
                                                                                             www.jtggjournal.com

Original Article Open Access

Ding et al. J Transl Genet Genom 2021;5:50-61
DOI: 10.20517/jtgg.2021.01

Journal of Translational 
Genetics and Genomics

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 

sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Prostate cancer in young men represents a distinct 
clinical phenotype: gene expression signature to 
predict early metastases
Yuan C. Ding1, Huiqing Wu2, Elai Davicioni3, R. Jeffrey Karnes4, Eric A. Klein5, Robert B. Den6, Linda 
Steele1, Susan L. Neuhausen1

1Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, CA 91010, USA.
2Department of Pathology, City of Hope Medical Center, Duarte, California, CA 91010, USA.
3GenomeDX Biosciences, Vancouver, British Columbia V6B 1B8, Canada.
4Department of Urology, Mayo Clinic, Rochester, Minnesota, MN 55905, USA.
5Glickman Urological and Kidney Institute, Cleveland Clinic, Ohio, OH 44195, USA.
6Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, PA 19044, USA.

Correspondence to: Prof. Susan L. Neuhausen, Department of Population Sciences, Beckman Research Institute of City of Hope, 
1500 E Duarte Road, Duarte, CA 91010, USA. E-mail: sneuhausen@coh.org

How to cite this article: Ding YC, Wu H, Davicioni E, Karnes RJ, Klein EA, Den RB, Steele L, Neuhausen SL. Prostate cancer in 
young men represents a distinct clinical phenotype: gene expression signature to predict early metastases. J Transl Genet Genom 
2021;5:50-61. http://dx.doi.org/10.20517/jtgg.2021.01

Received: 3 Jan 2021    First Decision: 27 Jan 2021    Revised: 2 Feb 2021    Accepted: 18 Feb 2021    Available online: 9 Mar 2021

Academic Editor: Sanjay Gupta    Copy Editor: Yue-Yue Zhang    Production Editor: Yue-Yue Zhang

Abstract
Aim: Several genomic signatures are available to predict Prostate Cancer (CaP) outcomes based on gene 
expression in prostate tissue. However, no signature was tailored to predict aggressive CaP in younger men. We 
attempted to develop a gene signature to predict the development of metastatic CaP in young men.

Methods: We measured genome-wide gene expression for 119 tumor and matched benign tissues from 
prostatectomies of men diagnosed at ≤ 50 years and > 70 years and identified age-related differentially expressed 
genes (DEGs) for tissue type and Gleason score. Age-related DEGs were selected using the improved Prediction 
Analysis of Microarray method (iPAM) to construct and validate a classifier to predict metastasis using gene 
expression data from 1,232 prostatectomies. Accuracy in predicting early metastasis was quantified by the area 
under the curve (AUC) of receiver operating characteristic (ROC), and abundance of immune cells in the tissue 
microenvironment was estimated using gene expression data.

Results: Thirty-six age-related DEGs were selected for the iPAM classifier. The AUC of five-year survival ROC 
for the iPAM classifier was 0.87 (95%CI: 0.78-0.94) in young (≤ 55 years), 0.82 (95%CI: 0.76-0.88) in middle-



aged (56-70 years), and 0.69 (95%CI: 0.55-0.69) in old (> 70 years) patients. Metastasis-associated immune 
responses in the tumor microenvironment were more pronounced in young and middle-aged patients than in old 
ones, potentially explaining the difference in accuracy of prediction among the groups.

Conclusion: We developed a genomic classifier with high precision to predict early metastasis for younger CaP 
patients and identified age-related differences in immune response to metastasis development.

