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Abstract
The discovery of new photovoltaic materials can facilitate technological progress in clean energy and hence benefit
overall societal development. Machine learning (ML) and deep learning (DL) technologies integrated with domain
knowledge are revolutionizing the traditional trial-and-error research paradigm that is associated with high costs,
inefficiency, and significant human effort. This review provides an overview of the recent progress in the data-driven
discovery of novel photovoltaic materials for perovskite, dye-sensitized and organic solar cells. The integral workflow
of the ML/DL training progress is briefly introduced, covering data preparation, feature engineering, model building
and their applications. The cutting-edge challenges and issues in theML/DLworkflow are summarized specifically for
photovoltaic materials. Real examples are emphasized to illustrate how to utilize ML/DL techniques in the discovery
of novel photovoltaicmaterials. The prospects and future directions of the data-driven discovery of novel photovoltaic
materials are also provided.
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INTRODUCTION
Due to their capability to convert clean and inexhaustible solar radiation to electricity directly, photovoltaic
technologies, especially solar cells, have provided a new alternative to traditional fossil fuels, which suffer from
issues of resource exhaustion and environmental pollution [1,2]. Though silicon (Si) solar cells have dominated
the major commercial photovoltaic markets, as a result of their mature production process, superior stability,
and outstanding power conversion efficiency (PCE), the development of Si solar cells has been critically hin-
dered by the high expense of elevated purity Si resources and costly device fabrication [3,4]. This is evidenced
by the continuous decline in their research publications, decreasing from 13% of all solar cell studies in 2013
to 6% in 2022 (until March), as shown in Figure 1A. New photovoltaic technologies are therefore urgently
required to replace Si solar cells.

There are 3 extraordinary photovoltaic devices in the leading roles of third-generation solar cells, namely,
perovskite solar cells (PSCs), dye-sensitized solar cells (DSSCs), and organic solar cells (OSCs), which ex-
hibit their respective potential either in conversion efficiency, stability and/or low production costs, and thus
their research contribution in terms of publications has grown from 18% in 2013 to 35% in 2022 [5]. In par-
ticular, the development of PSCs, after the incubation period of 2009-2014, has been extremely rapid with a
significant growth in device performance regarding PCE, from an initial 3.8% [6] to currently over 25.5% [7–10],
which is competitive with that of Si-based devices. PSCs have therefore become the veritable superstar in the
photovoltaic community and represented 19% in 2021 and even 21% in 2022 of all publications in this field.
PSCs illustrate excellent optical and electronic properties, including tunable adjustable bandgaps, long carrier
diffusion lengths, high light-absorption coefficients, low nonradiative loss, carrier mobility, and solution pro-
cessability [11–13]. Despite their promising device performance, significant progress for PSCs is still required
towards commercialization due to their low stability, reduced scalability, and potential environmental pollu-
tion caused by the use of lead in their chemical composition.

As the nominal parents of PSCs, DSSCs have drawn significant attention since their first report 30 years ago [14],
with the merits of relatively low cost, eco-friendliness, structural flexibility, and good stability [15]. Compared
to PSCs, DSSCs are much easier to scale up but have struggled with the persistent bottleneck of the relatively
lower PCEs of ∼14% [16]. This is why the research trend on DSSCs kept a high percent of ∼12% of publications
before 2014 but started to decrease with the discovery of PSCs in 2015. The early studies of OSCs can be traced
from even five years earlier than DSSCs [17,18], with a much more continuous research trend of 7%-9% in the
past decade. OSCs have their own various benefits of inexpensive production costs, solution possibility, low
temperature possessing, structural flexibility, semi-transparency, suitability for large-scale roll-to-roll process-
ing, and relatively high PCEs (> 18%) [19–22]. Ternary device structures of OSCs are usually employed in order
to achieve sufficient photon harvesting and efficient cell performance, which, however, may cause difficulties
regarding morphological control and lower open-circuit voltages [23].

In recent decades, tremendous experimental efforts have been dedicated to the fabrication and characterization
of new photovoltaic materials for solar cells. Most approaches, however, are traditional trial-and-error meth-
ods based on expert experience and intuition, alongwith large costs in terms of time and human endeavor [24,25].
Computations, especially density functional theory (DFT) [26,27] -based calculations and molecular dynamics
(MD) [28], have been exerted to accelerate experimental investigations and explore the relevant mechanisms
behind experimentally observed behavior. Nonetheless, these quantum-based methods are largely restrained
by contemporary computing powers that are not well qualified for large-scale simulations with satisfactory
accuracy [29]. Like experiments and high-throughput experiments, computations and high-throughput com-
putations also generate huge amounts of data. The data-driven machine learning (ML) and deep learning (DL)
methods, as subfields of artificial intelligence (AI), are being quickly adopted by the materials community to
fully utilize experimental and computational data to yield a new interdisciplinary field of materials informatics.
Materials informatics has already achieved significant success in many branches of materials, such as electro-
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Figure 1. (A) Research trends for various types of solar cells from 2013 to 2022. The percentages in the histograms represent the per-
centages of each cell in the specific year. We used the search patterns “TS=(‘solar cell*’) AND TS=(‘perovskite solar cell*’)” for PSCs,
and “TS=(‘solar cell*’) AND TS=(‘organic solar cell*’)” for OSCs, “TS=(‘solar cell*’) AND TS=(‘dye-sensitized solar cell*’)” for DSSCs and
“TS=(‘solar cell*’) AND TS=(Si)” for Si solar cells. (B) Research trends for ML and DL techniques for various solar cells from 2013 to 2022.
The numbers in the histograms represent the numbers of references for each cell in the specific year. We added the term “TS=(‘machine
learning’ OR ‘data mining’ OR ‘deep learning’ OR ‘QSPR’ OR ‘QSAR’ OR ‘quantitative structure-property relationship’ OR ‘quantitative
structure-activity relationship’)” to each search pattern in (A) for the respective solar cell.

catalysis, batteries, metal-organic frameworks, two-dimensional (2D) materials, polymers, metals, alloys, and
so on [30–33]. Data-driven ML and DL technologies have advantages in catching up the relations between tar-
geted properties and input variables [34]. Coherently integrating the data-driven approach with domain knowl-
edge will make the black box more transparent, enhance ML and DL technologies more efficiently and boost
the quantum jump from data to knowledge, thereby paving the way for novel materials discovery [35].

Materials informatics is developing extremely fast in various material fields, including photovoltaic materials.
The total number of ML/DL-related studies of solar cells in 2021 was over 180, nearly nine times the number
of 19 in 2015 and 50 times that of a decade ago, thereby evidencing the flourishing developing trend in this
interdisciplinarity area. As shown in Figure 1B, the main contribution to this fast development is credited to
the ML/DL research on PSCs, in which the number of publications increased from six in 2018 to 43 in 2021.
The same trend can be observed in OSCs, whose explosive growth was centered in 2019-2021. The related
studies on DSSCs show a relatively steady development, with an annual publication number of three to seven.
Considering the momentary development of materials informatics in photovoltaic materials and the hundreds
of pioneering achievements to accelerate the discovery of photovoltaic materials, it is necessary and timely to
review the progress of materials informatics in photovoltaic materials.

In this review, we focus on the recent applications of data-drivenmethods in the photovoltaicmaterials of PSCs,
DSSCs, and OSCs. We first portray the integral workflow of ML and DL in section ”MACHINE LEARNING
ANDDEEP LEARNINGWORKFLOW” (section 2), emphasizing their essential operations in different stages
from the preparation of data towards the evaluation of ML/DL models. Real cases are then illustrated in
section ”RECENT PROGRESS OFDATA-DRIVENMETHODS” (section 3) as examples to show howML/DL
technologies can be used to discover novel photovoltaic materials. The final section addresses the prospects
and future directions of material informatics in photovoltaic materials.

MACHINE LEARNING AND DEEP LEARNING WORKFLOW
Figure 2 shows the adaptive design workflow of ML/DL, where domain knowledge, i.e., expert professional
knowledge, is the hub. ML/DL work on data, and thus data preparation is the essential and fundamental
step. Data are composited by input variables, known as features in ML/DL, and output variables, which are
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Figure 2. Diagram of ML/DL workflow. RFE/RFA: Recursive feature elimination/addition; GA: generic algorithm; SFE: sequential feature
elimination; mRMR: maximum relevance minimum redundancy; SBS: sequential backward selection; SFS: sequential forward selection; 𝑅2:
determination coefficient; RMSE: root mean squared error; MSE: mean squared error.

materials properties or other materials characteristics of interest. Features and feature space are two crucial
issues in ML/DL, and thus feature engineering must be conducted, which involves the preprocessing, filtering,
and generating of features. After that, ML/DL models are developed with ML/DL algorithms. Based on the
ML/DL models, recommendations are given to guide the next experiments and/or calculations. The results
of the experiments and/or calculations are then put into a database, which iteratively grows until reaching the
design goal.

Data collection
The goal of the data-driven procedure is to find the underlying correlations between the target properties and
input features via ML/DL algorithms. To avoid “garbage in garbage out” in ML/DL practitioners, a reasonable
dataset matters more than the data-driven algorithms, suggesting that more efforts are demanded to cleanse
and filter the original dataset [36–38].

Qualified datasets
A reasonable dataset is determined by its data quality, namely, the veracity of each sample, which correlates the
portions of inconsistent, incorrect, andmissing data. Inconsistent data refer to samples with the same chemical
composition, structures, and the same processing conditions but that exhibit diverse values of their target, in
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Table 1. Popular online databases

Database Link

Materials project [52] https://materialsproject.org/
Inorganic crystal structure database (ICSD) [53] https://www.psds.ac.uk/icsd
Open quantum materials database (OQMD) [54,55] https://oqmd.org/
Materials platform for data science (MPDS) [56] https://mpds.io/
Materials data specification (MDS) [58] https://github.com/conchsk/Materials-Data-Specification
Automatic-flow for materials discovery (AFLOWLIB) http://aflowlib.org
American mineralogist crystal structure database http://rruff.geo.arizona.edu/AMS/amcsd.php
Cambridge crystallographic data center (CCDC) [61] www.ccdc.cam.ac.uk/pages/Home.aspx
Chemspider www.chemspider.com
Computational materials repository (CMR) http://cmr.fysik.dtu.dk/
Crystallography open database (COD) [62] www.crystallography.net
Database of materials properties (MatDat) www.matdat.com
NIMS materials database (MatNavi) https://mits.nims.go.jp/
NanoHUB https://nanohub.org/
Total materia www.totalmateria.com
Pauling file http://paulingfile.com
PubChem https://pubchem.ncbi.nlm.nih.gov/
Materials genome engineering databases (MGED) [57] https://www.mgedata.cn/

which their mean value can be filled if the difference of the diverse values is acceptable [39]. In the converse case,
part of the inconsistent data can be presumed based on domain knowledge and/or statistical analysis as the
incorrect data, i.e., the outliers. Besides the simple principle “obey the majority”, statistical criteria/methods,
like the standard deviation, Student’s 𝑡 test [40,41], 𝐹−test [42] andML-basedmethods, including the local outliers
factor (LOF) [43], isolation forest (iForest) [44], minimum covariance determinant (MCD) method [45,46] and
angle-based outlier detection (ABOD), can be used to detect the incorrect data [45,47–49].

In the LOF method, the density of neighboring samples for every one of the data is calculated, and the outliers
are defined by the ones with their neighbor density lower than a preset threshold. The iForest method builds
up a set of decision trees and evaluates the average depth of each sample. Due to the diverse feature values from
the normal ones, the outliers are probably isolated at the terminal nodes close to the root of a tree and hence can
be defined by the leaf depth smaller than a pre-defined threshold. The MCDmethod utilizes the Mahalanobis
distance based on the covariance matrix of the dataset to evaluate each sample and defines the outliers by the
Mahalanobis distance larger than a designated value. In the ABOD method, each sample corresponding to
one point in feature space is evaluated by the variance of the angles between vectors from it to every one of
the other points. The angles of a normal point in a cluster tend to differ widely and exhibit a relatively larger
variance, while an outlier owns the integrally small angle and can be defined by the variance lower than a
prefixed cutoff value. The details of these four algorithms are are given in Section S1, Tables S2 and S3, and
Figures S1 and S2 of the supporting information, along with the code application on how to perform a fast
search for outliers. Regarding the missing values of some descriptors, we might drop the sample or descriptor
that contains one or more missing values, or fill in the average values, while some cutting-edge ML algorithms,
for example, extreme gradient boosting (XGBoost) [50] and categorical boosting (CatBoost) [51], can handle the
missing values internally.

Data sources
Databases
Generally, a dataset can be collected from three sources: currently available databases, publications, and lab-
scale data. There are several publicly available experimental and computational databases, covering numeric
(properties and processing conditions) and image [X-ray diffraction (XRD) and X-ray photoelectron spec-
troscopy (XPS)] data, such as those listed in Table 1, including the Materials Project [52], Inorganic Crystal
Structure Database (ICSD) [53], Open Quantum Materials Database (OQMD) [54,55], Materials Platform for
Data Science (MPDS) [56], Materials Genome Engineering Databases (MGED) [57], Materials Data Specifica-
tion (MDS) [58] and others [58–62].
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Significant time can be saved by building ML models using databases instead of collecting samples from pub-
lications. As a result, researchers can instead dedicate their efforts to selecting, comparing and cascading the
ML algorithms. For instance, Rafael et al. [63] proposed an automatic chemical design approach by combining
the variational autoencoder (VAE) framework and the open-source cheminformatics suite RDKit [64]. Two
autoencoder systems were carefully designed and fitted based on one dataset with 108,000 molecules from
QM9 [65] and another dataset with 250,000 drug-like commercially available molecules extracted at random
from ZINC [66]. The most publicly available databases usually contain general information without specific
properties and processing conditions. For example, it is difficult to obtain PCE data from the OQMD database.
In this context, databases for specific types of materials might be more important for their particular fields [31].
The Harvard Clean Energy Project (CEP) is a distributed computing effort for screening organic photovoltaic
candidates carried out by volunteers connected to the IBM World Community Grid [67], which has provided
1.3 million donor materials for non-fullerene materials [68]. The NIMS Materials Database (MatNavi) aims
to contribute to the development of new materials and the selection of materials, and covers polymers, inor-
ganics, metallics and their computational properties. The Harvard Organic Photovoltaic Dataset (HOPV15) is
formed on the CEP and has assembled experimental photovoltaic structures from the literature alongwith their
quantum-chemical calculations performed over a range of conformers [69]. Venkatraman et al. constructed the
DSSCDB (DSSC database) to provide over 4000 synthesized sensitizer dyes with the reported device details,
such as performance and experimental processing conditions [70].

Publication data
Collecting data from publications is the second choice, especially when there is a lack of accomplished, author-
itative, and professional databases in the concerned fields. Odabası et al. presented an overview and analysis of
the 1921 organo-lead-halide PSC device performances that were accumulated from 800 publications between
2013 and 2018 [71]. By extending the dimensions of the dataset, more assessments on the reproducibility, hys-
teresis, and stability of the extended dataset using association rule mining methods were further carried out
in 2020 [72,73] and 2021 [74]. Compared to the direct usage of databases, it is noteworthy that significantly more
endeavors are urgently required to check the consistency and integrity of the collected data before ML/DL
model building.

Lab-scale data
Lab-scale experiments and computations in individual research labs are the most fundamental and widely
distributed data sources and generate original and valuable data. Coinciding with the developments in high-
throughput experiments and computations, the scale of data is growing fast, especially the size of calculated
data, which are scaled up quickly through high-throughput platforms and various quantum-based software like
Materials Studio (MS) [75], the Vienna Ab initio Simulation Package (VASP) [76–79] and the Gaussian suite [80].
In the work of Hartono et al., 21 organic salts were deposited as capping-layer materials on the top of a thick
film of methylammonium lead iodide (MAPbI3) to investigate the influence of capping layers on the MAPbI3
stability [81]. The SHapley Additive exPlanations (SHAP) tool [82] was used to determine two important factors,
namely, the polar surface area and the number of H-bond donors. Furthermore, Saidi et al. systematically
produced a dataset composed of 862 halide perovskite materials with their optimized structures and bandgaps
via DFT to develop ML models [83]. With developments in robotics, experiments can be processed automati-
cally, and hence robot-based experimental lab-scale data are also expected to be scaled up exponentially. For
instance, Zhao et al. utilized a high-throughput robot (HTRobot) system coupled with ML and robot learning
to synthesize, characterize and analyze over 1000materials of interest [84]. FurtherML analysis of the generated
data yielded a correlation between temperature and stability.

