Supplementary Materials

N-heterocyclic carbene coordinated single atom catalysts on C2N for enhanced nitrogen reduction

Wenming Lu # , Dian Zheng# , Daifei Ye, Jiasheng Peng, Xiaxia Gong, Jing Xu, Wei Liu*

Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China. #Authors contributed equally.

Correspondence to: Prof. Wei Liu, Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, No. 666, Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China, E-mail: weiliu@zafu.edu.cn

Computational methods

The binding energy (E_b) is defined as:

$$
E_b = E_{TM@C_2N-NCM} - E_{TM} - E_{C_2N-NCM}
$$
\n(1)

in which $E_{TM@C_2N-NCM}$ represents the total energy of C₂N-NCM after absorbing TM, E_{TM} denotes the energy of the isolated single transition metal, and E_{C_2N-NCM} represents the energy of C2N-NCM substrate. A negative *Eb* value indicates that the binding of the TM atom to $C_2N\text{-}NCM$ is energetically stable.

The adsorption energy (*Eads*) of adsorbates was calculated as follows:

$$
E_{ads} = E_{total} - E_{adsorbate} - E_{substrate}
$$
 (2)

Where E_{total} , $E_{adsorbate}$, and $E_{substrate}$, represent the total energy of the adsorbed systems, the isolated adsorbate, and the isolated substrate, respectively. According to this formulation, a more negative value of adsorption energy indicates a stronger adsorption.

The Gibbs free energy change (ΔG) between the two states during the N₂ reduction reaction was calculated according to the computational hydrogen electrode (CHE) model proposed by Nørskov et al. The free energy of the electron-proton pair $(H^+ + e^-)$ can be referenced to the chemical potential of gaseous H_2 at equilibrium (0V vs standard hydrogen electrode). The calculation formula is as follows:

$$
\Delta G = \Delta E + \Delta E_{ZEP} - T\Delta S + \Delta G_U + \Delta G_{pH} \tag{3}
$$

where *∆E* is the energy difference between two states calculated by DFT method. *∆EZEP* and *∆S* are the zero-point energy and entropy changes between reactants and products calculated by vibration frequency at room temperature (*T*= 298.15 K), respectively. ΔG_U is equal to $-eU$, where *e* is the number of transferred electrons and *U* is the applied electrode potential. ΔG_{pH} is the free energy correction of pH and can be calculated by $\Delta G_{pH} = k_B T \times pH \times ln 10$. Because the free energy change between any two states is not affected by the pH value, the pH is set to zero in this work.

To illustrate the energy changes at different potentials, we performed nine independent calculations with system charge from −2e to +2e in a step of 0.5e. The electric potential of electrochemical interface was changed by adjusting the work function. It could be calculated by

$$
U = W_f - 4.60\tag{4}
$$

where *U* is electrode potential referenced to standard hydrogen electrode (SHE); W_f is the work function and 4.60 is the work function of H_2/H^+ at standard conditions.

The differential charge density ($\Delta \rho$) of the substrate with adsorbed N₂ was as follows:

$$
\Delta \rho = \rho_{\text{substrate} + N_2} - \rho_{\text{substrate}} - \rho_{N_2} \tag{5}
$$

where $\rho_{substrate+N_2}$, $\rho_{substrate}$ and ρ_{N_2} represent the charge density of the substrate with adsorbed N_2 , the substrate, and the N_2 , respectively.

We use three binary features represented as one-hot encoding: the end-on mode of the first step protonation(S_{1E}), the side-on mode of the first step protonation(S_{1S}), and the final step protonation(S₆). These three cases are represented as $(1,0,0)$, $(0,1,0)$, and (0,0,1), respectively. This encoding method allows the model to clearly distinguish and learn the reaction characteristics under these different conditions.

$TM@C_2N-NCM$	E_{ads}/eV (side-on)	E_{ads}/eV (end-on)	N-N bond length/ Å	N-N bond $length/\AA$
			(side-on)	(end-on)
Sc	-0.42	-0.45	1.162	1.123
Ti	-0.89	-0.99	1.177	1.140
$\mathbf V$	-0.91	-1.02	1.175	1.137
Cr	-1.20	-1.12	1.180	1.141
Mn	-1.25	-0.99	1.174	1.135
Fe	-0.66	-1.28	1.163	1.136
Co	-0.39	-0.96	1.174	1.133
Ni	-0.37	-0.85	1.150	1.116
Cu	-0.15	-0.66	1.132	1.126
Zn		-0.31		1.099
Y	-0.50	-0.55	1.155	1.133
Zr	-0.94	-0.80	1.177	1.138
Nb	-0.93	-1.03	1.187	1.139
Mo	-0.90	-1.14	1.174	1.139
Ru		-1.04		1.131
Rh	-0.45	-0.96	1.165	1.128
Pd	-0.24	-0.49	1.148	1.128
Ag	-0.22	-0.59	1.133	1.124
Cd		-0.35		1.115
Hf	-1.18	-1.05	1.184	1.144
Ta	-1.35	-1.27	1.190	1.144
W	-1.27	-1.38	1.192	1.143
Re	-1.07	-1.44	1.185	1.141
Os	-0.70	-1.33	1.161	1.135
Ir	-0.60	-1.19	1.192	1.132
Pt	-0.21	-0.51	1.163	1.135
Au		-0.51		
Hg		-0.19		1.117

Supplementary Table 1. The adsorption energy (*Eads***) of adsorbates N² and N-N bond length through end-on and side-on adsorption.**

Supplementary Table 2. Features selection and abbreviations in machine learning

Supplementary Table 3. Optimal feature set for machine learning

Supplementary Figure 1. Energy fluctuations over time during AIMD simulations of $Nb@C₂N-NCM$, performed at 500 K for 10 ps with a 1 fs time step.

Supplementary Figure 2.1 Calculated free energy diagrams for NRR through enzymatic and consecutive mechanism catalyzed by $Ti@C_2N-NCM$, $V@C_2N-NCM$, Mn@C2N-NCM, Zr@C2N-NCM, Ta@C2N-NCM. W@C2N-NCM, Os@C2N-NCM, Ir@C₂N-NCM. Distal and alternating mechanism catalyzed by $Mn@ C_2N-NCM$, Pt@ C2N-NCM.

Supplementary Figure 2.2 Calculated free energy diagrams for NRR through enzymatic and consecutive mechanism catalyzed by Ti@C₂N-NCM, V@C₂N-NCM, Mn@C2N-NCM, Zr@C2N-NCM, Ta@C2N-NCM. W@C2N-NCM, Os@C2N-NCM, Ir@C₂N-NCM. Distal and alternating mechanism catalyzed by $Mn@ C_2N-NCM$, Pt@ C2N-NCM.

Supplementary Figure 3 A: Computed energies of the Nb@C2N-NCM and corresponding reaction intermediates as a function of the applied electrode potential (SHE); B: Free energy changes of the reaction steps of $Nb@C_2N-NCM$ as a function of potential. C: The adsorption energies of N_2 and H as a function of potential.

Supplementary Figure 4. Pearson correlation feature of 20 types of features

Supplementary Figure 5. Comparison of the average training scores using 11 and 8 features.