Keywords: Differentially expressed gene, immune cell enrichment, metastasis, prostate cancer, tissue 
microenvironment, age, prediction, patient stratification, clinical phenotype

INTRODUCTION
Prostate cancer (CaP) is primarily a disease of older men; only 9.2% of men develop CaP under age 
55 years[1]. Although the overall incidence of CaP is decreasing in the United States[1], the incidence 
is increasing in younger (≤ 55 years) men compared to older men (> 70 years)[2-4]. Due to a longer life 
expectancy, younger men with localized CaP are more likely to receive radical prostatectomy (RP) 
treatment than older men[5,6]. A recent long-term follow-up study demonstrated that only those patients 
harboring lethal CaP and having a long-life expectancy benefited from RP treatment[7]. Over the past 
decade, several genomic signatures have been developed to predict CaP outcomes based on gene expression 
in prostatectomy or biopsy tissues[8]. However, no prognostic signature was tailored to predict aggressive 
CaP in men younger than age 55 years. Converging data from clinical and molecular genetic studies 
provide strong evidence that CaP in young men represents a distinct clinical phenotype with underlying 
biological differences compared to older men[9-13]. We hypothesized that age-related differences in tumor 
biology have implications for prognosis of early-onset CaPs. To test this hypothesis, we selected tumor and 
matched benign prostatic tissue samples from men diagnosed with CaP at younger (≤ 50 years) and older 
(71-75 years) ages with low (6), intermediate (7), and high (8-10) Gleason scores. We identified age-related 
differentially expressed genes (DEGs) by comparing sample type (tumor versus matched benign) and 
Gleason scores (low vs. high). Then we developed a genomic classifier using gene expression of age-related 
DEGs and tested the classifier for accurate identification of young patients with aggressive CaP as defined 
by metastasis within five years of RP.

METHODS
Patient characteristics, mRNA profiling, and identification of age-related DEGs
This study was approved by the City of Hope (COH) Institutional Review Board (IRB07244). Patients with 
CaP and treated with RP between 1998 and 2013 at COH National Medical Center were selected based on 
age at diagnosis and tissue availability [Table 1]. A total of 61 men diagnosed between the ages of 71 and 75 
years (old) and 58 men diagnosed between the ages of 38 and 50 years (young) were used to identify age-
related DEGs for developing a gene expression classifier to predict metastasis following RP. Older cases 
were matched to younger cases for cancer stage and Gleason score. Tissue processing and mRNA profiling 
were performed as described[9]. Follow-up data were abstracted from medical records and the COH cancer 
registry. Age-related DEGs were identified from expression data using a mixed linear model implemented 
in limma R[14] [Supplementary methods]. 

iPAM classifier development and validation
Gene expression data (46,050 genes and 1,232 patients from RP) from the Decipher Genomic Resource 
Information Database (GRID, Decipher Biosciences, San Diego, CA) [Supplementary Table 1] were used to 
develop and validate a new genomic classifier. The study design is shown in Figure 1. Gene expression data 
for the age-related DEGs were extracted from the Mayo Clinic (MC I) discovery cohort[15]. A two-sample 
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t-test selected DEGs between patients with and without metastasis. After DEG determination, patients were 
randomly assigned into training (n = 362) and test (n = 183) datasets. An improved Prediction Analysis of 
Microarray (iPAM) method[16-18] removed DEGs irrelevant to metastasis prediction based on minimizing 
the 10-fold cross-validated error rate using the Adaptive Hierarchically Penalized Nearest Shrunken 
Centroid algorithm[17]. These iPAM-selected DEGs were assembled into an iPAM classifier by fitting a 
logistic regression model on the training set. 

Table 1. Clinical and demographic characteristics of 119 City of Hope patients

 Total Old
(71-75 years)

Young
(38-50 years)

Total patients 119 61 58
Metastatic patients 11 4 7
Mean follow-up (months) 65.3 65.8
Pathology stage
   2a 12 (0.10) 5 (0.08) 7 (0.12)
   2b 2 (0.02) 0 (0) 2 (0.03)
   2c 77 (0.65) 41 (0.67) 36 (0.62)

   3a 19 (0.16) 10 (0.16) 9 (0.16)
   3b 9 (0.07) 5 (0.08) 4 (0.07)
Gleason score
   6 37 (0.31) 18 (0.30) 19 (0.33)
   7* 49 (0.41) 25 (0.41) 24 (0.41)
   8 or 9 33 (0.28) 18 (0.29) 15 (0.26)
PrePSA^ (ng/mL)
   ≤ 10.0 100 (0.84) 53 (0.87) 47 (0.81)
   > 10.0 19 (0.16) 8 (0.13) 11 (0.19)
Race
   Caucasian 110 (0.92) 57 (0.93) 53 (0.91)
   Asian 2 (0.02) 2 (0.03) 0
   African American 6 (0.05) 2 (0.03) 4 (0.07)
   Native American 1 (0.01) 0 1 (0.02)

*data for Gleason 7 patients were reported previously; ^PSA level before surgery; PSA: Prostate specific antigen. 