Descriptor generation
Descriptors, also known as features, and search space are the two crucial issues in ML.The descriptor types of
material structures depend on whether the structures are aperiodic or periodic. Aperiodic structures can be
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stored in the file types of the simplified molecular-input line-entry system (SMILES) or molecular file (MOL),
while periodic ones can be dumped into crystallographic information files (CIFs). Aperiodic system struc-
tures, including the pure organic structures of photovoltaic absorbers in OSCs, DSSCs, and metal-organic
frameworks (MOF), can be depicted using molecular descriptors, while atomic and crystal structural descrip-
tors are generally used for periodic systems, e.g., the crystal perovskite structures in PSCs.

Molecular descriptors
Thousands ofmolecular descriptors in dozens of types have been proposed and generatedwith assorted tools [85].
Taking one of these tools, Dragon software [86,87], as an example, we can generate 5270 descriptors in 30 types
[Table S1], from the simplest 0-dimensional (0D) constitutional indices to the most abstract and complicated
3-dimensional (3D) spatial representations. The optimized structures via DFT calculations are needed for the
generation of 3D descriptors, while the other descriptors can be based on only 2D structures, such as in the
SMILE format and its enhanced versions, such as Selfies [88].

The development of an interpretable ML model requires simple and understandable descriptors, e.g., the
descriptors marked as “Easy” in Table S1. Kar and co-workers [89] generated, using Dragon 6 software, 248
simple descriptors covering constitutional indices, ring descriptors, topological indices, connectivity indices,
functional group counts, atom-type E-state indices, and 3D-atom pairs from the optimized structures for 273
collected arylamine organic dyes that were divided into 11 groups. Eleven linear regression models with inter-
pretative features were then developed to predict PCE values with robust performances, and 29 new materials
were accordingly designed with higher predicted PCE values. In 2020, Krishna et al. [90] collected over 1200
dyes from seven classes and generated only 2D descriptors from Dragon 7 [86] and PaDEL-descriptor 2.21 soft-
ware [91]. Eight linear models targeting the PCEs for each structure type were built along with their detailed
feature interpretations, while ten new materials were designed with better predicted target values. Our group
also has conducted relevant studies, especially on the interpretation of more abstract descriptors [92,93]. In our
work [92,93], 3 hardly interpretable descriptors were successfully unveiled in the relations between the structures
of sensitizers and their PCE values, as illustrated in Section S2, whereMor14p andMor24m could be explained
in favor of Csp3−S, Csp ≡ Csp, Csp2 = Csp2 and C-O bonds rather than the Csp3 − Csp3 bond. R2s depicts that
the sensitizer structures should have a lower density of geometrically marginal atoms, owing to the stronger
electronegativity or higher bond order of the R=O, R−F, and R≡N bonds.

Fingerprints (FPs), as defined by Shemetulskis et al., are the fixed size Boolean vectors that encode molecules
by exploding their structures in all the possible substructure patterns under a given set of rules [94]. The most
widely-used types are the path-based FPs that represent the substructures as linear chains of connected atoms
and the extended connectivity fingerprints (ECFP) that use a variant of Morgan’s extended connectivity algo-
rithm [94–97].

FPs were originally introduced for fast database searching by evaluating the similarity/diversity between com-
pounds. In recent years, FPs have been integrated into tools like Dragon software [86] and RDKit [64] and also
applied in ML models for various organic systems, such as sensitizers in OSCs and DSSCs. Sun et al. used
FPs, images, SMILE strings, and structural descriptors to depict the structures of 1719 organic photovoltaic
donor materials collected from publications [98]. The random forest (RF) model with FPs achieved the highest
accuracy of 86.67% in the classification task to identify the binary categories with a 10% PCE as the boundary.
Kranthiraja et al. generated ECFPs for a collection of 556 samples of organic photovoltaic materials [99]. A RF
model targeting PCEs was trained to yield a correlation coefficient (𝜌) of 0.86 in leave-one-out cross-validation
(LOOCV).
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Table 2. Bond parameters arranged by Nianyi Chen

Bond parameter Description

Ionic radius [Table S4] Ionic radii for elements sand some chemical fragments
Covalent radius [Table S5] Covalent radii for elements
Ionization energy [Table S6] Ionization energies for elements along with different degrees from I to VIII
Metal radius [Table S7] Metal radii of the metal atoms in their elemental metal
Valence electron to covalent radius ratio [Table S8] The ratio of covalent radius [Table S5] divided by valence electron number
Electronegativity [Table S9] Electronegativity for elements
Equivalent conductance [Table S10] Equivalent conductance for molten chloride when the materials are at their melting point

Atomic descriptors
Compared to organic materials, periodic systems are dependent on their atomic and crystal structural descrip-
tors. Atomic descriptors are publicly accessible in the Mendeleev package [100], Villars database [56], and RD-
Kit [64], while structural descriptors are extracted from quantum-optimized crystal structures. Li et al. [101] em-
ployed the Python Materials Genomics (pymatgen) package [102] to obtain the atomic information and crystal
structural parameters for 1593 ABO3 perovskites sourced from the Materials Project [52]. The atomic descrip-
tors included the atom number, atom mass, Pauling electronegativity, melting point, and electron numbers in
valence orbitals, while the structural features included the octahedral distortion and bond lengths and angles.
Several robust models were established to predict bandgaps, and one champion gradient boosting machine
(GBM) model was obtained with a determination coefficient (𝑅2) of 0.855. Pilania et al. used the Shannon
ionic radii, tolerance factor, octahedral factor, bond valence, electronegativity, and orbital radii of the atoms
in ABX3 perovskite materials to describe their structures [103]. They fitted a support vector machine (SVM)
model with an accuracy score for a test set of 89.60% to determine the formability of the ABX3 materials.

In addition to the public resources mentioned above, one very early work accomplished by Chen [104] also
investigated the atomic descriptors (also described as the atomic parameters or parametric functions of chem-
ical bonds) covering ionic radius, covalent radius, ionization energy, metal radius, ratio of valence electron to
covalent radius, electronegativity, and equivalent conductance, as shown in Table 2. Chen not only assembled
the bond parameters from the works of Slater [105], Belov [106], Pauling [107], Quill [108], Zachariasen [109], Sander-
son [110], and Goldschmidt [111], but also reproduced and complemented the results with quantum calculations.
The details of the atomic parameters have been extracted from Chen’s work and provided in Section S3, which
have been utilized in ML [112].

Such atomic descriptors might not be compatible with hybrid organic-inorganic perovskite (HOIP) structures
due to the lack of relevant organic molecule properties for the A site (considering the HOIP chemical formula
of ABX3). Saidi et al. [83] supplemented the basic properties of 18 organic A-site ions for their 862 generated lab-
scale data samples, including the first and second ionization energies, electron affinities, electric dipole, and
molecular sizes, but still lacked most properties, such as the chemical potential, boiling temperature, enthalpy
vaporization, ionic radii, volume, density and evaporation heat, which can be estimated based on theoreti-
cal methods [113–115]. In our developing Python package, these missing properties were supplemented for 80
organic ions and are also publicly accessible [116].

Other forms of representation
In addition to the descriptors discussed above, images are also one of the promising media to represent struc-
tures. Sun et al. fed a deep neural network with the images of chemical structures to classify the performances
of organic solar cells with an accuracy of 91.02% [117]. Other image data from, for example, XRD and XPS, may
also have the potential to represent structures, but few publications have been reported so far.

3D atomic coordinates can also be utilized as input values directly. The graph convolutional neural network
(GCNN) is a new framework in deep learning for representing periodic crystal systems that are usually based
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on the coordinates in quantum-based optimized structures [118,119]. The GCNN treats the input crystal struc-
tures as a relational graph in which each atom is viewed as a node, and the connection relation between atoms
is regarded as an edge. The model learns and updates the node and edge information in the crystal graph and
finally deduces the relations between the coordinates and the output. Xie et al. [120] trained a GCNN model
to predict various quantum-based properties of crystal structures extracted from the Materials Project [52],
achieving mean absolute errors of 0.004-0.018 log(GPa) for the bulk/shear moduli and 0.097-0.212 eV for the
formation energy and bandgap.

Another method to improve the information quality of features is to utilize symbolic methods that can gener-
ate a massive set of descriptors using combinations of the algebraic functions applied to existing features by
relevant tools such as gplearn [121], DEAP [122] and the sure independence screening and sparsifying operator
(SISSO) [123]. For instance, Bartel et al. successfully discovered an improved tolerance factor for the formability
prediction of perovskites using the SISSO [124].

Data preprocessing
The collected data must be preprocessed to check their consistency and noise, especially for the same exper-
imental data with the same testing conditions reported by different researchers. In addition, string variables
that contain not just numbers but also other alphabetic characters (typically represented as categorical vari-
ables, e.g., lattice structures of hexagonal, tetragonal and cubic) are usually coded into integers by applying
coding algorithms such as the one-hot encoder. If 2 variables are highly correlated, one of them should be
removed to reduce the redundancy.

Scaling data is one of the prerequisite steps in data preprocessing to transform the input values into the same
range, e.g., 0 to 1, which is optional for the tree-based algorithms that are insensitive to variable ranges. Several
common scaling methods are accessible in the Python package scikit-learn (sklearn) [125]. For example, the
standardization method is the most widely used and transforms data to the center with a zero mean and unit
variance. Min-max scaling transforms the variables to lie between a given minimum and maximum value,
often between 0 and 1.

The third important preprocessing step is to randomly divide a whole dataset into three subsets, usually by
arranging a training set for building models, a validating set for evaluation while tuning model hyperparame-
ters, and a test set for final evaluation of the model predicting performance. If the whole dataset is sufficiently
large, the three subsets should possess the same distributions as the whole dataset [126,127]. However, the ran-
dom splitting method does not operate well in relatively smaller and/or sparsely populated data, and hence
the trained model tends to misjudge the test samples. Thus, when encountering a small dataset, the K-fold
cross validation (K-CV) can be used to replace the validation set. In the K-CV method, the sample sets are
randomly divided into K folds, with one of the folds used as the validating set and the rest of the folds acting
as the training set. The divided training and validating sets are conducted K-times such that each of the K-fold
data is used as a validating set once, and the average performances of the K models are taken as the trained
ML model. If the fold number K is equivalent to the number of samples, then each fold contains only one of
the samples and the method is deemed LOOCV.

Feature selection
The next crucial step is the feature selection to determine the critical features highly related to the target values
and eliminate the redundant variables. Generally, feature selection methods can be classified into three types,
namely, filter, wrapper, and embedded methods [128].

Filter-type methods evaluate variables that only rely on the general characteristics of the dataset and do not
involve any ML algorithm, which is advantageous for low computing costs [38,129]. For instance, the minimum
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redundancy maximum relevance method (mRMR) [130–132] selects the optimal features by inspecting the rel-
evance between the features and the target, and the redundancy among features. The maximum relevance is
revealed by searching for the features that have the largest mutual information to the target 𝒚, which satisfies
the following equation:

max𝐷 (𝑺𝑚 , 𝒚) ;𝐷 =
1
𝑚

∑
𝒙𝑖∈𝑺𝑚

𝐼 (𝒙𝑖 , 𝒚) (1)

where 𝑺𝑚 represents the selected set comprising𝑚 features {𝒙𝑖 , 𝑖 = 1, . . . , 𝑚} and 𝐼 (𝒙𝑖 , 𝒚) evaluates the mutual
information between 𝒙𝑖 and 𝒚 as follows:

𝐼 (𝒙𝑖 , 𝒚) =
∬

𝑝 (𝒙𝑖 , 𝒚) log
𝑝 (𝒙𝑖 , 𝒚)
𝑝 (𝒙𝑖) 𝑝(𝒚)

𝑑𝒙𝑖𝑑𝒚 (2)

The redundant information among the features in 𝑺𝑚 is restrained by minimizing their mutual information as
follows:

min 𝑅 (𝑺𝑚) ; 𝑅 =
1

|𝑺𝑚 |2
∑

𝒙𝑖 ,𝒙 𝑗∈𝑺𝑚

𝐼
(
𝒙𝑖 , 𝒙 𝑗

)
(3)

where 𝐼 (𝒙𝑖 , 𝒙 𝑗 ) evaluates the mutual information between 𝒙𝑖 and 𝒙 𝑗 :

𝐼
(
𝒙𝑖 , 𝒙 𝑗

)
=
∬

𝑝 (𝒙𝑖 , 𝒚) log
𝑝
(
𝒙𝑖 , 𝒙 𝑗

)
𝑝 (𝒙𝑖) 𝑝

(
𝒙 𝑗
) 𝑑𝒙𝑖𝑑𝒙 𝑗 (4)

Therefore, we can combine Equations (1) and (3) and consider the following simplest form to optimize them
simultaneously:

max(𝐷 − 𝑅) (5)

Using Equation (5), Gallego et al. [132] gave one of the simplest algorithms as follows:

(1) Select one feature.
(2) Calculate its mutual information with the target as the relevance.
(3) Calculate its mean mutual information with other features as the redundance.
(4) Determine the difference between the relevance and redundancy as the mRMR score.
(5) Rank the features based on score.

After ranking the features by mRMR scores, one might propose a threshold and select features where the
mRMR scores are higher than the threshold. Furthermore, mRMR scores can be combined with anMLmodel
to select features. For example, based on the features ranked by themRMR score, the recursive feature addition
(RFA) [133] procedure can be used to determine the best feature subset by adding or removing one or more
features, as follows:

(1) Select the top feature in the ranked features.
(2) Train and evaluate an ML model.
(3) Select the top two features in the ranked features to evaluate the new model.
(4) Subsequently, select the top three, four, five, and so on features in the ranked features and evaluate the new
model, which results in the optimal feature subset with the best model performance.

The opposite recursive feature elimination (RFE) performs the same procedure but starts from the full feature
set and eliminates features from the inverse order. By combining the mRMR filter method and the RFA/RFE
procedure, an optimal feature subset for the model construction can be obtained, while the mRMR can be
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alternated by other filter methods, such as the variance threshold, mutual information, and chi-squared test
methods [128].

Differentiating from filter types, wrapper methods select features depending on the model performance of an
ML algorithm and typically iteratively repeat two steps: (1) searching for a feature subset; (2) evaluating the
model performance with the feature subset, with the best performance corresponding to an optimal feature
subset. In the typical representative genetic algorithm (GA) [122,134–137] method, each feature subset is regarded
as a chromosome and has its own fitness that refers to the model performance of a specified algorithm. The
superior/inferior chromosomes are retained/discarded, while new chromosomes are regenerated in each iter-
ative step (known as generation) by mutating and crossing over. The detailed procedure of a GA is as follows:

(1) Generate a population composed of chromosomes. Each chromosome represents a feature subset.
(2) Evaluate chromosomes in this population by an ML model with a loss function. The model performance
is set as the score for each chromosome.
(3) Deprecate the chromosomes with low scores.
(4) Crossover a randomly selected pair of chromosomes by exchanging their subparts to generate two new
chromosomes and supplement the population.
(5) Mutate a randomly selected chromosome (usually < 1%) by slightly altering part of its features to generate
one new chromosome and supplement the population.
(6) Repeat steps (2)-(5) until the maximum step is reached.

Anotherwidely usedwrapper type is sequential forward selection (SFS) and its backward counterpart (SBS) [138].
SFS starts with one feature and finds the best feature that can maximize the performance of a model trained
by one feature only, where, in contrast to RFA, every one feature is chosen randomly or iteratively. The sec-
ond feature (every feature is chosen randomly in the rest features) is then added, the model is trained by two
features, and the best second feature is selected. The procedure continues until the best performance is found
by testing, which finally selects the desired features. SBS follows the same concept but from the full feature set
and removes one feature that can maximize the model performance.

Embedded methods perform the feature selection in the process of training ML models and are specific to
some ML algorithms that can export feature scores internally, e.g., tree-based algorithms (decision trees, RFs,
and so on) [129,139]. When constructing a decision tree structure, the change in the Gini index caused by each
feature is calculated and the features with high influence on the Gini index can be chosen for the selected
set to train the decision tree model [140]. In addition, in the RF algorithm, multiple decision tree models are
combined together, and the important features are determined by the average entropies from the sub-trees. In
this regard, the features are sorted by Gini entropies in tree models and the feature subset is then selected via
the RFA or RFE procedure. For example, Wen et al. employed embedded methods by combining RFE and
tree-based models to select the features, which led to up to nine features remaining [141]. Li et al. adopted the
same method to filter the optimal instrumental features for the bandgap of ABO3 perovskites, in which the
model could reach a stable 𝑅2 value of 0.94 in cross validation with the selected 24 features [101].

