduce costs, the recognition of operation phases and surgical 
workflow as a basis for automated actions and context-aware displays, intraoperative decision support 
through identification of risk structures or case retrieval, optical biopsy by way of advanced imaging and the 
potential advantages of XAI solutions.

OR management, including reduction of turnover times, remains a well-researched topic, which is 
unsurprising as the OR can account for up to 40% of a hospital’s costs and 60-70% of its revenue[32]. Current 
research suggests that more dynamic, parallel work models that overlap workflow steps can increase 
productivity and reduce turnover times, especially in short-to-medium duration processes, leading to 
increased cost-effectiveness[33,34]. For example, overlapping patient induction increased 15-40% of operations 
and OR utilization effectiveness up to 81% in a computer simulation[35], while role definition, task allocation, 
and sequencing decreased turnover time in robotic surgery[36]. Currently, OR time is assigned by scheduled 
case duration, which is usually either determined based on previous case duration averages or surgeon 
estimates. As these methods have limited accuracy, intraoperative monitoring using ML methods to 
accurately predict case duration could allow for more flexible scheduling and better team organization[37]. In 
clinical practice, the correct prediction of procedure duration could, for example, ease the coordination of 
surgical and anaesthesiological decisions like the timing of the last application of muscle relaxant and the 
reduction of narcotic medication, further shortening turnover times. ML-based models for remaining 
operation time prediction already exist (e.g., using both video and surgical device data)[38]. Zhao et al.[39] 
compared multiple ML methods, specifically multivariable linear regression, ridge regression, lasso 
regression, random forest, boosted regression tree, and neural network, resulting in a better performance of 
all methods than the scheduled case duration.

For most potential intraoperative applications of ML like cognitive camera control[40] or context-aware 
display of risk structures[41], automated recognition of surgical phases is key to placing the data in its context. 
Here, surgical phases are defined as higher-level tasks that constitute an entire surgical procedure and can 
be identified through data inputs like surgical video[42] or instrument use[43]. The ML models used for this 
purpose are generally based on supervised learning, in which human annotators apply labels to surgical 
videos, upon which the ML algorithms for computer vision are then trained. In an analysis of 40 
laparoscopic sleeve gastrectomies, Hashimoto et al.[44] reported 92% accuracy in segmentation and 
identification of steps when compared to the ground truth of surgical annotation. The authors also pose that 
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automatic segmentation and labeling of video footage by computer vision may greatly facilitate the training 
and coaching of young surgeons, as it does not require time-intensive manual viewing and editing.

Because of the importance of annotated data for ML-based workflow recognition, further research into 
workflow and skill analysis depends on the creation of large, publicly available multicenter data sets like the 
widely used Cholec80 dataset[45] or the HeiChole Benchmark[46].

While risk stratification usually takes place in the preoperative setting[47], intraoperative surgical decision-
making remains a key element contributing to postoperative outcome, frequency of adverse events and 
patient safety. Human cognitive errors can contribute to up to half of recorded adverse events in surgery 
and are most commonly observed during the intraoperative phase[48], and decision-making skills may vary 
with surgical experience[49,50]. In a systematic review not specific to surgery, computerized clinical decision 
support systems (i.e., diagnostic systems, reminder systems, disease management systems, and drug-dosing 
or prescribing systems) improved practitioner performance in the majority (64%) of assessed studies[51]. 
Similarly, the employment of ML in the OR may be able to enhance the surgical decision-making process to 
allow for fast and accurate responses to patient risks through real-time assistance.

One such approach is the automated identification of risk structures using computer vision. Artificial neural 
networks have achieved 94.2% accuracy in distinguishing the uterine artery from the ureter in laparoscopic 
hysterectomy[52], and can be trained to assess the critical view of safety in laparoscopic cholecystectomy[53], 
which depends on the visual identification of hepatobiliary anatomy before transection to prevent serious 
adverse events like accidental bile duct injury[54]. Furthermore, approaches for computer vision tasks can be 
used to improve surgical safety through vigilance in the OR, for example, by tracking the surgical team or 
analyzing the video stream of the laparoscope, assessment of case difficulty, and behavior analysis of the 
surgical team[42].

Especially in difficult surgical cases, ML-based systems could provide assistance in the form of case retrieval, 
whereby surgeons are presented with images or video data from previous cases similar to the operation 
currently being performed[55].