Figure 1. Study design for developing the iPAM classifier.
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Three independent validation data sets [Supplementary Table 1] with follow-up time [the Mayo Clinic 
II (MC II)[19], the Cleveland Clinic (CC)[20], and the Thomas Jefferson University (TJU)][21] were used to 
evaluate the performance of the iPAM classifier by AUC of ROC for censored survival data[19]. The 95% 
confidence interval for AUC of survival ROC was constructed from 1000 bootstrap replications. Based 
on bimodal distribution of risk scores predicted by the iPAM classifier, two cut points were selected to 
categorize patients into low-, intermediate-, and high-risk groups. Kaplan-Meier estimator and a log-rank 
test were used to evaluate the difference in time to metastasis among the risk groups. The conventional 
AUC of ROC was calculated to measure prediction accuracy for the fourth validation data set from 
the Memorial Sloan-Kettering Cancer Center (MSKCC), which had no follow-up time but categorical 
metastasis status for each patient.

Estimation of cell-type proportion in tissue microenvironment
xCell[22] was used to estimate the abundance of 34 immune cell types for each tissue sample using genome-
wide gene expression data. Cell-type proportion in tissue microenvironment estimated by xCell method is 
a rank-based enrichment score. Non-parametric analysis of variance (ANOVA) (confidence interval and 
p-values generated by percentile bootstrap) implemented in the “Rallfun-v35” R codes from Dr. Wilcox[23], 
was used to test median differences in immune score (average abundance of immune cells) between sample 
groups classified by factors of sample type (tumor, benign), metastasis status (yes, no), and age group 
(young, middle-aged, old).

RESULTS
Identification of age-related DEGs
We previously identified genes differentially expressed between tumor and matched benign prostatic 
tissue samples for young men (≤ 45 years) and old men (71-74 years) with Gleason score 7 (3 + 4) CaP[9]. 
Following the same study design, we generated gene expression data for tumor and matched benign 
prostatic samples from young men (≤ 50 years, n = 34) and old men (71-75 years, n = 36) with CaP Gleason 
scores of 6 or 8-10. We identified 5,156 unique DEGs as potential candidate genes for developing the iPAM 
classifier [Table 2]. Dot plots of gene expression for two DEGs are shown in Figure 2A and Figure 2B as 
examples. Details on the 5156 DEGs are available upon request.

iPAM classifier development and performance assessment
Gene expression data for the 5156 DEGs were extracted from the MC I discovery data set. Of those DEGs, 
419 were differentially expressed (false discovery rate [FDR] < 0.05) between patients who did and did not 
develop metastasis. The iPAM program[18] selected 36 genes [Table 3] of the 419 that predicted metastatic 
CaP in the training dataset and then generated an AUC of 0.75 for the test data set. We assembled those 
36 genes into an iPAM classifier by fitting a logistic regression model on the training samples, and applied 
the iPAM classifier to four independent validation data sets. The predicted iPAM risk scores for metastasis 
showed a bimodal distribution with the score range of 0-1, where higher scores represent higher risk of 

Table 2. The number of DEGs in relation to age, sample type, and Gleason score

*DEGs (|fold| > 1.5 and FDR < 0.05) Old patients
(aged 71-75)

Young patients
(aged 38-50)

Tumor versus benign tissue comparison
   Patients with Gleason sum of 6 1250 1314
   Patients with Gleason sum of 7 1443 1485
   Patients with Gleason sum of 8+ 3221 1923
^Low versus high Gleason score comparison 1392 650