The contributions of features to model predictions can be evaluated by SHAP values [82,142] Given a full feature
set 𝑇𝑛 composed of 𝑛 features and a trained ML model (or a fitness function) 𝑓 that takes a feature set 𝑆
comprising 𝑚(𝑚 ≤ 𝑛) features as inputs and exports a prediction 𝑓 (𝑆), the Shapley value 𝜓𝑖 of a feature 𝒙𝑖 is
hence defined as follows:

𝜓𝑖 =
∑

𝑆∈{𝑇𝑛 |𝒙𝑖}

𝑚!(𝑛 − 𝑚 − 1)!
𝑛!

[ 𝑓 (𝑆 ∪ {𝒙𝑖}) − 𝑓 (𝑆)] (6)

where 𝑆 ∈ {𝑁 |𝒙𝑖} indicates that 𝑆 will traverse all the feature subset from the total set 𝑇𝑛 but exclude the
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feature 𝒙𝑖 . The sum of the absolute SHAP values over the entire dataset of a feature represents the feature
contribution and hence is used to rank the features. In one of our recent works [143], the SHAP method was
used to determine six and four optimal features for the XGBoost and GBM classification models, respectively,
rendering an over 85% test accuracy.

ML model construction
We now consider the core stage to select a suitable data-driven model for describing the relationship between
the features and properties comprehensively, which also can be regarded as establishing a mapping function
with multiple inputs and one or multiple outputs using ML/DL techniques. Benefitting from the decades of
efforts taken by scientists in the fields of computer science, mathematics, and other related fields, abundant
choices of user-friendly ML/DL algorithms [Table 3] with powerful predictivity have been publicly distributed
and widely used, involving the typical tools, such as sklearn [125], XGBoost [50], LightGBM [144], PyTorch [145],
and TensorFlow [146], which help materials scientists focus on exploiting feature spaces.

ML algorithms
Linear model
Linear regression. One traditional but still widely used algorithm is linear regression (LR), which expects the
target value to be a linear combination of the features. A linear model is usually fitted by reducing the residual
sum of squares between the observed and approximate target values via the ordinary least square method. In
spite of its simplicity, there are still a large number of applications in photovoltaic fields [89,90,92,147–149]. For
example, in the works of Kar [89,90,150–153], the LR algorithm was largely employed to fit multiple robust linear
models for DSSCs.

Logistic regression classification. Logistic regression classification (LRC) is proposed to complement the
classification form of LR by introducing a logistic function to predict the probability of a certain label [154–156].
Yu et al. built up an LRC model to determine whether a perovskite film exists after post-treatment, which led
to a competitive test accuracy of 84% to 86% of the SVM [157].

Lasso and ridge regression. To reduce the overfitting problem of LR, the L1 regularization penalty is im-
posed into the calculation for the residual sum to form the lasso regression [158,159], while the L2 regularization
penalty is expected to obtain the ridge regression (RR) [160]. In the work of Li et al., the lasso model, which
was fitted to predict the formation energy of hypothetical perovskite materials based on only composition and
stoichiometry information, exhibited a 10-fold cross-validation 𝑅2 of 0.75, which was close to the value for RF
of 0.80 [161]. Stoddard et al. trained LR, RR, and lasso models to predict the time when the carrier diffusion
length of MAPbI3 dropped to 85% of its initial value with a mean test error of 12.8% [162]. After applying a
kernel trick into the RR algorithm, the kernel ridge regression (KRR) can be formed. Padula et al. employed
KRR to perform multiple models based on electronic properties and FPs to predict the device performances,
in which the model targeting PCE values had the largest 𝜌 value of 0.68 [163].

Decision trees
The so-called classification and regression tree (CART) algorithms, also known as decision trees, construct a
tree-like structure by a binary recursive partitioning procedure capable of processing continuous and categor-
ical features. The data samples are partitioned recursively into the binary nodes in each step (known as depth)
by making a decision based on feature attributes until the number reduces to zero or the depth reaches a spec-
ified maximum [164]. Given the naive operating rule, it is simple to understand and interpret CART models by
visualizing their tree structures. For example, Paul et al. trained a decision tree model for inorganic-organic
hybrid materials to gain more deep insights into the influence of experimental conditions and perovskite prop-
erties on the reaction outcomes [165].
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Table 3. Popular ML/DL algorithms for materials design

Algorithm
Category

Derived Algorithm ML Task Type Comment/Trait

Linear model

Linear regression (LR) Regression Traditional but still widely used

Logistic regression
classification (LRC) [154–156]

Classification Introduce logistic function into LR

Lasso regression [158,159] Regression Introduce L1 regularization penalty into LR

Ridge regression (RR) [160] Regression Introduce L2 regularization penalty into LR

Decision tree

Iterative Dichotomiser 3 (ID3) [222] Classification Use entropy to build decision tree

C4.5 [223] Classification Use entropy gain ratio to build decision tree

Classification and Regression
Tree (CART) [164]

Regression and classification Use Gini entropy to build decision tree.
Usually, the term of decision tree refers to CART algorithm

Ensemble trees
(Averaging approach)

Pasting [167] Regression and classification Multiple trees are parallelly trained on
randomized sample subsets without replacement

Bagging [168] Regression and classification Multiple trees are parallelly trained on
randomized sample subsets with replacement

Random subspaces [169] Regression and classification Multiple trees are parallelly trained on
randomized feature subsets with replacement

Random forest (RF) [170] Regression and classification Multiple trees are parallelly trained on
randomized samples and feature subsets with replacement

Ensemble trees
(Boosting approach)

Adaboost [172] Regression and classification Multiple trees are sequentially trained to
optimize sample weights

Gradient boosting
machine (GBM) [173]

Regression and classification Multiple trees are sequentially trained
to eliminate the bias of previous trees

XGBoost [50] Regression and classification Introduce second-order Taylor approximation
and L2 regularization into GBM

Light gradient boosting
machine (LightGBM) [174]

Regression and classification Introduce gradient-based one-side
sampling and exclusive feature bundling to GBM

CatBoost [51,175] Regression and classification Adopt ordering principle into GBM

Support
vector machine
(SVM) [48,177,178]

Support vector regression (SVR) Regression A “must-try” and widely used algorithm.
SVM usually has robust performance in most ML tasks

Support vector classification (SVC) Classification

Gaussian
process
(GP) [180,181]

Gaussian process regression (GPR) Regression GP develops from Bayesian theorem,
and has few parameters to be adjusted

Gaussian process classification (GPC) Classification

Deep learning

Artificial neural networks (ANN) Regression and classification
Composed of dense layers

Suitable for 2-dimensional data

Convolutional neural network (CNN) Regression and classification Used for image data

Graph convolutional neural network
(GCNN) [38]

Regression and classification Used for coordinates data

Recurrent neural network (RNN) [184] Regression and classification Used for sequential data

Long short-term memory (LSTM)
network [184] Regression and classification Used for sequential data

Gate recurrent unit network [184] Regression and classification Used for sequential data

Generative adversarial
network (GAN) [185–187]

Regression and classification
Consist of an unsupervised generatormodel
and a supervised discriminatormodel,
aiming to produce promising candidates for inverse design

Variational autoencoder (VAE) [188] Regression and classification Involve an encoder network and a decoder network,
and build latent space to represent material structures

Ensemble methods
Ensemble methods have gained significant popularity in recent years due to their merits of robustness, stability,
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and generalization [38,166], which particularly refers to the tree-based mathematic approaches of assembling
multiple CART models to promote the performance over a singular tree model.

Averaging approach. One common case in ensemble methods is the averaging approach, which leverages the
outputs from the several parallelly and independently fitted CARTmodels on average. The base models might
be trained on different training sets that are sampled from the whole dataset. When the random sample subsets
are drawn for each CARTmodel, the algorithm is called pasting [167]. When the random sample or feature sub-
sets are drawnwith replacement, themethod is known as bagging [168] or random subspaces [169]. If the random
sample and feature subsets are both drawn with replacement, the method is entitled RF [170]. The base models
are organized together and make a collective decision, in which the sklearn package provides the basic module
“Voting Class” that is convenient to fill any other model rather than the CART model. Takahashi et al. trained
a RFmodel to predict bandgaps of perovskite materials and estimated 9328 candidates, where 11 undiscovered
Li-/Na-based structures had an ideal bandgap and formation energy for solar cell applications [171].

Boosting approach. Another case in ensemble methods is the boosting approach. The critical idea here is to
build a series of CART models in sequence, with each model fitted to reduce the whole bias from the former
assembled CART models. The final outputs of the boosting model are then determined by the whole sequen-
tially fitted CART models. Adaboost was the first proposed boosting algorithm whose trait is to repeatedly
modify the sample weights in each step of building a new CART model, in which the weights of the samples
with large predicted errors are enhanced and each new CARTmodel is trained on the reweighted samples [172].
The most prevailing algorithm under the boosting theory is GBM and its derivatives, also known as gradient
boosting trees (GBTs) [173]. Rather than modifying sample weights, each CART model in GBM is trained to
predict the bias resulted from the whole former models and the finial outputs are the sum of the whole model
predictions. The derivatives aim to reduce the computing cost and promote the fitness of GBM. XGBoost
is proposed by imposing a second-order Taylor approximation and L2 regularization into the loss function,
which can simplify the procedure of building each CART model [50]. The light gradient boosting machine
(LightGBM) introduces gradient-based one-side sampling and exclusive feature bundling to largely reduce the
sample numbers and the feature dimensions to lower the computing and memory costs when dealing with
gigantic data [174]. CatBoost adopts an ordering principle to handle the specified cases that contain a large
number of categorical features [51,175]. Sahu et al. employed RF and GBM models to predict the OSC device
performance based on 13 material descriptors, giving the similar cross-validation results for PCE values with
𝑅2 values of 0.78 for GBT and 0.76 for RF [176].

Support vector machine
SVMs, including support vector classification (SVC) and support vector regression (SVR), are also some of the
mostwidely-used algorithms and have become amust-trymethod because of their robust performance and fast
computing efficiency [48,177,178]. With a kernel function, SVC finds a separating hyperplane with the maximum
margin in a high-dimensional space, while SVR regresses responses and features in a high-dimensional space
and tolerates error 𝜀 on each side of the fitting hyperplane. In the work of Wu et al., the SVR model was fitted
to predict the unit cell volume of HOIPs for photovoltaic systems, with an 𝑅2 value of 0.989 [179].

Gaussian processes
Gaussian processes (GPs) forML are developed based on the Bayesian theorem andGaussian probability distri-
bution [180,181]. Unlike in other deterministic ML regressions, GP regression utilizes the Gaussian probability
distribution to regress data and express regression results in terms of mean and covariance of the maximal
posterior distribution. The following are the responses 𝒚 used in training and the responses 𝒚∗ to be predicted
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to form a joint normal distribution of
(
𝒚

𝒚∗

)
with a zero mean and joint covariance:

𝑝

(
𝒚

𝒚∗

)
∼ 𝑁

((
0
0

)
,

[
𝑲 𝑲𝑇∗
𝑲∗ 𝑲∗∗

] )
(7)

where 𝑲 and 𝑲∗∗ are the covariancematrixes for data 𝑿 and 𝑿∗, respectively, and 𝑲∗ is the covariance correlated
between data 𝑿 and 𝑿∗. The joint distribution is expressed by:

𝑝

(
𝒚

𝒚∗

)
= 𝑝 (𝒚∗ |𝒚) 𝑝(𝒚) (8)

Clearly, the predication of 𝑝(𝒚∗ |𝒚) is also a conditional normal distribution:

𝑝 (𝒚∗ |𝒚) =
𝑝

(
𝒚

𝒚∗

)
𝑝(𝒚) (9)

The prediction follows the normal distribution 𝑝(𝒚∗ |𝒚) ∼ 𝑁 (𝑲∗𝑲−1𝒚, 𝑲∗∗−𝐾∗𝑲−1𝑲𝑇∗ ). The covariance matrix
𝑲 is calculated by a kernel function. For example, the radial basis function in Equation (3) is the common
choice to solve non-linear problems:

𝑘𝑖 𝑗
(
𝒙𝑖 , 𝒙 𝑗

)
= exp

(
−1

2

���𝒙𝑖 − 𝒙 𝑗

𝑙

���2) (10)

where 𝑘𝑖 𝑗 (𝒙𝑖 , 𝒙 𝑗 ) represents the element value in covariance matrixes and 𝑙 is a parameter. The GP models
were successfully fitted to predict the PCE values for organic photovoltaic materials [68,182].

Deep learning
Artificial neural network. The term deep learning (DL) refers to miscellaneous architectures of neural net-
works. The artificial neural network (ANN) or multi-layer perceptron has the simplest and most understand-
able structure, whose structural units comprise the fully connected layers (known as dense layers). As shown
in Figure 3A, a deep ANNmodel is composed of multiple dense layers with a conic distribution in layer length.
The input data, starting from the input layer, are processed through all the dense layers by multiplying each
parametric weight matrix in each layer, which is finally output as the predicted value. A typical example can
be found in the work of Li et al., in which the trained ANN model for PSCs achieved the best performance
against the other ML models with the highest 𝑅2 value of 0.97 for bandgap predictions and the highest value
of 0.80 for PCE predictions [183].

Convolutional neural network. By appending convolution layers in front of the dense structure, as shown in
Figure 3B, the convolutional neural network (CNN) is formed to extract spatial features from images, which
can be applied in processing characteristic results that are presented as images, such as from XRD, XPS, and
so on [38]. As mentioned in the descriptor section, the GCNN is suitable for convolving spatial structure infor-
mation from coordinate data and has been applied in predicting the moduli, formation energy, and bandgap
of crystal structures from the Materials Project [52] by Xie et al. [120].

Recurrent neural network. Other advanced DL architectures may also have significant potential for materials
science applications, though there have been few reported publications. For example, when dealing with se-
quential data, including various spectra data, the recurrent neural network (RNN), long short-term memory
(LSTM) network, and gate recurrent unit network can be exerted to train the relevant model [184].

Generative adversarial network. The generative adversarial network (GAN) [185–187] is a sophisticated DL
architecture consisting of an unsupervised generatormodel and a supervised discriminatormodel, which aims
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Figure 3. Architectures of (A) artificial and (B) convolutional networks.

to produce promising candidates for inverse design [184] Specifically, the goal of a generator model is to fit a
function 𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙) that approximates the real sample distribution 𝑝𝑟𝑒𝑎𝑙 (𝒙) with no direct access to real data
points. The discriminatormodel has access to both the real and fake samples (drawn from the generatormodel),
whose purpose is to differentiate from the real or fake. The error via the discriminator model can be used
to train both the discriminator and generator models. Given a well-trained GAN model, we may use the
generator model to design reliable candidate structures without human intuition. Though the applications
of the GAN model are largely restrained because of the difficulties in converging the pair of models and the
need for a significant amount of real data samples of high quality [185–187], we expect that these bottlenecks will
be overcome as data samples accumulate and the GAN develops.

Variational autoencoder. The variational autoencoder (VAE) [188] is a comparable DL architecture to GAN
involving an encoder network and a decoder network, whose novelty is to build a so-called latent space to
represent thematerial structures [63] Crucially, the encoder networkmaps thematerial structures (in the SMILE
or CIF format) to vectors in a lower-dimensional space known as latent space, which acts to compress the
information from the original data into the vector in latent space. Furthermore, the decoder network performs
the inverse operations to decompress the vector to its original form. By training both the encoder and decoder
networks to process and reproduce the original data, the VAEmodel is expected to learn the potential features
from the real data samples. Benefitting from the continuous and differentiable vectors in latent space, we
can extrapolate and construct new reliable material structures by applying direct search engines (e.g., greedy
search), since latent space is a continuous vector space.

Evaluation metrics
Before an ML/DL model is trained, as discussed in section ”Data preprocessing” (section 2.3) , a dataset is
usually divided into a training set, validating set, and test set. The prediction of a trained model on the training
set is referred to as the training prediction and the relevant metrics are known as the training metrics. The
training metrics usually reveal good performance since the samples are already used in training and therefore
cannot be an effective indicator for the model performance. Similarly, the validating and test predictions and
metrics can be obtained when predicting the samples in the validating and test sets. Good validating metrics
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are adopted to optimize the hyperparameters, if any. High performance in test metrics signifies excellent
predictivity and generalization abilities.