There are also potential applications for ML to provide an intraoperative pathology assessment by in vivo 
optical biopsy. While ex vivo frozen histopathological examination is the current gold standard and is likely 
to remain as such, several advanced imaging techniques are evolving to supplement the process. This could 
potentially prove useful in assisting the surgeon’s decision whether to biopsy and analyze tissue, provide an 
intraoperative quality assessment, as well as a preliminary diagnosis when the prompt pathological 
examination is not possible, as is oftentimes the case on weekends and during night shifts.

Techniques that are currently evolving include probe-based confocal laser endomicroscopy (pCLE), 
hyperspectral imaging, optical coherence tomography, and contrast-enhanced ultrasound. pCLE is a 
biophotonics technique that enables direct visualization of tissue at a microscopic level. For example, Li 
et al.[56] used a CNN and a long short-term memory architecture to distinguish between glioblastoma and 
meningioma. Hyperspectral imaging is the combination of spectroscopy and digital imaging, which 
analyzes across a wide spectrum of light instead of detecting only red-green-blue colors for each pixel. A 
modified CNN achieved 92% accuracy in distinguishing thyroid carcinoma from normal tissue on 
hyperspectral imaging images of ex vivo fresh surgical specimens[57]. Optical coherence tomography is a 
noninvasive cross-sectional imaging technique using low-coherence light. Hou et al.[58] used a deep learning 
approach to identify metastatic lymph nodes and reported 90.1% accuracy. CEUS is an ultrasound-guided 



Page 72Wagner et al. Art Int Surg 2022;2:64-79 https://dx.doi.org/10.20517/ais.2022.02

technique in which a hyperechoic intravenously injected contrast agent unmasks areas of heightened 
perfusion. Ritschel et al.[59] applied a support vector machine trained on CEUS image data to detect the 
resection margins of glioblastoma in neurosurgery.

The majority of the above-mentioned possible applications of ML in the OR are still far from clinical 
routine use[60]. Part of the hesitation to employ ML in this context may be the rare cases in which ML results 
in false output due to interpretation of data out of its context[61], which could prove dangerous when applied 
to patients[62]. Mistrust of ML algorithms may be high, especially in cases of “black box” models, whereby the 
processes between the input and output of data are not transparent to the health care practitioners using 
them or the engineers designing them. In contrast, XAI presents the user with the reasons for its 
predictions, which would allow the surgeons to make independent judgment calls on whether they consider 
the information reliable. The XAI based warning-system developed by Lundberg et al.[63] for hypoxemia 
during surgical procedures provides a prediction 5 minutes before hypoxemia occurs and lists the 
incorporated risk factors like comorbidities and vital sign abnormalities in real time. The above-mentioned 
CEUS guided examination of resection margins in glioblastoma provides color maps for its prediction 
probabilities[59], allowing surgeons to interpret the results visually.

ML-based systems in the intraoperative setting show promise to markedly improve the OR environment by 
streamlining workflow processes, supporting decision-making and increasing surgical precision and safety. 
Much of the current research focuses on technology without immediate clinical applicability[64]. Thus, 
implementing these concepts still has several challenges to overcome and will require not only XAI, but also 
a proper interaction design with a focus on clinical workflow integration to realize clinical applications of AI 
that provide real-time assistance without distracting from the operating field.

Robot-assisted actions
Historically, the first autonomous robotic system, according to Moustris et al.[65], was developed by Harris 
et al.[66] and published in 1997. Called Probot, this robot was designed for autonomous transurethral 
resection of the prostate (TURP) after manual insertion using a resectoscope. Ultrasound scanning was used 
for the surgeon to plan and visualize the cutting path. In dry lab tests using a plastic model and a potato as a 
prostate replacement, the system’s accuracy was judged similar to human execution and repeatable. Ten 
TURP procedures were therefore executed on humans successfully. However, the system only automated 
this procedure-specific task, all the while relying heavily on human planning.

Certainly, autonomous actions in surgery would be cognitive surgical robots that perceive their 
environment and use ML to perform a context-aware action. In the following, we give an overview of 
different - preclinical - approaches to automate tasks without tissue contact, such as cameraguidance, or 
different tissue manipulation tasks such as knot-tying, suturing, grasping, and holding.

To automate camera guidance in laparoscopic surgery, Wagner et al.[40] designed a cognitive camera control 
and used supervised ML to improve the camera guidance quality based on annotations which improved 
duration as well as the proportion of good guidance quality in a phantom setup. Hutchinson et al.[67] trained 
a CNN to identify the region of interest during robotic surgery, which was evaluated in a dry-lab 
experiment of pick and place tasks. Rivas-Blanco et al.[68] designed a laparoscopic camera similar to a 360° 
security camera and used ML to track the operator’s instruments, tested in an in vivo pig experiment.