*A total of 5156 unique DEGs identified from 8 different comparisons; ^Low Gleason score of 6 and high Gleason score of 8+ (8 to 10). 
DEGs: Differentially expressed genes.
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developing metastasis. For the three independent data sets (MC II, CC, TJU, n = 556) with follow-up time 
from the date of RP, 75 of 556 patients (13.5%) developed metastasis within five years after RP (early), 
60 patients (10.8%) developed metastasis more than five years after RP (late), and 421 patients had no 
metastases at last follow-up (mean follow-up time of 91 months). The median iPAM risk scores for the 
three groups of patients were 0.89, 0.67, and 0.24, respectively. The iPAM risk scores were stratified into 
high-, intermediate-, and low-risk groups by two cut points of 0.4 and 0.6 determined by the distribution of 
risk score [Supplementary Figure 1]; the three groups showed highly significant differences in metastasis-
free survival (P < 0.0001) [Figure 3A]. Of 75 patients who developed metastasis within five years of RP, 
69 patients (92%) were classified in either the high-risk group (58 patients) or intermediate-risk group 
(11 patients). The AUC of five-year survival ROC for the iPAM classifier was 0.82 (95%CI: 0.77-0.86), 
outperforming the AUC [0.69 (95%CI: 0.61-0.75)] for the clinical classifier assembled based on six clinical 
variables [Supplementary methods]. With a combined clinical and iPAM classifier, the AUC was 0.80 
(95%CI: 0.75-0.85).

Figure 2. Differential gene expression for CD24 and SFRP4 between sample groups classified by patient age, sample type, or metastasis 
factors. CD24 and SFRP4 are 2 of the 36 genes in the iPAM classifier. A and B, Gene expression data from the 119 COH patients were 
used to generate the box and dot plots; there were significant tumor-vs.-matched-benign median expression differences among young 
patients (≤ 50 years) with Gleason score of 7 for CD24 (A) and SFRP4 (B) (black vs. blue for young patients, FDR < 0.05); for CD24 (panel 
A), median expression level was significantly higher in tumors from young patients than in tumors from old patients with Gleason score 
of 7 (black vs. green, FDR < 0.05). C and D, Gene expression data for 545 patients in the Mayo discovery data set were used to generate 
plots; among young (≤ 55 years) patients, significantly increased median expression levels for CD24 (C) and SFRP4 (D) were observed in 
patients with metastasis compared to patients without metastasis (black vs. blue, FDR < 0.05); however, no significant median expression 
difference related to metastasis status among patients older than 70 years (red vs. green, P > 0.2). 
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The AUC of survival ROC for the iPAM classifier by Gleason scores and age groups is shown in Table 4. The 
highest AUC of 0.87 (95%CI: 0.78-0.94) was observed in young patients (age ≤ 55 years); an intermediate 
AUC of 0.82 (95%CI: 0.76-0.88) was observed for middle-aged patients (age 56-70 years), and the lowest 
AUC of 0.69 (95%CI: 0.55-0.82) was observed in old patients (age > 70 years) [Figure 3B]. For patients with 
Gleason scores of 7-10, the overall AUC was 0.80 (95%CI: 0.74-0.85), with the highest AUC of 0.85 (95%CI: 
0.75-0.93) in the young group and the lowest AUC of 0.67 (95%CI: 0.50-0.80) in the old group. The iPAM 

Table 3. Function and pathway annotation of 36 genes in the iPAM classifier

Gene 
name*

Bone-disease 
related

Immune 
pathway
related

Cell adhesion 
/cell-matrix 

related

Cell 
cycle

Gene function, disease association, and pathway role (abstracted 
from the gene card website, https://www.genecards.org/)

ANO7   Yes  Associated with advanced CaP, a target in CaP diagnosis and 
immunotherapy

ANTXR1  Yes Yes  TLR Pathway, ECM proteins, actin cytoskeleton and promotes cell spreading
ASPN Yes  Yes  Degradation of extracellular matrix (ECM) proteoglycans, associated with 