In regression, the determination coefficient (𝑅2), as seen in the previous examples, is the most critical and
common indicator for model performance, in which a higher value signals better model performance. Given
an observation 𝑦𝑖 of sample 𝑖, the corresponding prediction 𝑦̃𝑖 , and the mean value of the observations 𝑦̄, 𝑅2

is defined as:

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̃𝑖)2∑ (𝑦𝑖 − 𝑦̄)2 (11)

The Pearson correlation coefficient (𝜌) is also often employed in regression and in the correlation examination
of features. Given the observation (or feature) 𝒚, prediction (or another feature) 𝒚̃, their covariance array
𝑐𝑜𝑣(𝒚, 𝒚̃) and their standard deviations 𝜎, 𝜌 is defined as:

𝜌 =
𝑐𝑜𝑣(𝒚, 𝒚̃)
𝜎𝒚𝜎𝒚̃

(12)

The values of 𝜌 range from −1 to 1. The maximum 1 reveals a perfectly positive linear proportion relation and
the minimum −1 shows a perfectly negative linear proportion relation.

Various prediction errors can be adopted to signal the model predicting error. For example, the mean abso-
lute error (MAE) is the mean of the absolute difference between each observation and prediction. The mean
squared error (MSE) is calculated from the mean of the squared difference. The root mean squaref are the
correctly predicted while the off-diagonal elemen error (RMSE) is the root of the MSE. The value ranges of
error metrics are largely dependent on the target range.

In the classification task, the total accuracy can be used to indicate the performance of classification models,
which is the division between the correctly predicted samples and the whole samples. To gain more detail,
the confusion matrix, also known as the error matrix, can be employed, which is an N-square array (N is
the categorical number of labels), as shown in Figure 4A. The columns represent the observed labels and the
rows indicate the predicted labels (the definitions of the two axes can be swapped). The element in each pixel
expresses how many samples belonging to the observed label are estimated as the predicted label. Apparently,
the diagonal elements are correctly predicted, while the off-diagonal elements are all incorrect. The accuracies
of a specified class can be obtained by dividing the specified diagonal element by the sum of the corresponding
row. With regards to the binary classification that contains the positive or negative labels, as shown in Figure 4B,
the correctly predicted positive samples are deemed true positive (TP), while the correctly predicted negative,
incorrectly predicted positive and incorrectly predicted negative samples are referred as true negative (TN),
false positive (FP), and false negative (FN), respectively. Precision is defined as the accuracy of the positive
samples, while the recall score refers to the division of TP over the sum of TP and FP, representing the ability
of the classification to find the positive samples with the best value of 1. The F1 score is the combination of the
precision and recall score, defined as:

𝐹1 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (13)

The F1 score is interpreted as a weighted average of the precision and recall score, whose best value reaches 1
and the worst is 0.

In a clustering task, the Silhouette coefficient (SC) is the most common indicator, which is calculated as [189]:

𝑆𝐶 =
1
𝑁

𝑁∑
𝑖=1

𝑏𝑖 − 𝑎𝑖
max (𝑎𝑖 , 𝑏𝑖)

(14)

http://dx.doi.org/10.20517/jmi.2022.07


Page 18 of 44 Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07

Figure 4. Classification task for (a) multiple and (b) binary labels. TP: True positive; TN : true negative; FP: false positive; FN: false negative.

where 𝑎𝑖 is the mean distance between the sample 𝑖 and all other points in the same cluster, 𝑏𝑖 is similar to
parameter 𝑎𝑖 but differs in the next nearest cluster and 𝑁 is the sample number. A higher SC value indicates
better performance of a cluster model, namely, the overlapping areas among clusters are close to zero.

Hyperparameter optimization
Each algorithm might have its own hyperparameters that cannot be directly trained in the training process,
such as a penalty factor, kernel function for SVM, CART tree number, learning rate for GBM, and so on. The
hyperparameters need to be optimized to gain the best set of hyperparameters for a specified model. The grid
search (GS) approach combined with K-CV is the most common method, and it exhaustively exploits the
whole hyperparameter search space to find the globally optimal parameter set, which is effective for a discrete
search space consisting of only a few hyperparameters but is unacceptable regarding time and computational
cost for a uniform search space with multiple dimensions. Due to its simplicity, GS has been widely employed
in current publications. Hartono et al. optimized the KNN, RF, GBM, ANN, and SVM models using the
GS approach from the sklearn package [81], while Choudhary et al. utilized the same method to exploit the
hyperparameters for the LightGBM model [190].

To overcome the high expense of the GS approach regarding time and computational cost, various alternatives
have been proposed. The sequential model-based optimization (SMBO) constructs a surrogate model to ap-
proximate the hyperparameter distribution in the hyperparameter space. In SMBO, the hyperparameters and
optimized object (e.g., LOO RMSE or CV5 MSE of the ML model) are regarded as the input and output, re-
spectively. The criterion of expected improvement (EI) is usually adopted as the optimized object in the SMBO
method, which can be defined as Equation (15):

𝐸𝐼𝑛∗ (𝒎) =
∫ ∞

−∞
max (𝑛∗ − 𝑛, 0) 𝑝(𝑛|𝒎)𝑑𝑛 (15)

where 𝒎 is the one set of hyperparameters, 𝑛 is the corresponding fitness value in model performance, 𝑛∗ is
set as a threshold of 𝑛 and 𝑝(𝑛|𝒎) is the probability distribution of 𝑛 at the conditions of 𝒎. Gaussian process
regression (GPR) is usually recognized as a good choice for the surrogate model to approximate 𝑝(𝑛|𝒎) be-
cause of its few parameters necessary to be optimized. Therefore, the SMBO method, combined with 𝐸𝐼 and
GPR, is depicted as follows:
(1) Draw several random points (𝒎, 𝑛) and set 𝑛∗ as the best fitness value.
(2) Fit a GPR surrogate model to approximate 𝑝(𝑛|𝒎).
(3) Find and evaluate several sets of optimal hyperparameters in current distribution 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑛|𝒎) that maxi-
mizes 𝐸𝐼𝑛∗ (𝒎).
(4) Add the pairs of new evaluated points (𝒎, 𝑛) to update the GPR surrogate model.
(5) Repeat steps 3 and 4 until the iteration terminates.
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Bergstra et al. [191] proposed a tree-structured Parzen estimator approach to modify the 𝐸𝐼 criterion in the
SMBO method, in which this strategy approximates 𝑝(𝒎 |𝑛) and 𝑝(𝑛) instead of 𝑝(𝑛|𝒎). 𝑝(𝒎 |𝑛) is defined
using two hyperparameter densities as Equation (16):

𝑝(𝒎 |𝑛) =
{
𝑙 (𝒎) 𝑖 𝑓 𝑛 < 𝑛∗
𝑔(𝒎) 𝑖 𝑓 𝑛 ≥ 𝑛∗ (16)

where 𝑙 (𝒎) is the density of the hyperparameter points whose corresponding fitness values are lower than the
threshold 𝑛∗ and 𝑔(𝒎) is the opposite. The threshold 𝑛∗ is set to be some quantile 𝛾 (e.g., one quantile, 25%)
of the observed 𝑛 values, and therefore 𝑝(𝑛 < 𝑛∗) = 𝛾. Equation (15) can then be transformed as follows:∫ 𝑛∗

−∞
(𝑛∗ − 𝑛) 𝑝(𝒎 |𝑛)𝑝(𝑛)

𝑝(𝒎) 𝑑𝑛 (17)

By applying 𝑝(𝑛 < 𝑛∗) = 𝛾, Equation (18) is reached:

𝐸𝐼𝑛∗ (𝒎) =
𝛾𝑛∗𝑙 (𝒎) − 𝑙 (𝒎)

∫ 𝑛∗
−∞ 𝑝(𝑛)𝑑𝑛

𝛾𝑙 (𝒎) + (1 − 𝛾)𝑔(𝒎) ∝
(
𝛾 + 𝑔(𝒎)

𝑙 (𝒎) (1 − 𝛾)
)−1

(18)

Equation (18) shows that to maximize 𝐸𝐼𝑛∗ (𝒎), the favorable hyperparameter points should have the high
probability under 𝑙 (𝒎) and the low probability under 𝑔(𝒎) in pursuit of a lower 𝑔(𝒎)

𝑙 (𝒎) and hence higher
𝐸𝐼𝑛∗ (𝒎).

Other useful methods may also have their own merits of automated searching, efficiency, and easy paralleliza-
tion, such as the Optuna [192] and Ray [193] packages; however, they are beyond the scope of this review.

ML model applications combined with domain knowledge
High-throughput screening
Among the common ML model applications listed in Table 4, high-throughput screening might be the most
popular method to apply a fitted model in materials science, which filters potential materials with the required
properties that are predicted by the model. To decrease incorrect trials in experiments and accelerate the
search procedure more efficiently, domain knowledge may be required not only to restrain the search space for
candidate materials as much as possible in pursuit of low costs in time and computation, but also to downselect
the optimal candidates from the high-throughput screening results.

Wu et al. prepared a search space of 230808 ABX3 HOIPs constructed by 21 experimental organic cations for
the A site, 50 metallic cations for the B site, and ten anions for the X site [179]. After the procedures of charge
neutrality and stability screening, the target bandgaps of the remaining 38086 HOIPs were predicted by the
fitted GBM, SVR, and KRR models. Under the criterion of a bandgap range of 1.5-3.0 eV, 686 candidates were
finally screened out.

Lu et al. [194] collected 1102 ferroelectric photovoltaicmaterials (407 perovskites and 702 non-perovskites) from
the literature [195,196] to build up a classification GBM model to determine the perovskite structure and two
regression GBM models to predict the bandgap and polarizability. The search space for the candidates was
constructed by the elements involved in the dataset, leading to 19841 potential compounds in total. After
being predicted by the three GBM models, 151 ferroelectric photovoltaic perovskites were shortlisted and
further evaluated by first-principle calculations.

Gómez-Bombarelli et al. created a search space of over 1.6 million structures to identify promising novel
organic light-emitting diode (LED) molecules [197]. An ANN model was trained to predict the delayed flu-
orescence rate constant. A total of 2500 candidates were filtered with suitable predicted values and further
evaluated by human experts on a custom web voting tool. The four best potential candidates voted by the
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Table 4. Popular ML model applications

MLmodel
application

Description Examples

High-throughput
screening

Use a well-fitted model to predict huge
potential materials generated from
permutations. The materials are furtherly
filtered by domain knowledge and the
optimal candidates are down-selected from
the large-scale samples.

Wu et al. predicted the bandgaps of 38086 HOIPs using GBM, SVR, and
KRR models.686 candidates with bandgaps of 1.5-3.0 eV were selected [179]

Lu et al. used three GBMmodels to predict the structure type, bandgaps
and polarizabilities of 19841 ferroelectric photovoltaic materials, resulting in
151 shortlisted candidates [194]

Gómez-Bombarelli et al. built an ANN model to predict the delayed fluore-
scence rate constant of 1.6 million LED molecules, leading to the four most
promising ones that were further identified by experiments [197]

Online ML model

The fitted models could be shared to other
researchers on websites. The visitors could
obtain the predictions from the online models
directly by uploading their own data as the
required format.

Lu et al. [93] provided two BODIPY dye models to predict the PCEs at
http://materials-data-mining.com/bodipy/

Tao et al. [198] offered one model to predict the bandgaps of perovskite
oxides at
http://materials-data-mining.com/ocpmdm/material_api/ahfga3d9puqlknig
and another model to predict corresponding hydrogen production at
http://materials-data-mining.com/ocpmdm/material_api/i0ucuyn3wsd14940

Xu et al. [199] afforded their model to predict polymer bandgaps at
http://materials-data-mining.com/polymer2019/

Model analysis

Critical factors could be identified by
calculating feature importance and further
analysis to explore the underlying principles
between properties and structures.

Xiong et al. [39] identified the vital features 𝑉 𝐸𝐶, 𝐻𝑚𝑖𝑥 , 𝛿𝑋𝑃 , and 𝛿𝑇 𝑏

for the hardness and UST of CCAs by analyzing RF models

Zhang et al. extracted the important features from XGBoost model, including
the radius, first ionization and lattice constant of B site, the radius of A site
and tolerant factor [143]

Jin et al. pinpointed the most crucial feature packing factor from GBM
model [200]

Yu et al. [157] obtained the significant features of sigma orbital electronegativity,
acceptor site count, Balaban index, donor count and distance degree from
lasso model

ML: Machine learning; GBM: gradient boosting machine; SVR: support vector regression; KRR: kernel ridge regression; ANN: artificial neural
network; LED: light-emitting diode; BODIPY: boron-dipyrromethene; PCE: power convention efficiency; 𝑉 𝐸𝐶: valence electron; 𝐻𝑚𝑖𝑥 : mixing
enthalpy; 𝛿𝑋𝑃 : the mismatch in elemental first ionization potentials; 𝛿𝑇 𝑏 : the mismatch in elemental boiling points; UST: ultimate tensile strength;
CCAs: complex concentrated alloys.

experts were finally synthesized and tested experimentally, with a consistent result with the model predictions
found with a mean unsigned error of 0.1 μs−1.

Online ML models
Fitted models can be shared with other researchers by providing them on public websites, and this is an area
where significant progress has been achieved in our group. For example, two boron-dipyrromethene (BOD-
IPY) dye models were provided at http://materials-data-mining.com/bodipy/, which are widely accessible to
use as establishedmodels for predicting the PCE values of BODIPYdevices [93]. Tao et al. constructed twomod-
els for predicting the bandgap (http://materials-data-mining.com/ocpmdm/material_api/ahfga3d9puqlknig)
and hydrogen production rate (http://materials-data-mining.com/ocpmdm/material_api/i0ucuyn3wsd14940)
of perovskite oxides [198]. It is only required for the users to provide chemical formulas to predict the bandgap
and formulas plus experimental conditions to predict the hydrogen production rate. Xu et al. afforded their
model to predict the bandgap of polymers at http://materials-data-mining.com/polymer2019/, along with a
full illustration of the ML training procedure [199].

Model analysis
In addition to models predicting applications, analysis based on feature importance can also help to iden-
tify critical factors, which can further clarify the underlying principles between the factors and properties by
combining our domain knowledge. The SHAP approach is one emerging method for the analysis of feature
contributions to model predictions.
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In one of our recent works [39], SHAPwas employed to explore the feature importance in established RFmodels
that were targeted to hardness and ultimate tensile strength (UTS) for complex concentrated alloys (CCAs), in
which themost vital features were identified, covering the valence electron𝑉𝐸𝐶, themixing enthalpy𝐻𝑚𝑖𝑥 , the
mismatch in elemental first ionization potentials 𝛿𝑋𝑃 for the hardness and the mismatch in elemental boiling
points 𝛿𝑇𝑏 , 𝐻𝑚𝑖𝑥 for UTS. Specifically, the features 𝑉𝐸𝐶 < 7.67, 𝐻𝑚𝑖𝑥 < −9.8 KJ/mol, 𝛿𝑋𝑃 > 0.067 for the
hardness and 𝛿𝑇𝑏 > 0.15 and𝐻𝑚𝑖𝑥 < −14.6KJ/mol forUTS resulted in positive Shapley values that contributed
to larger predictions.

We also applied SHAP to identify the most important structural factors to predict the formability of HOIP
materials [143], in which the XGBoost classificationmodel was built based on 102HOIP samples and the filtered
atomic descriptors along with the LOOCV accuracy of 95% and test accuracy of 88%. According to the SHAP
analysis, it was found that the radius and lattice constant of the B site in ABX3 were positively related to the
formability, while the A site radius, tolerance factor, and first ionization of the B site have negative relations.
Given the established model, 198 non-toxic HOIP candidates with a probability of formability over 0.99 were
screened from 18560 virtual samples.

In the research of Jin et al., the feature importance from the GBM model was utilized to pinpoint the most
crucial feature known as the packing factor [200], while Yu et al. adopted the feature importance from the lasso
model to identify the significant features of sigma orbital electronegativity, acceptor site count, Balaban index,
donor count and distance degree [157].

RECENT PROGRESS OF DATA-DRIVEN METHODS
Data­driven progress in PSCs
As discussed in the introduction, despite innumerablemerits as absorbers in solar cell devices, perovskitemate-
rials, especially in the case of HOIPs, still face imperfections regarding scalability, stability, and environmental
pollution. Scalability is mostly related to deposition, film formation, and device integration [201,202], which are
beyond the scope of this review. The remaining two issues are mainly attributable to the unstable structures
and the incorporation of Pb in HOIPs, e.g., the mostly used MAPbI3, formamidinium lead iodide (FAPbI3),
and their derivatives. Most ML/DL studies, accompanying experimental ones, exploit the leading-edge as-
pects of promoting stability, lowering the fractions of polluting elements as much as possible, or designing
new potential material alternatives. The typical ML publications of PSCs are summarized in Table 5.