Regarding autonomous manipulation, a number of works have been published on the automation of knot-
tying and suturing. The aim of Mayer et al.[69] was for four industrial robot arms to learn to tie surgical 
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knots. The interface used a recurrent neural network and generated smooth loop trajectories. Padoy and 
Hager used hidden Markov models to identify the suturing task on the da Vinci telemanipulator (Intuitive 
Surgical, Sunnyvale, California, USA), and subtasks were automated with a focus on thread-pulling. The 
transition between manual mode and autonomous control was designed to be seamless and used 
augmented reality to show the planned paths[70]. Knoll et al.[71] used programming by demonstration based 
on the psychological concept of “scaffolding”, that is, the decomposition of complex tasks into simpler task 
primitives. During task execution, these learned primitives were instantiated with methods from fluid 
simulation for smooth trajectories in knot-tying on a cadaver heart[71]. Van den Berg et al.[72] found that 
performing multiple iterations of a manually demonstrated action improved the end result of a robotic 
knot-tying task. The trajectory was optimized using iterative learning to achieve 7-10x speed compared to 
manual knot-tying[72]. For suturing, Mikada et al.[73] trained an autonomous robot grasper with deep 
learning to identify the master’s needle push into tissue. It then estimated when to pull the needle out of the 
tissue and performed the pull accordingly, correcting its trajectory if failing. It succeeded in a dry lab setting 
90% of times after a maximum of three tries[73]. Lu et al.[74] used deep learning to segment surgical knot tying 
data in order to perform the grasping of a suture thread autonomously. It was tested in simulation as well as 
with the da Vinci Research Kit (Intuitive Foundation, Sunnyvale, California, USA)[74]. Schwaner et al.[75] 
automated the whole actual stitching task successfully with learning from the demonstration on a silicone 
model. To this end, they constructed an action library of subtasks by learning dynamic movement 
primitives from human demonstrations and, during execution, registered them to anatomical landmarks 
using computer vision[75]. Chiu et al.[76] made an reinforcement learning (RL) agent to train the regrasping of 
the needle during suturing in a simulation (97% success rate) as well as in a dry lab experiment (73.3% 
success rate).

Another manipulation task is grasping and holding the tissue to provide the tissue tension necessary for 
surgical dissection. With the circle cutting exercise of fundamentals of laparoscopic surgery[77] in mind, 
Thananjeyan et al.[78] used deep RL to train a policy for tensioning a cloth for clean cutting at multiple points 
of the circle and tested it successfully in a real-world experiment. Nguyen et al.[79] (2019) used deep RL to 
train a policy for tensioning soft tissue to cut forms other than a circle and tested it in a simulation. Pedram 
et al.[80] used RL (Q-Learning) to make a policy to learn tissue manipulation without a model and with 
limited demonstrator input. The policies were trained and tested in a simulation and got better with more 
iterations, reaching an average error of less than 10 pixels between the ideal points and the estimated 
points[80]. Shin et al.[81] used RL to train a policy to learn tissue manipulation in a simulation. RL was directly 
compared to learning from demonstration, and the latter was shown to be the better learning alternative. 
Also, its technical feasibility was proven in a dry lab experiment with a Raven IV (Applied Dexterity, Seattle, 
Washington, USA)[81].

Complementing the above-described grasping part of fundamentals of laparoscopic surgery, Xu et al.[82] 
trained a serpentine surgical robot with learning from demonstration to perform the cloth cutting exercise. 
Here they demonstrated the use of ML to steer serpentine robots, which is otherwise a complicated task due 
to their multiple degrees of freedom[82].