Osteoarthritis
ATP5EP2     Purine nucleotides de novo biosynthesis
AZGP1  Yes   Member of macroglobulin family; antigen binding; validated predictor of 

metastatic CaP
C7  Yes   Pathway of the innate immune system; involved in host immunity
CCDC6     Structural constituent of cytoskeleton, associated with thyroid papillary 

carcinoma
CD24  Yes   Modulates growth and differentiation signals to granulocytes and B cells
CDC42EP5   Yes  Induces actin filament assembly leading to cell shape changes.
CYBA  Yes   TNFR1 Pathway and Class I MHC mediated antigen processing and 

presentation
DDIT4  Yes   DDIT4/mTOR axis involved in the differentiation of Th17 cells
DPT   Yes  Cell-matrix interactions and matrix assembly, mediate adhesion
FAM13C1     GTPase activator activity
FBXL8  Yes    Involved in Class I MHC mediated antigen processing and presentation
GLO1 Yes    Risk factor for CaP progression and involved in bone formation and 

resorption
GLYATL1     Cytochrome P450 - arranged by substrate type and Conjugation of 

carboxylic acids
GMNN     Yes Cell cycle regulation, increased expression plays role in colon, rectal and 

breast cancer
GNPTAB Yes    Associated with mucolipidosis II and IIIA with low bone mineral density 

(osteoporosis)
ITGBL1   Yes  Participates in cell adhesion as and cell-surface, cell-cell and cell-matrix 

interaction. 
KIF21A   Yes  Involved in microtubule transport, involved in cell polarity, and migration
KRT15  Yes Yes  Involved in the structural integrity of epithelial cells; regulating innate 

immunity
LBH     Contributes to Wnt-induced tumorigenesis
LRRN1     Regulates Differentiation of Embryonic Stem Cells 
LTF  Yes   Anti-inflammatory activity, induce apoptosis and inhibit proliferation in 

cancer cells.
MTDH Yes    Promotes lung metastasis and also has an effect on bone and brain 

metastasis
MYBPC1    Yes  Contributes to the stability and maintenance of sarcomeres.
NCAPD3     Yes Chromosome condensation in prometaphase and Cell Cycle, Mitotic
NR4A1  Yes   Involved in Class I MHC mediated antigen processing and presentation
PCA3     Sensitive to androgen-receptor activation, a molecular signature of prostate 

cancer
RNF39     Plays a role in an early phase of synaptic plasticity
SFRP4 Yes    Modulators of Wnt signaling, associated with Osteomalacia and Pyle 

Disease 
SLC22A3     Disposition of small organic cations and drugs and environmental toxins
SLC37A3     Transporter activity and transmembrane transporter activity
STRBP     DNA and RNA binding, plays a role in regulation of cell growth
TOP2A     Yes Associated with aggressive CaP and drug resistance; Essential in mitosis 

and meiosis
UGDH   Yes  Components of the ECM involved in cell migration, and cancer growth and 

metastasis

*ANO7 and MYBPC1 are also in the Decipher classifier[15]; Top2A is also in the Prolaris classifier[27]; AZGP1 and SFRP4 are also in the 
Oncotype DX classifier[26]; IPAM: Improved prediction analysis of microarray.
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classifier demonstrated slightly higher prediction accuracy for patients with Gleason score of 7 compared 
to prediction scores for all patients.

For the MSKCC data set with no information on time of follow-up (9 patients with metastasis versus 122 
without metastasis), the conventional AUC calculated with a binary metastasis status was 0.86 (95%CI: 
0.73-0.99) [Supplementary Figure 2].

Figure 3. Performance of the iPAM classifier. Combination of patients from Mayo Clinic validation data (n = 235), Cleveland Clinic 
validation data (n = 182), and Thomas Jefferson University validation data (n = 139) were used to evaluate performance of the iPAM 
classifier. (A) Three risk groups [low- (iPAM risk score < 0.4), intermediate- (0.4 ≤ iPAM risk score ≤ 0.6), and high-risk (iPAM risk score 
> 0.6) group] showed highly significant differences in metastasis-free survival (P < 0.0001) from the Kaplan-Meier survival analysis. (B) 
Accuracy in predicting early metastasis (within five years of RP), quantified by AUC of ROC, was higher in young (≤ 55 years) (AUC = 0.87) 
and middle-aged patients (AUC = 0.82) than in old (> 70 years) patients (AUC = 0.69).
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Estimation of abundance of immune cell types
The relative abundance of immune cells for tumor and matched benign prostatic tissue samples from 
119 patients is displayed in Figure 4A. Compared to matched benign samples, there was a significant 
enrichment (P < 0.01, Supplementary Table 2 of immune cells in tumor samples (Gleason scores 6-7) 
from young patients, with no significant differences in the old patients, indicating stronger tumor-induced 
immune responses among young patients than among old patients. For tumors with high Gleason scores 
(8-10), the tumor-benign difference did not reach statistical significance.