As light absorbers, the bandgap is one of the most important properties for HOIPs and can act as a simple
and initial criterion to rapidly inspect potential candidates. In this context, Saidi et al. established a complex
hierarchical convolutional neural network (HCNN) to predict the bandgaps of ABX3 HOIP structures with
the simple inputs of atomic descriptors [83]. A total of 380 different compositional ABX3 HOIP structures
(expanded to 862 permutations obtained via rearrangements of the tri-halide moiety) were generated by ar-
ranging Cs in addition to 18 organic ions at the A site, Pb or Sn at the B site, and three halogens (excluding
fluorine) at the X site. Their bandgaps, lattice constants, and octahedral angles were calculated as the relevant
concerned ML targets based on DFT, while the structural coordinates extracted from the relaxed structures
were treated as the inputs for the ML models. Two convolutional neural network (CNN) models were initially
trained to predict the lattice constants and octahedral angles with RMSE values of 0.01 Å and 40◦, respectively.
Therefore, an assembled HCNN model was formed by piping these two predicted properties as the partial
features coupled with the structural coordinates to the third CNN model that was targeted towards bandgaps,
which exhibited a low RMSE value of 0.02 eV. Considering the initial inputs and ultimate output, the model of
Saidi successfully predicted the bandgap based on only the information of the atomic coordinates rather than
any other complicated DFT calculations. Such work may help us to accelerate DFT calculations by predicting
DFT properties via ML models. However, it might be more convincible if the constructed HCNN model can
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Table 5. Typical ML publications of PSCs

Publication Sample Feature ML Task ML Algorithm (Best) Model
Performance

Saidi et al. [83] 380 simulated ABX3

HOIPs
Structural coordinates,
lattice constants and
octahedral angles

Predict bandgap HCNN RMSE 0.02 eV

Li et al. [101] ABO3 perovskite
materials from
Materials Project
(758) and OQMD
(1641)

66 descriptors generated
from pymatgen package,
and BVVS descriptor

Predict bandgap SVM, RF, Bagging,
GBT (best)

Test 𝑅2 0.86

Jin et al. [200] 98 experimentally
reported PV and 98
non-PV materials

22 structural descriptors Identify
photovoltaic
materials or not

GBT (best), SVM,
RF, Adaboost,
SGDC, CART, and
LR

Accuracy 100%

Zhao et al. [84] Synthesized 1400
perovskite samples

A-site ion, stoichiometry,
coating methods, aging
temperatures, humidity,
and illumination

Predict 𝑇80 GBT (best), LR,
and RF

CV RMSE 169

Hartono et al. [81] Synthesized 260 CL
samples for MAPbI3

12 processing conditions
and structural properties
generated from PubChem
database

Predict a key
descriptor onset
representing PSC
stability

LR, KNN, RF
(best), GBT, ANN,
and SVM

CV RMSE 70.8

Zhou et al. [203] 9000 ab initioMD
trajectories

Static and dynamic
variables: 414 for 48-atom
system, and 5440 for
384-atom system

Predict NAC and
bandgap

KNN

Lu et al. [224] 539 HOIPs and 24
non-HOIPs from
reported experiments

Elemental/organic
properties and structural
factors

Determine
formability

CatBoost LOOCV and test
accuracies 100%

Zhang et al. [143] 44 HOIs and 58
non-HOIPs from
reported DFT
calculations

Elemental/organic
properties and structural
factors

Determine
formability (DFT)

XGBoost LOOCV and test
accuracies
91%-94%

Im et al. [225] 540 simulated double
halide perovskites

32 features about atomic
constituents and geometric
information

Predict formation
heat and bandgap

GBRT Test RMSEs
0.021-0.223 eV

Li et al. [183] 333 reported
perovskite samples

Material compositions Predict bandgap
and PCE

LR, KNN, SVR, RF,
ANN (best)

Test 𝜌 0.72-0.97

Lu et al. [194] 1109 perovskites/non-
perovskites from
reported
first-principles
calculations

Elemental and material
properties

Predict
formability, polar
structure,
bandgap

GBM Accuracy 89% 𝑅2

0.916-0.921

Sun et al. [226] Fabricated 75
perovskite films

XRD and absorption data Classify 0D, 2D
and 3D structures

ANN Accuracy 90%

Wu et al. [179] 1346 simulated HOIPs 32 elemental properties
and structural factors

Predict bandgap GBR (best), SVR,
KRR

𝑅2 0.827

Yu et al. [157] Synthesized 50
amines for
post-treatment

Organic descriptors Determine
whether
perovskite films
are destroyed
after
post-treatment

LR, SVM (best),
KNN, decision
tree, Gaussian
Naive Bayes

Test accuracy
86%

Lu et al. [227] 346 HOIPs from
reported
first-principles
calculations

30 elemental and
structural features

Predict bandgap GBR (best), KRR,
SVM, GPR,
decision tree,
ANN

Test 𝑅2 0.97

Li et al. [228] 354 simulated halide
perovskites

Elemental and structural
features

Predict
decomposition
energy

KRR, KNN, SVR RMSE 42-54 meV

Schmidt et al. [229] 250000 simulated
cubic perovskite
materials

Elemental and structural
features

Predict
thermodynamic
stability

RR, RF, extremely
randomized tree,
Adaboost (best),
ANN

Test MAE 121.3
meV/atom
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ML: Machine learning; PSCs: perovskite solar cells; ABX3: the perovskite materials formulated as ABX3; HOIPs: hybrid organic-inorganic
perovskites; DFT: density functional theory; HCNN: hierarchical convolutional neural network; RMSE: root mean squared error; ABO3: the
perovskite materials formulated as ABO3; OQMD: open quantum materials database; BVVS: bond-valence vector sum; SVM: support vector
machine; RF: random Forest; GBT: gradient boosting tree; 𝑅2: determination coefficient; PV: photovoltaic; non-PV: non-Photovoltaic; SGDC:
stochastic gradient descent classifier; CART: classification and regression tree; LR: linear regression; 𝑇80: the time (in hours) required to decay 20%
from PCE initial value; CV: cross-validation; CL: capping layer; MAPbI3: methylammonium lead iodide; PubChem: A database:
https://pubchem.ncbi.nlm.nih.gov/; KNN: K-nearest neighbor; NAC: nonadiabatic coupling; GBRT: Gradient boosting regression tree, the same as
GBT or GBM; GBM: Gradient boosting machine; 0/2/3D - 0/2/3-dimensional; GPR: gaussian process regression; RR: ridge regression; MAE: mean
average error; CatBoost: A new boosting approach of ensemble method: https://catboost.ai/; XGBoost: A new boosting approach of ensemble
method: https://xgboost.readthedocs.io/

Figure 5. Overall workflow of progressive learningmethod. The schematic presents the details of a collection of perovskites and the outlines
of a progressive learning workflow, including instrumental variable generation, bandgap (𝐸𝑔) prediction, and results analysis. Reproduced
with permission from Li et al., J. Mater. Chem. C 8, 3127 (2020). Copyright 2020 Royal Society of Chemistry [101].

be validated by some external samples to show the generalizability of the model available, since the overfitting
problem is very common for CNN-like models.

Similar to the work of Saidi, Li et al. explored the chemical space of ABO3 perovskite materials based on 758
samples distributed over seven kinds of phases with the relevant targeted bandgaps between 0 and 5 eV from
theMaterials Project as the training dataset and 1641materials fromOQMD as the validation dataset [101]. The
overall workflow of this work can be seen in Figure 5. In total, 66 descriptors were mainly generated from the
pymatgen package [102] in Python (labeled as basic descriptors), plus the so-called bond-valence vector sum
(BVVS) descriptors, while four algorithms were used for the ML models, including the SVM, RF, bootstrap
aggregating algorithm (Bagging) and GBT. Eight ML models targeting formation energies and bandgaps were
established, with 𝑅2 values for the validation dataset of 0.953, 0.949, 0.960, and 0.964 for the formation energies
and 0.674, 0.808, 0.790, and 0.822 for the bandgaps, respectively. Similar to the strategy of Saidi, the prediction
of formation energies was then treated as the additional input feature, together with the initial basic and BVVS
descriptors (totaling 67), to further predict the bandgap, in which the remolded models, via four algorithms,
gained 𝑅2 values of 0.734, 0.821, 0.800, and 0.855, respectively. Finally, a feature selection known as “last-place
elimination” based on the GBT model was performed, resulting in an optimal set of 26 features and promoted
𝑅2 values of 0.760, 0.813, 0.817, and 0.856, respectively. The contributions of 26 selected features were ranked
by the GBT algorithm, and it was found that the electron number of the d orbital played the most important
role, followed by the predicted formation energies. The BVVS on the O site also had a significant contribution,
which was chosen to characterize the distortion of the BO6 octahedron. A relatively simple GBT model was
built to predict the quantum-based bandgaps of ABO3 perovskite materials, which exhibited the reliable model
generalizability on the validation set. The newly introduced descriptor BVVS revealed its distinct promotion
for buildingMLmodels, whichmay inspire us to exploremore informative descriptors for perovskite materials.

Compared to the discovery of potential materials by predicting suitable bandgaps, Jin et al. established a clas-
sification model to directly identify 2D photovoltaic materials [200]. To perform the classification task, they
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collected 98 experimentally reported photovoltaic and 98 non-photovoltaic materials, accompanied by the
generation of 22 structural descriptors that were evaluated and ranked by their feature importance. The pack-
ing factor (𝑃 𝑓 ), average sublattice neighbor count, Mulliken electronegativity minimum value, and average
atomic volume played the leading roles in identifying the PV candidates. The backward selection approach
was then employed based on the ranked feature importance to exclude the features with minimal influence
on photovoltaic properties, leaving 19 features reserved. Several ML algorithms were employed to construct
the models, including the GBT, SVM, RF, Adaboost, stochastic gradient descent classifier (SGDC), CART,
and LR. GBT gained the best accuracy, recall, and precision scores (all 100%), while the others performed at
∼90%. A total of 3011 PV candidates from 187093 unexplored materials in the ICSD were identified by the
GBT model. It is noteworthy that the 𝑃 𝑓 values of these candidates were concentrated between 0.3 and 0.5,
and the candidates with the 𝑃 𝑓 value particularly fixed at 0.33 had a 30% chance of being PV materials. The
authors further filtered 26 materials using a criterion known as dimensionality and computed the theoretical
PCE-based DFT methods. As a result, three materials, i.e., Sb2Se2Te, Sb2Te3 and Bi2Se3, exhibited the highest
theoretical PCEs. Taking the electronic properties of SB2Se2Te as an example, it was found that this outstand-
ing performance might be related to the p-p optical transition in Sb2Se2Te enabled by the lone-pair s orbitals
of Sb and the built-in electric field induced by the asymmetric geometry. Nevertheless, the further application
of the constructed GBT model might be constrained due to the small size of the dataset. It, therefore, might
be more reliable if the dataset is expanded or the model is validated by unknown samples or stability tests.

Furthermore, Zhao et al. combined a robotic system, ML, and experiments [Figure 6] to assess the pho-
tothermal stability of APbI3 mixed cation perovskites under different aging conditions [84]. They fabricated
over 1400 APbI3 perovskite samples with 64 compositional combinations by varying the A-site ion (K, Rb,
Cs, MA or FA), stoichiometry, coating method (drop or spin coating), aging temperature (60, 85, 100 or
140 ◦C), humidity (0% or 10%) and illumination (dark or light). The figure-of-merit, namely, the studied
target, was denoted as 𝑇80, which indicates the time (in hours) required to decay 20% from its initial value.
The GBT algorithm was adopted to perform the model construction, with the lower test set RMSE value
of 169 compared to the test set RMSEs for LR (651) and RF (527). SHAP combined with the GBT algo-
rithm was used to interpret the feature importance at different aging temperatures. It was found that the
over-stoichiometric condition (e.g., K0.05FAPbI3.05) led to worse stability caused by the higher defect den-
sity. The authors also discovered that the incorporation of Cs was beneficial to the stability of perovskites
over 100 ◦C but detrimental under 100 ◦C, while the doping of MA was overall neutral for stabilizing per-
ovskites and had a positive effect at low temperatures. Subsequently, the authors performed theoretical sim-
ulations to compare the energy costs of perovskite decomposition and the activation energies of possible de-
composition pathways, resulting in the same conclusion that the incorporation of Cs in FAPbI3 could in-
crease the crystal formation energy and simultaneously decrease the gas desorption barrier, while MA exerts
the opposite effects. Additionally, the authors fabricated MAxCs0.15−xFA0.85PbI3 with an n-i-p structure of
ITO/(SnO2:PEIE)/(PCBM:PMMA)/MnSO4/perovskite/PDCBT/Ta-WOx/Au and the device containing the
composition MA0.1Cs0.05FA0.85PbI3 maintained 90% of the peak PCE value after 1800 h of continuous opera-
tion, in which 10 mol.% organic MA and up to 5 mol.% inorganic Cs/Rb might be a promising incorporation
strategy to improve the device stability at below 100 ◦C. This work excellently applied ML techniques to accel-
erate the experimental progress by analyzing the influence of vital experimental conditions based on the GBT
model and SHAP method.

Considering that the addition of an inert capping layer (CL) might be beneficial to the stability of MAPbI3,
Hartono et al. considered 21 organic salts and 2 X-site anions (Cl/Br) to form potential CL candidates in order
to identify whether the CL has the ability to enhance the stability of MAPbI3 and to probe the underlying
mechanisms [81]. For eachCL film, 260 samples, alongwith their 12 processing conditions, were explored under
the same aging test conditions (85% relevant humidity, 85 ◦C aging temperature and 0.16 Sun illumination).
The authors photographed the samples every 3 min to record the color changes and defined a key descriptor
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Figure 6. (A) Crystal structure of a perovskite with multiple cations, including potassium (K+), rubidium (Rb+), cesium (Cs+), methylammo-
nium (MA+) and formamidinium (FA+). (B) Schematic of HTRobot workflow for automatic synthesis and characterization. The red circles
in the bottom panel indicate the five different positions tested on each sample. (C) Detailed workflow of high-throughput operation to
evaluate perovskite stability. (D) Photograph of HTRobot system, including (1) a robot arm with four pipettes, (2) a camera and humidity
meter, (3) a spectrometer to record the absorbance and photoluminescence, (4) 96-well microplates to mix the precursors, (5) a hotplate,
(6) a stock solution of PbI2, FAI, MAI, CsI and so on, (7) a sample stage, (8) pipette tips, (9) a waste container and (10) a heat sealer to
optionally fuse microplates with aluminum foil. I, II, and III show a panoramic view of the setup and top views of the film fabrication and
solution preparation, respectively. Reproduced with permission from Zhao et al. [84] Copyright 2021 Springer Nature.

onset for PSC stability as the time intercepts of the rapid color change from black to yellow. The onset was
then labeled as the output of the ML models, while the 12 processing conditions were regarded as features
coupled with the structural properties generated from the PubChem database, including molecular weight,
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partition coefficient, indicating the hydrophobicity/hydrophilicity of the molecules, rotatable bond number,
complexity, topological polar surface area (TPSA), hydrogen-bond donor number and element numbers for C,
H, Br, N and I. In total, six regression algorithms, namely, LR, KNN, RF, GBT, ANN, and SVM, were involved,
in which the RF model gained the best RMSE value of 70.8. The RF algorithm was then combined with SHAP
to interpret the model result, showing that the number of hydrogen-bond donors and TPSA were the most
critical factors in determining the stability.

Motivated by the feature importance ranking, the authors further compared the top-performing CL mate-
rial, namely, phenyltriethylammonium (PTEA), which had zero values for hydrogen-bond donors and TPSA,
with other CLs via the methods of X-ray diffraction (XRD), scanning electron microscopy, grazing-incidence
wide-angle-X-ray scattering and Fourier-transform infrared spectroscopy. The XRD data indicated that a new
perovskite phase, (PTEA)2(MA)3Pb4I13, was formed on the top film of MAPbI3. The other results revealed
that the top-performing CL stabilized the MAPbI3 perovskite by modifying the surface structure, coinciding
with a suppression in the loss of methylammonium and the formation of both PbI2 and oxygen-containing
compounds at the surface of the perovskite. With the feature analysis via the RF model and SHAP method,
the authors successfully discovered the vital features and identified PTEA as the most promising CL material.
Combined with the results of the characterization, the new perovskite phase was recognized as the main fac-
tor influencing the device stability. Such work illustrates that ML technology can help us to find promising
materials rapidly and reasonably and even reveal hidden principles.