Apart from that, different tasks have been addressed by single studies. For suctioning of blood, Barragan 
et al.[83] designed an automated suction arm that was proven to reduce the workload of the operator and the 
task completion time in a phantom bleeding environment with the da Vinci Research Kit. It used deep 
learning to recognize the bleeding, but the validation was limited to feasibility with n = 1. For palpation, 
Nichols and Okamura manufactured a silicone model with a hard inclusion and used a haptic device to 
estimate where this inclusion was. Five different modes were tested, with three of them using ML as a basis. 
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None of them were superior to the manual mode in specificity; however, they outperformed the manual 
mode in sensitivity[84]. For surgical debridement, Kehoe et al.[85] used learning from demonstration and 
achieved good results on a low-resolution phantom; however, the performance was slower than 
debridement performed by a human. For needle insertion, Kim et al.[86] automated the tool navigation task 
to insert a needle inside an eye phantom. With ML, the depth of the eye could be estimated by measuring 
the eyeball’s curvature, therefore making the navigation safer than when operated by hand (a 2D goal was 
enhanced to 3D). Also, the trajectory had less deviation than the mean surgeon tremor, making it superior 
in accuracy. Similarly, Keller et al.[87] trained a policy with learning from demonstration and RL for a corneal 
needle to be autonomously guided with optical coherence tomography inside human cadaver corneas and 
showed superior path accuracy compared to manual insertion and path planning only. Baek et al.[88] used RL 
(Q-learning) for collision avoidance path planning in a very simplified cholecystectomy simulation. A 
policy was trained to move to the gallbladder while avoiding obstacles, achieving a notable learning curve 
over 5000 iterations in the simulation.

For automating bowel anastomoses, advances to in vivo experiments were made recently by Shademan 
et al.[89]. A system called STAR with a KUKA LWR 4+ (KUKA GmbH, Augsburg, Germany) holding an 
Endo360° suture device (Corporis Medical, Maastricht, Netherlands) used special near-infrared and 3D 
tracking of specially marked anatomical landmarks for autonomous path planning and execution of sutures. 
STAR was successfully tested for feasibility in an in vivo pig experiment (n = 4) and was more consistent in 
regard to suture spacing than the open, manual laparoscopic and robot-assisted methods in an ex vivo 
porcine experiment. While this work did not make use of ML yet, to execute the same task with the same 
robotic system complemented by robotic camera guidance, Saeidi et al.[90] recently additionally trained a U-
Net based CNN. This enabled the system to identify necessary landmarks without path planning markers 
that also adapted to breathing patterns. The new STAR system yielded encouraging results in regard to 
consistency and leak-free suturing.

As an assistive approach to human-robot-collaboration, Berthet-Rayne et al.[38] presented a framework 
system on the Raven II, which aimed to combine human contextual awareness with robotic accuracy. They 
combined a threshold-based task segmentation from demonstrations paired with learning continuous 
hidden Markov models of these tasks to support movement of the instruments either with haptic guidance 
or with automated movement. The completion time and traveled distance were superior compared to 
manual task execution.

Outside of surgery, Ning et al.[91] used RL to teach an ultrasound robot how much force to exert on an 
unknown ultrasound phantom. It then performed a pre-defined trajectory and achieved a “completeness of 
[...] 98.3%” while using a similar skin area in comparison with a manual approach. However, the stability of 
the RL agent remained to be improved, especially because of its short training time.

In summary, the translation of autonomous surgical robotics into a clinically relevant setting remains to be 
seen, illustrated by the fact that most novel approaches are being tested in a simulation or a dry lab 
environment only, with few making a breakthrough to in vivo or cadaver experiments. Meanwhile, the last 
2-4 years have also seen a growing number of ML approaches other than learning from demonstration 
applied to autonomous surgical tasks emerge, which overall had encouraging results. Thus, it is only a 
matter of time until ML’s advancements in sub-tasks add up to fully automated tasks.
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DISCUSSION AND CONCLUSION
Data-driven autonomous actions along the surgical treatment path rely on interpreting surgical data with 
ML methods. However, the integration of AI systems into the clinical workflow to support clinically 
relevant decisions and improve patient outcomes is still in its infancy and requires a close collaboration of 
surgeons, computer scientists and industry leaders. Clinical translation from bench to bedside is often 
associated with a valley of death[92], especially for surgery which poses domain-specific challenges. The 
challenges regarding the aforementioned application examples are manifold and related to data acquisition, 
data annotation, data analytics, and aspects related to clinical translation including regulatory constraints 
apart from ethical aspects. Furthermore, most evaluations have been performed in simulation or dry-lab 
settings only, especially in robot-assisted actions.

Clinical studies in the field of AI-assisted surgery providing evidence are scarce, as summarized by Maier-
Hein et al.[7], including a comprehensive list. As stated by Navarrete-Welton et al.[64], AI-assisted decision 
support, in particular for intraoperative assistance, has not unleashed its potential yet and recommends 
focusing on the generation of representative multi-centric datasets and careful validation regarding the 
clinical use case to pioneer clinical success stories.

Although the field is progressing slowly, in the future, we can expect that surgical therapy decisions will not 
only be based on evidence but also on data. We can also expect to see surgical robots not only as passive 
telemanipulators but also as active assistants.
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