Figure 4. Differential abundance of immune cells (immune score) in tissue microenvironment between sample groups classified by 
patient age, sample type, or metastasis factors. (A) Immune scores for tumor and matched benign prostatic tissue samples from 119 
patients in the COH data set were used to generate dot and box plots. Compared to matched benign prostatic tissue, tumor tissues with 
Gleason scores of 6 and 7 from young patients (≤ 50 years) (black) showed significantly increased abundance of immune cells (blue 
vs. black, P < 0.01), whereas old patients (> 70 years) showed non-significant tumor-versus-matched-benign difference in abundance 
of immune cells (red vs. green, P > 0.10). (B) Immune scores for 1232 primary tumor samples from five GRID data sets were used to 
generate plots. Compared to tumor tissues from young patients (≤ 55 years) without metastasis, tumor tissues from young patients with 
metastasis showed significantly (blue vs. black, P = 0.02) increased abundance of immune cell types; patients with middle age (56-70 
years) also showed highly significant but a smaller with-and-without- metastasis difference (cyan vs. orange, P < 0.0001 in abundance 
of immune cell types than young patients (≤ 55 years); old patients (≥ 70 years) (green vs. red, P = 0.21) had no significant difference in 
abundance of immune cell types related to metastasis status.

Table 4. AUC of five-year survival ROC for validation data stratified by Gleason score and age at diagnosis

Gleason score Age 40-78 Age ≤ 55 Age 56-70 Age > 70 
6-10 (n = 421, 135)*

0.82 (0.77, 0.86)
(n = 79, 23)
0.87 (0.78, 0.94)

(n = 298, 93)
0.82 (0.76, 0.88)

(n = 44, 19)
0.69 (0.55, 0.82)

7-10 (n = 357, 134)
0.80 (0.74, 0.85)

(n = 60, 23)
0.85 (0.75, 0.93)

(n = 257, 92)
0.81 (0.74, 0.86)

(n = 40, 19)
0.67 (0.50, 0.80)

7 (n = 252, 58)
0.83 (0.74, 0.90)

(n = 48, 12)
0.87 (NA^)

(n = 184, 41)
0.83 (0.73, 0.91)

(n = 20, 5)
0.79 (NA^)

*The number of patients without and with metastasis, respectively; ^insufficient sample of metastatic patients to calculate 95% 
confidence interval by the bootstrap method.
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The relative abundance of immune cells for primary tumor samples from 1,232 patients in the 5 GRID data 
sets is shown in Figure 4B. In young patients, there was a significantly (P = 0.028) greater abundance of 
immune cells in primary tumors from patients with metastasis compared to primary tumor samples from 
patients without metastasis; there were no significant metastasis-associated differences in the old patient 
group. In middle-aged patients, abundance of immune cells from patients with metastasis was significantly 
greater than that in the patients without metastasis (P < 0.0001, Supplementary Table 3). Four immune 
cell types demonstrated striking age-related differences in abundance of immune cell type [Supplementary 
Figure 3]. For the 687 patients from the four independent validation data sets (MC II, CC, TJU, and 
MSKCC), the predicted iPAM risk scores for metastasis were significantly associated with the immune 
scores (Spearman rho = 0.25, P-value = 2.68 × 10-11), indicating that gene expression for the 36 iPAM genes 
may capture information on immune responses in the tumor microenvironment that lead to metastasis.

DISCUSSION
Prostate-specific antigen screening has reduced death from CaP due to early detection while also leading 
to over-treatment of low-risk CaP[24,25]. Three commercially available genomic classifiers (Oncotype 
DX[26], Prolaris[27], and Decipher[15]) are used to predict metastatic CaP and guide initial treatment and/or 
postoperative intervention. However, those classifiers were not designed for predicting metastatic disease 
in young patients and accuracy of prediction for young men with CaP was not examined. This is the first 
study to investigate young men with CaP as a distinct and unique patient group in both discovery and 
validation of prediction signatures for early metastatic disease. 