In addition to materials discovery, ML has also been applied to quantum dynamics to help uncover complex
mechanisms, such as charge carrier trapping in perovskites. For example, Zhou et al. employed the KNN
algorithm to analyze the calculated results from ab initio nonadiabatic MD and the most important structural
factors for the charge carrier dynamics and bandgap ofMAPbI3 [203]. The work started from pristine tetragonal
MAPbI3 with a 48-atom 1 × 1 × 1 supercell and a larger 384-atom 2 × 2 × 2 supercell. A 9 ps ab initio MD
trajectory for both of the two crystal structures was generated with a 1 fs time step. The nonadiabatic coupling
(NAC, proportional to the charger carrier relaxation rate) and bandgap were calculated as the targeted prop-
erties for the crystal structure in each trajectory. A total of 414 structural and motional descriptors, including
bond lengths/motions, bond angles/motions, dihedral angles/motions, crystal lattice motions, relative orien-
tations, and distances, were generated for the 48-atom system, while 5440 descriptors were generated for the
384-atom system. The pairwise mutual information (MI) between each feature and target was estimated based
on the KNN algorithm to reflect the correlations. The various angles/motions of I, Pb, and MA (especially the
top three angles of I-I-I, I-Pb-I and Pb-I-Pb) shared the majority of the top highest MI values for both targets
of the NAC and bandgap, while the crystal lattice motions showed much less importance than its internal
bond and angle descriptors. These results reflected three conclusions: 1) the NAC values depended explicitly
on nuclear velocity; 2) MA motions had a strong influence on the nonradiative relaxation since the MA mo-
tions shared one part of the top highest MI values; 3) the influence on nonradiative relaxation arose from the
geometry of the Pb-I sublattice, mainly including I-I-I, I-Pb-I and Pb-I-Pb angles. The work of Zhou tended
to explore the key factors that have impacts on the NAC and bandgaps of different MAPbI3 structures instead
of making model predictions directly. Such research might be more exhaustive if more model validations were
accomplished.

Data­driven progress in DSSCs
One of the advantages of DSSCs is the mature process of their device fabrication due to decades of their devel-
opment and optimization in experimental conditions. Most ML/DL efforts so far have focused on accelerating
the discovery of new organic dye sensitizers with notable photovoltaic properties that are promising for leading
performance in DSSC devices. The typical ML publications of DSSCs are summarized in Table 6.

Most recently, for the purpose of predicting the PCE values for DSSCs, Krishna et al. [Figure 7] prepared
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Table 6. Typical ML publications of DSSCs

Publication Sample Feature ML Task ML
Algorithm

(Best) Model
Performance

Krishna et al. [90] 1200 reported dyes
that could be divided
into 7 chemical classes

Descriptors generated
from Dragon 7 and
PaDEL-descriptor software

Predict PCE PLS Test 𝑅2 0.61∼0.84

Wen et al. [141] 223 reported organic
dyes

Descriptors extracted from
DFT calculations

Predict PCE GBT-SVM-
ANN model
with voting
weight 4:7:4

CV5 𝜌 0.76
Test 𝜌 0.78

Venkatraman et al. [207] 1961 reported organic
dyes

Descriptors generated
from ISIDA
Fragmentor2017 and RDKit

Predict the
natures of
spectral shift

LDA, KNN,
SVM, CART,
RF (best),
and GBT

Accuracy
71%∼81%

Lu et al. [93] 58 reported BODIPY
dyes

Descriptors generated
from Dragon 7

Predict PCE MLR cLOOCV 𝜌

0.90∼0.90
Test 𝜌 0.90∼0.93

Cooper et al. [209] 9431 dye materials
generated from
ChemDataExtractor

Chemical structures,
absorption wavelengths,
and molar extinction
coefficients

Discover new
co-sensitizers

Text-mining
method

Kar et al. [89] 273 dye sensitizers 248 constitutional
descriptors generated from
Dragon 6

Predict PCE MLR Test 𝑅2 0.60-0.97

Venkatraman et al. [230] 117
phenothiazine-based
dye sensitizers

Molecular fragments Predict PCE PLS Test 𝑅2 0.68

ML: Machine learning; DSSCs: Dye-sensitized solar cells; Dragon 7: a software to generate organic descriptors: https://chm.kode-solutions.net/;
PaDEL: a software to generate organic descriptors: http://www.yapcwsoft.com/dd/padeldescriptor/; PLS: partial least squares; 𝑅2: determination
coefficient; GBT: gradient Boosting Tree; SVM: support vector machine; ANN: artificial neural network; CV5: 5-fold Cross-validation; DFT: Density
functional theory; 𝜌 : pearson correlation coefficient; ISIDA Fragmentor2017: a software to generate organic descriptors:
http://infochim.u-strasbg.fr/downloads/; RDKit: a software to generate organic descriptors:
https://www.rdkit.org/docs/source/rdkit.Chem.EState.Fingerprinter.html; LDA: linear discriminant analysis; KNN: K-nearest neighbor; CART:
classification and regression tree; RF: random Forest; BODIPY: boron-dipyrromethene; MLR: multiple linear regression; LOOCV: leaving-one-out
Cross-validation; ChemDataExtractor: http://chemdataextractor.org/

the largest (till 2020) dataset composed of over 1200 dyes that could be divided into seven chemical classes to
form the corresponding datasets, including 207 phenothiazines, 229 triphenylamines, 35 diphenylamines, 179
carbazoles, 58 coumarins, 281 porphyrins, and 158 indolines, which cover both metal-based and metal-free
dye sensitizers [90]. The dye structures in the seven datasets were depicted by Dragon software version 7 [86]

and PaDEL-descriptor software version 2.21 [91] to generate the descriptors based on their 2D dye structures,
containing constitutional information, ring counts, connectivity index, functional group counts, atom cen-
tered fragments, atom type E-states, 2D atom pairs, molecular properties and extended topochemical atom
indices. Each dataset was split into a training set and a test set using either the Kennard-Stone [204] or modified
k-medoid method [205] in a ratio of 7:3. The descriptor pool was pre-treated to eliminate the intercorrelated
descriptors, followed by feature selection using the in-house program “Best Subset selection v2.1 software”.
Seven descriptor sets were extracted from the feature selection, where 13 descriptors were selected for triph-
enylamines, 14 for phenothiazines, 13 for indolines, 12 for porphyrins, 5 for coumarins, 11 for carbazoles, and
4 for diphenylamines. For each training set, five statistically acceptable and robust individual models (IMs)
were developed.

To enhance the prediction quality of the test set, the authors further used their in-house intelligent consensus
predictor tool [153] to perform “intelligent” selection based on these fivemultiple PLSmodels to complement the
shortages of any single model in their test set predictions. Therefore, four types of consensus models (CMs)
were developed, in which CM0 referred to as the ordinary consensus model, CM1 leveraged the average of
the predictions from the qualified IMs, CM2 was the weighted average predictions from the qualified IMs,
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Figure 7. Schematic representation of the steps involved in the development of QSPR models. Reproduced with permission from Krishna
et al. [90] Copyright 2020 Elsevier.

and CM3 signified the best model from the selected IMs. The CM3 model was the winning model for the
triphenylamine, phenothiazine, indoline, and porphyrin datasets with determining coefficients 𝑅2 on the test
set of 0.61, 0.73, 0.74, and 0.69, respectively. Furthermore, for the carbazole and diphenylamine datasets, the
four CM models had nearly the same performance, with 𝑅2 values of 0.75 and 0.84. However, one model in
the IMs shows the highest 𝑅2 value of 0.68 for the case of the coumarin dataset rather than the CMs.

Afterwards, the authors discussed the mechanistic interpretations of all the descriptors obtained from the
IMs for each dataset. For example, in total, ten descriptors appeared in the five IMs of the triphenylamine
dataset, involving NdsN, B06[C-O], B07[O-S], B09[C-S], B06[O-S], C-038, C-043, nN(CO), EAT_Shape_Y,
graph density, F05[N-N] and X4Av. NdsN represents the N atom numbers with double and single bonds (=N-
), indicating the tendency of the localized 𝜋-𝜋* transition due to intramolecular charge transfer transition (ICT)
from the triphenylamine donor, which showed a negative impact on the PCEs according to the negative variable
coefficient in the IM equations. B06[C-O], B07[O-S], B09[C-S] and B06[O-S] denoted the presence/absence
of C-O, O-S, C-S, and O-S atom pairs at the topological distances of 6, 7, 9 and 6 respectively. The presence of
B06[C-O] led to the bathochromic shift of the absorption spectra and the enhancement of themolar extinction
coefficient of the dye. B07[O-S] influenced the reduction of the absorption range and the shortening of rapid
𝜋-conjunction latency. B09[C-S] was related to the delocalization of the 𝜋 electrons and the blue shift of the
ICT band. C-038 represented the Al-C(=X)-Al fragment (Al referred to aliphatic groups and X referred to
any electronegative atoms like O, N, S, P, Se and halogens), while C-043 represented the X-CR..X fragment (X
refers to any group linked through carbon). Both of them had an impact on preventing the back-transfer of
electrons from the conduction band of the semiconductor to the redox couple and thus reducing the charge
recombination. The descriptor nN(CO) was the number of imides in the dye structures, which would improve
the aggregation property of the dye over the TiO2 surface and promote the recombination reaction between
the redox electrolyte and electrons in the TiO2 nanolayer. The EAT_Shape_Y dealt with size and branching
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in the molecular structure, which would enhance the bulk of dyes resulting in sensitized wide-bandgap in
nanostructured photoelectrode. The graph density indicated the surface area of the dye, which led to the
prolongation of the electron injection into the nanostructured TiO2 from the dye. X4Av and F05[N-N] were
the average valence connectivity and the frequency of two nitrogen atoms at topological distance 5, having
positive and negative contributions to the PCE, respectively.

For the other six datasets, the authors completed a full analysis of the relationships among the descriptors, dye
structures, and PCEs, as detailed in the original article. Inspired by the comprehensive discussions for the
seven chemical classes, the authors designed ten coumarin dyes due to their low PCEs compared to all other
studied chemical classes, in which the designed dyes showed a 20.68%-43.51% increase in PCE values (8.93%-
10.62%) compared with the maximum reported experimental PCE value of 7.4%. Krishna and co-workers
carried out a systematic investigation of the relationships between seven common kinds of organic dyes and
device PCEs for DSSCs. More than 1200 dyes were collected and divided into seven datasets for building
various PLS models. However, most of the PLS models exhibited relatively low 𝑅2 values of 0.61-0.75, except
for the one for diphenylamine dyes. The PLS algorithm is widely used to solve linear problems and might
not be suitable for these datasets. More non-linear model algorithms, such as XGBoost and SVM, could be
considered to enhance the model predictability. Furthermore, the authors evaluated the designed sensitizers
via DFT calculations, while the device performance is also largely subject to other factors, such as the material
interfaces. Experimental validations aremore encouraged to determine the device performance of the designed
organics.

Wen et al. not only established an accurate, robust and interpretable ML model for predicting PCEs based on
DFT-calculated descriptors, but also performed a virtual screening and the assessment of synthetic accessibility
to identify new efficient and synthetically accessible organic dyes for DSSCs [141]. A database incorporating 223
reported organic dyes with experimental PCEs over 4% was built, along with the relaxed electronic structures
optimized at the M06-2X/6-31G(d) level. The input features were comprised of 21 easily obtained descriptors
extracted from the ground-state structures and statistical properties, such as orbital levels, atom counts, and
dipole moments, which were further augmented by the expensively calculated vibrational, cationic, anionic,
and excited-state properties. To achieve a compromise between the calculation costs and model accuracy, two
models (models A and B) were built for the next 2 stepwise large-scale screenings, exerting only the simple and
all features separately. Four algorithms, namely, RF, GBT, SVM, and ANN, were picked to perform the models.
For model A, the 𝜌 values in CV5 were 0.57, 0.57, 0.63, and 0.65, and the 𝜌 values in the test set were 0.68, 0.64,
0.68, and 0.76 for the four algorithms, respectively, signifying that the ANNmodel had the best accuracy. The
extended descriptors were then incorporated to train model B, eventuating 𝜌 values in CV5 of 0.75, 0.76, 0.74,
and 0.74, and 𝜌 values in the test set of 0.70, 0.76, 0.77, and 0.78, respectively.

To enhance the prediction accuracy, the heterogeneous ensemble voting regressor model was built from the
GBT, SVM, and ANN based on the voting weight of 4:7:4. The GBT-SVM-ANN model achieves partially
higher accuracies with 𝜌 values in CV5 and a test set of 0.70 and 0.79 for model A and 0.76 and 0.78 for model
B, respectively. Then, 20 donor groups (D), 12 𝜋 groups (𝜋), 6 acceptor groups (A), and 6 auxiliary acceptor
groups (Aa) were permutated to form 10080molecular structures in the configurations of both typical electron
donor-𝜋-bridge-electron acceptor (D-𝜋-A) andD-Aa-𝜋-A with the additional electron-withdrawing unit (Aa).
Among them, 9886 were left with the converged optimizations in DFT calculations. The 2-stage screening
were then performed by adopting the two GBT-SVM-ANN models to predict the structures, emanating 500
molecules left with their predicted PCEs of over 8%. In addition to the PCEs, the authors also considered
the synthetic accessibility (SA score) developed in reference [206] based on molecular complexity and finally
shortlisted 8 prominent dyes with SA scores of less than 4.

In an earlier study, Venkatraman et al. explored the absorption shift of a dye sensitizer influenced by the ad-
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sorption on TiO2
[207]. A total of 1961 absorption data of dyes adsorbed on TiO2 in various solutions were

collected from ∼ 500 studies. The natures of their spectral shift were determined by red shift (R), blue shift (B),
and unchanged (N) with the threshold of less than 10 nm of the maximum absorption difference, in which the
unchanged (N) was further grouped into NR (positive difference below 10 nm) and NB (negative difference
over -10 nm). The authors considered three classification schemes. The first was the B, N, and R classification
problem with the class distribution (2:1:1). The second problem involved B and NR with a 1:1 distribution,
while the third was the NB and R classification with a distribution of 2.5:1. The atom-bond sequences and topo-
logical indices were generated in 2060 numbers as the input features using the ISIDA Fragmentor 2017 [208]

and RDKit [64], leaving 200 features remaining after correlation filtering. The dataset was randomly split into
training (75%) and test (25%) sets. Six classification algorithms were implemented, including linear discrim-
inant analysis (LDA), KNN, SVM, CART, RF, and GBT, in which the RF models gained the best accuracies
both for the training and test sets: 71% and 76% for the B:N:R classification, 76% and 80% for the NB:R clas-
sification and 76% and 80% for the B:NR classification, respectively. In order to test the performance of the
ML models, three dyes (quercetin, 2,5-dihydroxytetraphthalic acid and carminic acid) in 5 solvents, including
dimethylformamide, acetonitrile, toluene, tetrahydrofuran, and methanol, were examined (14 cases in total),
with 81%, 81% and 71% predicted by the RF models in the B:NR, NB:R and B:N:R classifications, respectively.

Our work concerning the data-driven discovery of novel DSSCs features the ML-aided design of new sensi-
tizer materials based on BODIPY [93] and N-annulated perylene (N-P) [92]. Taking the case of BODIPY as an
example, we collected a total of 58 BODIPY sensitizers that could be divided into horizontal and vertical types,
with both types consisting of 29 samples. In contrast to the work of Krishna [90], we generated descriptors as
much as possible to depict the structures of the sensitizers using Dragon and JChem software, resulting in 5515
dimensions of the features. A GA was employed to filter the descriptors for the two types of dataset, which
were used to construct two LR models (horizontal and vertical models). The performance of the two models
targeting PCEs achieved correlation coefficients 𝜌 of 0.926 and 0.898 in LOOCV and 0.895 and 0.928 in test
validations. It is noteworthy that the feature interpretations were very useful in designing new structures with
quantum-based validations.

In the horizontal model, for example, the most important descriptor, Mor14p (see details in Section S2 and
Figures S3 and S4), indicated that more conjugated structures and a larger number of C-S pairs contributed to
the PCE values, stemming in the attachment of the groups, such as benzodithiophene, dithienothiophene, thio-
phene and similar. An additional C≡C bond andmethoxy groups that are near the B atom in the BODIPY core
were added under the interpretations of the descriptors nTD and F05[O-B]. According to the mapping frag-
ments of the descriptors, new potential sensitizers were then designed based on the sensitizer structure with the
highest PCE in the dataset for each type. The designed structures were further validated using quantum-based
evaluations, which revealed that the new candidate possessed themore conjugated structures, larger absorption
spectra, faster electron injection efficiencies, and better performance in terms of short-circuit current density
(𝐽sc) and open-circuit voltage (𝑉oc). The model prediction and quantum-based validation of the designed can-
didates shared the same results regarding the promising performance. Despite the complete model analysis
and the continuous DFT validations, two main deficiencies still exist, namely, a lack of sufficient samples and
experimental validations, which may constrain the further applications of the models.