The accuracy of early metastasis prediction, measured by AUC of five-year survival ROC for the Decipher 
in the three validation data sets (MC II, CC, and TJU) with follow-up time from date of RP are shown in 
Supplementary Table 4. The AUC of five-year ROC generated from the iPAM classifier was higher than 
that from the Decipher classifier. If only the six clinical variables were used to predict metastasis, AUC was 
0.69 for both data sets; therefore, both the Decipher and iPAM classifiers showed substantial improvement 
on prediction of early metastasis compared to the clinical classifier alone. Inclusion of the clinical variables 
into the genomic classifier did not improve prediction accuracy for both classifiers. This suggests that both 
genomic classifiers captured the prediction information provided by the clinical variables.

To develop the iPAM classifier, we selected DEGs associated with sample-type (tumor or benign) factor, 
Gleason score factor, and metastasis factor. It is known that: (1) genes differentially expressed between 
tumor and matched benign tissues reflect the genetic basis of tumorigenesis[28,29]; and (2) genes differentially 
expressed between low and high Gleason scores correlate with tumor aggressiveness[30]. Therefore, in 
addition to being used as prognostic markers, the iPAM genes selected from those DEGs are likely to 
be functionally relevant to cancer progression. From Ingenuity Pathway Analysis (IPA), those DEGs 
were enriched in pathways of immune response, cell adhesion, and degradation of extracellular matrix 
[Supplementary Table 5]. Enrichment of pathways in immune response was among the up-regulated 
DEGs identified only in the young group (highlighted pathways in Supplementary Table 5). Estimation 
of abundance of immune cells in tumor and benign tissues from COH patients corroborated a role 
of more pronounced immune responses to tumor development in young patients than in old patients 
[Supplementary Table 2 and Figure 4A]. Ten of 36 iPAM genes were linked to immune-related pathways 
[Table 3] and showed larger metastasis-associated differences (FDR < 0.10, Supplementary Table 6 in 
the young group than in the old group from Decipher GRID samples [Figure 2C and Figure 2D and 
Supplementary Figure 4]. Furthermore, the estimated abundance of immune cells in primary tumor samples 
from the five Decipher GRID data sets was positively associated with the development of metastasis in 
young and middle-aged patients with no significant association in old patients [Supplementary Table 3 and 
Figure 4B]. The positive correlation between the immune scores (the abundance of immune cell types) and 
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the risk scores of metastasis generated by the iPAM classifier for validation samples was highly significant 
(P-value = 2.68 × 10-11). Accuracy of early metastasis prediction from the iPAM classifier was higher for 
young patients (AUC = 0.87) and middle-aged patients (AUC = 0.82) than for old patients (AUC = 0.69). 
The trend of differences in prediction accuracy among the age groups is consistent with the observation 
that the metastasis-associated immune responses in the tumor microenvironment in young and middle-
age patients were more pronounced than in old patients. Taken together, these findings show that more 
pronounced metastasis-associated immune responses in tumor microenvironment are found in young and 
middle-age patients than in old patients, potentially explaining the difference in accuracy of metastasis 
prediction among the three age groups.

This study has limitations. Although the sample sets included 58 young patients (≤ 50 years) for identifying 
DEGs and 197 young patients (≤ 55 years) for iPAM classifier development and validation, the sample 
size of young patients is modest. Second, we identified genes that serve as prognostic biomarkers and also 
show functional relevance to cancer progression based on IPA analysis; however, performing functional 
studies on the role of the 36 iPAM genes on cancer progression was beyond the scope of this study. 
Moreover, as previously reported, the Decipher GRID data sets may over-represent patients with adverse 
clinicopathologic features[31].

We identified an iPAM classifier for prediction of early metastasis; the prediction accuracy of the iPAM 
classifier was higher for young (≤ 55 years) and middle-aged patients (56-70 years) than for old patients 
(> 70 years). We also provided evidence that this age-related difference in prediction accuracy can be 
explained by differential immune responses to metastasis development among the three age groups.
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