The exploitation of new dye structures might have reached a bottleneck due to the scant absorption ability
of singular organic molecules. The introduction of a co-sensitizer to expand the absorption capability is a
practice alternative to enhance the performance of such devices. Cooper et al. probed the discovery of new
co-sensitizer materials with panchromatic optical absorption for DSSCs using a design-to-device approach
integrated with a high-throughput screening and text-mining method [209]. In total, 9431 dye materials were
generated via the text-mining software ChemDataExtractor [210], including their chemical structures, maxi-
mum absorption wavelengths, and molar extinction coefficients. A stepwise screening based on statistics was
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then processed to shortlist the potential dye structures. In the initial stage, small molecules, organometallic
dyes, and the materials that have no absorption in the solar spectra were first removed, leaving 3053 organic
dyes. Two key structure-property data indicated the presence of a carboxylic acid group and a sufficiently
large molecular dipole moment (over 5 D), which were applied to filter the remaining dyes, resulting in 309
dyes being shortlisted. This information suggested that the dyes contain a high-performance DSSC anchoring
group, leading to the effective adsorption onto TiO2 surfaces to create working electrodes, while the latter
information was required for the effective intramolecular charge transfer after photoexcitation.

Afterwards, the authors developed a dyematching algorithm for further screening. Based on the known optical
absorption peak wavelengths and extinction coefficients, each potential dye combination for co-sensitization
could be ranked using a quality score. The algorithm ensured that the dye combination avoided the optical
absorption overlap, exhibited panchromatic absorption, and had an improvement compared to any single dye,
yielding 33 remaining dyes. Lately, the highest occupied molecular orbital (HOMO) and lowest-unoccupied
molecular orbital (LUMO) energy levels were inspected by DFT. The dye candidate pool was reduced to 29
dyes after consideration of the criteria of LUMO energy level greater than -3.74 eV (TiO2 conduction band in
a vacuum) and HOMO energy level below -4.85 eV (I−/I3 redox potential in a vacuum), which was essential
for forming a standard DSSC device integration. At the final screening stage, 5 dyes, comprising C1, 8c, XS6,
15, and H3, were retained, considering the ease of synthesis and availability for the next stage of experimental
validations. The PCE (𝜂) ratio 𝜂dye:𝜂N719 was used to indicate the photovoltaic performance of the five potential
co-sensitizers compared to a reference sample N719 dye, in which the co-sensitizer combination XS6 and 15
gained the largest ratio of 0.92. The atomic force microscopy (AFM) and X-ray reflectometry were further
employed to characterize the co-sensitizers, indicating that the combination XS6 and 15 possessed the lowest
aggregate coverage of 0.3%, the smallest dye-layer thickness of 19 Å, and the highest surface coverage over 70%,
which correlated to the best performance in the filtered co-sensitizers.

Data­driven progress in OSCs
In spite of the long history of OSC studies, ML-related ones were scarce until 2018, whichmight be traced to the
complex systemswhose active layersmostly comprise binary or even ternary organic systems. Benefitting from
the widespread of AI techniques and the stringent requirement for more efficient OSCs materials, ML and DL
techniques are blooming to accelerate the process of discovering new potential PV materials for OSC devices.
The main challenges issued from the AI work in the OSC field are mainly focused on 1) the representations of
complex organic structures, particularly in blend systems, 2) the poor performance of the MLmodels with the
currently maximum 𝑅2 in the test set lower than 0.77 [211], and 3) how to apply models to experiments. To date,
the blend active layer system, especially for the binary organic framework of the polymer as an electron donor
(D) and the non-fullerene acceptor (NFA) as an electron acceptor (A), has achieved the most promising PCE
values of over 18% in OSC devices, better than the single or ternary organic system. Most attention in the OSC
community has been focused on this organic system. The typical ML publications of OSCs are summarized in
Table 7.

Very recently and impressively, Kranthiraja et al. manually collected 566 polymer-NFA organic photovoltaic
(OPV) samples from 253 publications before the end of 2018 to predict PCEs [99]. The descriptors were com-
posed of the materials properties (MP) and FPs of the polymers (p) and NFA (n), in which MP included the
HOMO, LUMO, bandgap, and molecular weight. The RF model was built up and examined by CV5 with the
highest 𝜌 value of 0.85, compared to the values of 0.59, 0.79, 0.85, 0.84, and 0.81 for ANN, GBT, SVM, KRR,
and KNN, respectively. Based on the robust RF model, descriptor importance was calculated for the polymer-
NFA OPV materials. It was found that the sum of the importance of polymer-relating MP(p) only accounted
for 6.9% in the whole descriptors, leading to a constant 𝜌 value of 0.85 for the RF model after removing the
MP(p) descriptors of the polymer, which was encouraged by the good 𝜌 value of 0.78 for the bandgap RF
model and 0.73 for the HOMORFmodel that was built solely from FP(p). Given the acceptable RFmodel, the
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Table 7. Typical ML publications of OSCs

Publication Sample Feature ML Task ML Algorithm (Best) Model
Performance

Kranthiraja et al [99] 566 reported
polymer-NFA OPV
samples

Materials properties and
fingerprints

Predict PCE ANN, GBT, SVM,
KRR, KNN, and RF
(best)

CV5 𝜌 0.85

Wu et al. [148] 565 reported
donor-acceptor pairs

Fingerprints Predict PCE LR, LRC, RF (best),
ANN, and GBT

CV10 MAE 0.832

Zhao et al [212] 566 reported organic
donor-acceptor pairs

Fingerprints and
quantum-based properties

Predict PCE KNN (best), KRR,
and SVM

LOOCV 𝜌 0.72

Meftahi et al. [213] 344 samples from
Harvard Photovoltaic
Dataset

Signature descriptors Predict PCE, 𝑉oc ,
𝐽sc , bandgaps

BRANNLP Training 𝑅2

0.57∼0.94
Test 𝑅2 0.49∼0.78

Lee et al. [211] 124 fullerene
derivatives-based
ternary OSCs samples

Theoretical orbital energies Predict PCE RF (best), GBT,
KNN, LR, SVM

LOOCV 𝑅2 0.66
Test 𝑅2 0.77

David et al. [218] 1850 reported device
data

17 experimental conditions Predict device
stability

SMOreg LOOCV 𝜌

0.74∼0.82
Test 𝜌 0.66∼0.73

Du et al. [221] 100 fabricated device
data

10-dimensional processing
parameters

Predict
photovoltaic
performance

GP Test RMSE
0.012∼1.175

Majeed et al. [231] 20000 simulated
device data

Light JV and dark JV curves Predict electron
and hole mobility,
tail slope, and
trap density

Deep neural
network

Pokuri et al. [232] 65000 simulated
morphologies

Images Classify
morphology

CNN Accuracy 95.80%

Sahu et al. [233] 300 reported
small-molecule OPVs

28 DFT descriptors Predict PCE GBRT (best),
ANN, KNN

𝜌 0.80

Padula et al. [163] 249 reported organic
donor-acceptor pairs

DFT descriptors and
fingerprints

Predict
experimental
photo
voltaic
parameters

KNN 𝜌 0.68

Sahu et al. [176] 300 reported OPVs Experimental device
parameters and DFT
descriptors

Predict PCE, 𝑉oc ,
𝐽sc , FF

GBRT (best), RF LOOCV 𝜌

0.64∼0.78

Sahu et al. [234] 280 reported
small-molecule OPVs

13 DFT descriptors Predict PCE LR, KNN, ANN, RF,
GBT (best)

LOOCV 𝜌 0.79

Padula et al. [235] 320 reported organic
donor-acceptor pairs

DFT descriptors Predict PCE KRR (best), GPR,
SVR, KNN

LOOCV 𝜌 0.78

Nagasawa et al. [236] 1200 reported cell
devices

1000 experimental
parameters and
fingerprints

Predict PCE ANN, RF (best) 𝜌 0.62

Pyzer-Knapp et al. [182] 266 reported donor
materials

Fingerprints Predict PCE, 𝑉oc ,
𝐽sc , bandgap

GP 𝜌 0.51-0.68

Lopez et al. [68] 51000 non-fullerene
acceptors

106 common moieties Predict HOMO,
LUMO

GP 𝜌 0.81-0.93

ML: Machine learning; OSCs: organic solar cells; NFA: non-fullerene acceptor; OPV: organic photovoltaic; PCE: power convection efficiency; ANN:
artificial neural network; GBT: gradient boosting tree; SVM: support vector machine; KRR: kernel ridge regression; KNN: K-nearest neighbor; RF:
random Forest; CV5: 5-fold Cross-validation; 𝜌 : pearson correlation coefficient; LR: Linear regression; LRC: logistic regression classification; CV10:
10-fold cross-validation; MAE: mean average error; LOOCV: leaving-one-out Cross-validation; 𝑉oc: open circuit voltage; 𝐽sc: short circuit current
density; BRANNLP: bayesian regularized artificial neural network with Laplacian prior; 𝑅2: determination coefficient; SMOreg: sequential minimal
optimization regression GP: gaussian process; GPR: gaussian process regression; RMSE: root mean squared error; JV: current density-voltage (JV)
measurements; CNN: convolutional neural network; DFT: density functional theory; GBRT: gradient boosting regression tree; FF: fill factor; HOMO:
highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital.

authors performed a virtual screening process suitable for the representative NFA molecules (abbreviated as
ITIC and IT-4F) based on 200932 polymers combined from 382 donor units and 526 acceptor units that were
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furtherly fragmented from the structures of 566 polymer samples, in which only 1098 (∼0.5% in the virtual
space) have been reported in current publications.

To corroborate the model predicting result, the second-ranked polymer, labeled as PBDT(SBO)TzH, in the
predicted PCE list of polymer-ITIC was selected for the synthesis, which consisted of benzodithiophene as the
donor unit and thiazolothiazole (Tz) as that acceptor unit that were solubilized by sulfur-bridged 2-butyloctyl
(BO) chains (SBO). However, the experimental PCE values in polymer-ITIC and -IT-4F were only 4.44% and
3.42% compared to the predicted values of 11.1% and 10.5%, which might be traceable from the poor solu-
bility and rapid aggregation that was presumably not considered in the RF model. To ameliorate the flaws of
PBDT(SBO)TzH, 4 variants were designed by replacing the SBO group that was responsible for the aggrega-
tion behavior and the varying the chains of the alkylthiophene-flanked Tz group that accounted for the poor
solubility. One of the designed structures, marked as PBDTTzEH, showed a relatively similar experimental
PCE value (10.10%) to the predicted one (11.17%), though the others still exhibited poor experimental PCE
values of 2.15%, 3.97%, and 2.34% compared to the predicted values of 10.28%, 10.72%, and 10.70% due to the
two unpromoted imperfections.

Experimental characteristics were measured to identify why PBDTTzEH had excellent performance. The 𝐽−𝑉
curves indicated the highest 𝐽sc value of 16.47 mA cm−2 among the 5 polymers and the secondarily large
fill factor value of 0.65, while the electrodeless Xe-flash time-resolved microwave conductivity test showed
the most efficient mobility both for holes and electrons, which certainly correlated with its superior PCE. In
particular, according to the images from AFM, PBDTTzEH exhibited a well-interdigitated morphology, which
signaled no aggregation. The work of Kranthiraja not only provided a systematic ML analysis for polymer
samples but also performed a detailed experimental validation. Such work may establish a good paradigm of
how to use ML to accelerate the discovery of new potential polymer materials for the OSC community.

Another similar example could be seen in the work ofWu et al. [148] [Figure 8], which explored potential donor
and acceptor materials for OSCs. They extracted 565 donor-acceptor pairs from 274 publications as the data
samples to predict PCEs, in which each structure in both the donors and acceptors was divided into several
fragments that were furtherly encoded by FPs. As a result, there were 31, 14, 27, and 14 in number for the
1-4 fragments for the donors and 30, 18, 6, 22, and 35 for the 1-5 fragments for the acceptors. Therefore, the
description of each donor-acceptor sample was expressed by the FP’s combinations of fragments. For the ML
modeling, various algorithms of LR, LRC, RF, ANN, and GBT were performed based on the training data
composed of ∼85% of all samples, where the RF and GBT models exhibited more satisfactory performance
with 𝜌 values of 0.70 and 0.71 than the values below 0.60 for the other models. A 10-fold cross-validation was
appended to evaluate the five models, leading to the lowest MAE value of 0.832 for the RF model and 1.653
for the GBT model compared to the values of 2.1-2.6 for the others, which signaled the robustness of the RF
and GBT models.

By targeting the three high (> 11%)/moderate/low (< 7%) groups divided by the PCE values, the authors
represented the classificationmodels, in which the RFmodel still had the highest accuracy of 60.23%, especially
the accuracy of 65.2% in the case of the high-label group. Given the favorable performance of the RF and GBT
models, virtual screening was conducted to predict the PCE values of the automatically generated 32076000
donor-acceptor pairs that were permuted from the fragments of the donors and acceptors in the collected
sample set. Following the criteria of easy synthesis and highly predicted PCE values of over 10%, the authors
selected six donor-acceptor binary systems composed of two experimentally reported donors abbreviated as
PM6 and PBDB-Y and three undiscovered acceptors denoted as Y-ThCN, Y-ThCH3, and Y-PhCl. With the
exception of the PM6:Y-ThCH3 system (6.67% in experiments vs. 11.14% and 10.41% predicted by the RF and
GBT models, respectively), their experimental PCE values are highly consistent with their predicted values,
with the experimental PCE values for PM6:Y-ThCN, PM6:Y-PhCl, PBDB-T:Y-ThCN, PBDB-T:Y-ThCH3 and
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Figure 8. (A) Schematic of collecting experimental data and converting chemical structures to digitized data. (B) Schematic of machine
training, prediction, and method evaluation. Reproduced with permission from Wu et al. [148], npj Comput. Mater. 6 (2020). Copyright
2020 Springer Nature.

PBDB-T:Y-PhCl of 13.18%, 15.71%, 11.02%, 11.08% and 11.19% along with the predicted values of 11.56%,
13.30%, 12.73%, 12.49% and 12.55% from the RFmodels and 10.52%, 13.33%, 11.49%, 11.64% and 11.32% from
the GBT models, respectively.

As discussed in the descriptor generation section, most input variables in the collected data are relevant to
the processes of synthesis or testing, especially when the samples are sourced from experimental publications,
which are far away from the molecular structures. To identify the relationship between material structures and
their experimental properties, the descriptors depicting active layer structures are essentially needed, while
the descriptor-based studies have been involved in the above cases. In such an instance, it is important to
generate useful descriptors representing the structural information as the input variables for model building
in the whole ML procedure. In the character of an organic structural scheme, particularly a binary or even
ternary arrangement, describing such a complex organic absorber system in a numeric language remains a long-
term crucial challenge, but also a promising and effective aspect of promoting the performance of ML models
considering the large variety of descriptor choices that have been summarized in the descriptor generation
section.

In the work of Zhao et al. [212], different kinds of descriptors were investigated for their effects in three ML
models with the inclusion of KNN, KRR and SVM, in which the authors categorized them into structural (FPs)
and physical (quantum-based) properties, including energy levels, molecule size, absorption, dipole moment,
rotatable bonds and the partition coefficient between n-octanol and water, which was labeled as the XLOGP3
descriptor. The dataset included 566 organic donor-acceptor pairs composed of 513 donors and 33 acceptors.
It is noteworthy that the authors refined the distance definition of the donor-acceptor pairs for the distance
concept in the KNN and the kernel expressions in KRR and SVM, based on the linear distance combination
weighted by the physical and structural descriptors of donors, acceptors, and whole systems.
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Starting from five physical descriptors, including HOMO-D (where D is donor) to predict the PCE values,
LUMO-D, LUMO-A (A is acceptor), reorganization energies of the polymer and acceptor, the LOOCV 𝜌 values
of KNN, KRR, and SVMwere all below 0.5, while the maximum value could reach as high as 0.72 in the case of
KNNafter adding two structural descriptors. Althoughmore physical descriptors were considered sequentially,
appending new variables, even the terms under more computational cost, did not trigger an improvement in
the models. This indicates that the ML models solely based on physical properties might not be useful for
practical purposes, since most encoded information in the physical properties was already involved in the
structural FPs. However, to balance the model interpretation and predictivity that were represented by the
physical properties and FPs, respectively, retaining the amount of interpretable and simply calculated physical
properties was still necessary in the ML models. Under this consideration, the optimal descriptor selection,
though not suitable for all cases of OSCs, might be a mixture of physical properties and FPs.

Laying aside the traditionally and commonly used organic representations, Meftahi et al. [213] employed the so-
called signature descriptors proposed by Pablo et al. [214] in 2013 into the ML work of predicting the quantum-
based properties (such as energy levels) and the Scharber-model-based results [215] (such as PCE, 𝐽sc and 𝑉oc)
for 344 small molecule and polymer electron donors and acceptors, in which the dataset, named as Harvard
Photovoltaic Dataset (HOPV15), was collected by Lopez et al. under their massive DFT calculations [69]. Com-
plimented by the Cahn-Ingold-Prelog priority rules and directed acyclic graph-based definitions, the signature
descriptors could be generated as thousands of substructures for each organic sample regardless of the struc-
tural complexity in a matter of minutes. The so-called Bayesian regularized artificial neural network with the
Laplacian prior (BRANNLP) algorithm was used to perform the model building, as well as feature selection
based on the embedded ability within L1 regression, which was implemented in the CSIRO-Biomodeller pack-
age and TensorFlow [216,217]. The neural network was composed of only one hidden layer coupled with the
input layer containing descriptors and the output layer for predicting the target, contrary to the large and com-
plex framework in DL. All the Scharber model-based results were predicted via signature descriptors, leaving
the 𝑅2 values of 0.72 (PCE), 0.65 (𝑉oc), 0.57 (𝐽sc), 0.87 (HOMO), 0.94 (LUMO) and 0.83 (bandgap) in the train-
ing set and the same sequential values of 0.78, 0.58, 0.60, 0.49, 0.67 and 0.65 in the test set. With the exception
of the case of 𝐽sc, all the models exhibited robust performance and admirable predictive ability, which success-
fully leveraged resource-intensive DFT calculations into the larger regions of materials space at much lower
computing costs. Due to the structural complexity, more informative descriptors for organics are urgently
required for ML studies, in which Meftahi’s work has provided a good guide for us.

Despite the broad research in the OSC field, there is a significant lack of ML-related studies for the ternary sys-
tem due to its complexity, in which only one publication [211], to the best of our knowledge, could be searched
on the Web of Science. In Lee’s work [211], a dataset of 124 fullerene derivatives-based ternary OSCs samples,
regardless of the blend formations such as the composition of either one donor/two acceptors (D:A1:A2) or
two donors/one acceptor (D1:D2:A) in the active layer, were constructed from the current literature, along
with the theoretical orbital energies of donors, acceptors, and the whole systems. Targeting the PCE, the re-
gression models of RF, GBT, KNN, LR, SVM, and the 99 training samples were undertaken, eventuating in
the best performance with LOOCV 𝑅2 of 0.66 and test 𝑅2 of 0.77 for the RF model. The other models ex-
hibited the poor LOOCV 𝑅2 values lower than 0.60 and test 𝑅2 values from 0.25 to 0.73. Additionally, the
classifier models of RF, extra tree classifier (ETC), KNN, SVM, ANN and DT algorithms were also performed,
rendering the highest LOOCV and test accuracies of 79% and 76%, respectively, for the RF model. Given the
outstanding performance, the feature importance of the RF model was extracted, showing the largest contri-
bution of LUMO-D1 (denoted as LUMO of D1) and the second of HOMO-D1. The logical flowchart of one
subtree in the RF model was visualized, signifying the key attributes of LUMO-D1, HOMO-D1, and HOMO-
A1, which was also coherent with the results shown in other experimental studies according to the authors.
Despite lacking further extensions and applications, Lee et al. presented guidance and initiation for the ML
researchers that may have an interest in ternary OSC systems [211].
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Theanalysis of the wholeOSC device structure based on a large-scale dataset constituting both single and blend
active layers had not been reported before the work of David et al. [218]. A dataset comprising 1850 device data
was prepared, in which most were obtained from the Danish Technical University ranging from 2011 to 2017
and the remaining were manually scraped between 2017 and 2019. Regarding device stability, the numeric
data of 𝑇80 that was defined as the time taken for the device to reach 80% of the initial efficiency (𝐸0) were
extracted along with 𝑇S80 that was the time taken for the device to reach 80% of the stabilized value. Fully 17
categorical features were acquired, covering the device structures and materials, encapsulation, substrate type,
test protocols, environmental conditions, light sources, and the measurement conditions, such as temperature,
light level, bias condition, and relative humidity.

Considering the 2 different testing conditions based on the International Summit on Organic Photovoltaic
Stability (ISOS) protocols [219], the dataset involving 1149 samples after carefully data cleansing were treated
in three modes: the full dataset with 1149 samples, the data (155) conducted with light soaking (ISOS-L)
that relates to photostability, and the data (489) conducted with dark storage studies (ISOS-D) that provides
information on the tolerance of the solar cells to oxygen, moisture, other aggressive atmospheric components
naturally in air. The sequential minimal optimization regression (SMOreg) algorithm [220] was introduced into
ML model building since it had the ability to produce the weights, namely the importance, of each feature,
and thence help us to understand the feature significance, in which a positive SMOreg weighting corresponds
to a positive influence on stability and the vice versa. The SMOreg model based on whole data signaled the
LOOCV 𝜌 of 0.739 and the test 𝜌 of 0.713. The models using ISOS-L and ISOS-D data exhibited the relatively
higher LOOCV 𝜌 of 0.819 and 0.767 and the test 𝜌 of 0.734 and 0.659.

Given the quantified significance from the weighting in SMOreg, several important features were identified.
For instance, the features that most positively influenced the stability, namely,𝑇80, in the whole dataset were the
choices of the materials in the first transport layer and active layer. Furthermore, the use of LED lights would
benefit 𝑇80, while all the ISOS testing conditions and the light intensity would damage the stability. For the
case of ISOS-L, the most influential features were the device components (such as substrate, transport layers
and active layers electrodes), layer materials, and light source, while layer materials, device architecture, and
encapsulation method were the most affecting attributes in ISOS-D dataset. In addition to the research focus
on the stability, the same methodology was also applied to predicting the initial efficiency 𝐸0 using SMOreg
and full data (1347 samples), deriving the LOOCV 𝜌 of 0.739 and the MAE of 0.605%, along with the most
significant features involving the choice of active layer and tandem configuration.

Identical to the robotic work of Zhao et al. in the PSC field [84], Du et al. also utilized a high-throughput robot-
based platform, “AMANDA Line One”, to realize the superior precise control in experimental conditions at a
very large scale so as to form high-quality and continuous sample points, which could also be expanded to the
optimization in experimental details for any solution organic semiconductor and interface materials [221]. For
this purpose, the authors fabricated around 100 OSC devices within photovoltaic performance (such as PCE,
𝑉oc, 𝐽sc and FF) and performed 50-h photostability testing varying in ten-dimensional processing parameters
covering D (donor PM6):A (acceptor Y6) ratio, concentration, spin speed, active layer, annealing temperature,
active layer annealing time, solvent additives, solvent additives volume, electronic transport layer (ETL) mate-
rials, ETL annealing temperature and time, which totally consumed only ∼70 h. From the point of statistical
analysis of the observed data, several optimum processing parameters were exploited, e.g., a D:A weight ratio
of 1:1.2, a low thermal annealing temperature and the others for higher efficiency, as well as high spin speed
and active layer annealing temperature below 100 ◦C for longer stability. Furthermore, GP was employed to
build the ML models to predict the four photovoltaic parameters, obtaining RMSEs in the test set of 1.175
(PCE), 0.012 (𝑉oc), 0.055 (FF), and 0.903 (𝐽sc).
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CONCLUSION AND OUTLOOK
In this review, we have described the integral ML and DL training progress in section 2 and overviewed the
recent ML and DL applications in the three fields of PSCs, DSSCs, and OSCs in section 3. Before training
an ML/DL model, the first step is to collect samples along with their properties to form the dataset. The
data sources in the most current publications are largely dependent on mature experimental and calcula-
tion databases, like the Materials Projects, ICSD, OQMD, and MPDS. With an increasing spread of high-
throughput computations [83] and robotic experiments [84], more and more datasets with consistency and high
quality will be produced and mined at the lab scale. To enhance the model performance, key attention should
be devoted not only to the structural descriptors, such as the SMILE, molecular descriptors, fingerprints, and
atomic descriptors, but also to the state-of-art modeling technologies, e.g., GCNN framework [120] and SISSO
method [124]. Regardingmodel algorithms, the widely appliedmethods are sliced into the ensemble algorithms,
especially GBM derivatives and the DL models, such as deep ANN and CNN. As the algorithms develop, we
may see more occurrences of more predictive and advanced model algorithms in the future, such as GAN,
VAE, RNN, and LSTM networks. Given an established model, the most practiced method to apply the model
is to perform high-throughput screening to filter the potential candidates, in which the search space should be
restrained and the candidates need to be shortlisted by domain knowledge. Another method is to understand
the established models by combining domain knowledge and feature interpretation via various analysis tools,
such as the SHAP method [39,143].

In summary, with the fast-developing ML and DL technologies, data-driven methods combined with domain
knowledge will exhibit more robust performance and accurate prediction power in materials science beyond
photovoltaic fields, with the potential to be an indispensable analysis tool for both experiments and quantum-
based computations in the future.
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1. Hadadian M, Smått J, Correa­baena J. The role of carbon­based materials in enhancing the stability of perovskite solar cells. Energy

Environ Sci 2020;13:1377­407. DOI
2. Liu Y, Li Y, Wu Y, et al. High­efficiency silicon heterojunction solar cells: materials, devices and applications. Mater Sci Eng: R: Rep

2020;142:100579. DOI
3. KimM, Ham S, Cheng D,Wynn TA, Jung HS, Meng YS. Advanced characterization techniques for overcoming challenges of perovskite

solar cell materials. Adv Energy Mater 2021;11:2001753. DOI
4. Li H, Li F, Shen Z, et al. Photoferroelectric perovskite solar cells: principles, advances and insights. Nano Today 2021;37:101062. DOI
5. L. R. Devereux, J. M. Cole. in Data science applied to sustainability analysis, edited by Jennifer Dunn and Prasanna Balaprakash (Elsevier,

2021), pp. 129. DOI
6. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible­light sensitizers for photovoltaic cells. J Am

Chem Soc 2009;131:6050­1. DOI PubMed
7. Zhang F, Lu H, Tong J, Berry JJ, Beard MC, Zhu K. Advances in two­dimensional organic­inorganic hybrid perovskites. Energy Environ

Sci 2020;13:1154­86. DOI PubMed PMC
8. Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok SI. Impact of strain relaxation on performance of α­formamidinium lead iodide

perovskite solar cells. Science 2020;370:108­12. DOI PubMed
9. Green MA, Dunlop ED, Hohl­ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (Version 58). Prog Photovolt Res

Appl 2021;29:657­67. DOI
10. NREL, Best research­cell efficiency chart. Available from: https://www.nrel.gov/pv/cell­efficiency.html [Last accessed on 8 Jun 2022]
11. Luo Q, Wu R, Ma L, et al. Recent advances in carbon nanotube utilizations in perovskite solar cells. Adv Funct Mater 2021;31:2004765.

DOI
12. Luo D, Su R, Zhang W, Gong Q, Zhu R. Minimizing non­radiative recombination losses in perovskite solar cells. Nat Rev Mater

2020;5:44­60. DOI
13. Wu T, Liu X, Luo X, et al. Lead­free tin perovskite solar cells. Joule 2021;5:863­86. DOI
14. O’regan B, Grätzel M. A low­cost, high­efficiency solar cell based on dye­sensitized colloidal TiO2 films. Nature 1991;353:737­40. DOI
15. Zeng K, Tong Z, Ma L, Zhu W, Wu W, Xie Y. Molecular engineering strategies for fabricating efficient porphyrin­based dye­sensitized

solar cells. Energy Environ Sci 2020;13:1617­57. DOI
16. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M. Highly­efficient dye­sensitized solar cells with collaborative sensitization

by silyl­anchor and carboxy­anchor dyes. Chem Commun (Camb) 2015;51:15894­7. DOI PubMed
17. Tang CW. Two­layer organic photovoltaic cell. Appl Phys Lett 1986;48:183­5. DOI
18. Armin A, Li W, Sandberg OJ, et al. A history and perspective of non­fullerene electron acceptors for organic solar cells. Adv Energy

Mater 2021;11:2003570. DOI
19. Luo Z, Liu T, Yan H, Zou Y, Yang C. Isomerization strategy of nonfullerene small­molecule acceptors for organic solar cells. Adv Funct

Mater 2020;30:2004477. DOI
20. Zheng Z, Yao H, Ye L, Xu Y, Zhang S, Hou J. PBDB­T and its derivatives: a family of polymer donors enables over 17% efficiency in

organic photovoltaics.Mater Today 2020;35:115­30. DOI
21. Mishra A. Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy Environ Sci 2020;13:4738­93.

DOI
22. Kini GP, Jeon SJ, Moon DK. Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells. Adv

Funct Mater 2021;31:2007931. DOI
23. Zhao C, Wang J, Zhao X, Du Z, Yang R, Tang J. Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale

2021;13:2181­208. DOI PubMed
24. Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid­state materials science.

npj Comput Mater 2019;5. DOI
25. Rajan K. Materials informatics.Mater Today 2005;8:38­45. DOI
26. Kohn W, Sham LJ. Self­consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133­8. DOI
27. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964;136:B864­71. DOI
28. Luo S, Zeng Z, Wang H, et al. Recent progress in conjugated microporous polymers for clean energy: synthesis, modification, computer

simulations, and applications. Progress in Polymer Science 2021;115:101374. DOI
29. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater

2020;10:1903242. DOI
30. Haghighatlari M, Vishwakarma G, Altarawy D, et al. ChemML: a machine learning and informatics program package for the analysis,

mining, and modeling of chemical and materials data.WIREs Comput Mol Sci 2020;10. DOI
31. Moosavi SM, Jablonka KM, Smit B. The role of machine learning in the understanding and design of materials. J Am Chem Soc

2020:20273­87. DOI PubMed PMC
32. Chen L, Pilania G, Batra R, et al. Polymer informatics: current status and critical next steps. Mater Sci Eng: R: Rep 2021;144:100595.

DOI
33. Masood H, Toe CY, Teoh WY, Sethu V, Amal R. Machine learning for accelerated discovery of solar photocatalysts. ACS Catal

2019;9:11774­87. DOI
34. Jia Y, Hou X, Wang Z, Hu X. Machine learning boosts the design and discovery of nanomaterials. ACS Sustainable Chem Eng

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1039/c9ee04030g
http://dx.doi.org/10.1016/j.mser.2020.100579
http://dx.doi.org/10.1002/aenm.202001753
http://dx.doi.org/10.1016/j.nantod.2020.101062
http://dx.doi.org/10.1016/b978-0-12-817976-5.00001-2
http://dx.doi.org/10.1021/ja809598r
http://www.ncbi.nlm.nih.gov/pubmed/19366264
http://dx.doi.org/10.1007/s40820-021-00685-5
http://www.ncbi.nlm.nih.gov/pubmed/34341878
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329153
http://dx.doi.org/10.1126/science.abc4417
http://www.ncbi.nlm.nih.gov/pubmed/33004518
http://dx.doi.org/10.1002/pip.3444
https://www.nrel.gov/pv/cell-efficiency.html
http://dx.doi.org/10.1002/adfm.202004765
http://dx.doi.org/10.1038/s41578-019-0151-y
http://dx.doi.org/10.1016/j.joule.2021.03.001
http://dx.doi.org/10.1038/353737a0
http://dx.doi.org/10.1039/c9ee04200h
http://dx.doi.org/10.1039/c5cc06759f
http://www.ncbi.nlm.nih.gov/pubmed/26393334
http://dx.doi.org/10.1063/1.96937
http://dx.doi.org/10.1002/aenm.202003570
http://dx.doi.org/10.1002/adfm.202004477
http://dx.doi.org/10.1016/j.mattod.2019.10.023
http://dx.doi.org/10.1039/d0ee02461a
http://dx.doi.org/10.1002/adfm.202007931
http://dx.doi.org/10.1039/d0nr07788g
http://www.ncbi.nlm.nih.gov/pubmed/33480942
http://dx.doi.org/10.1038/s41524-019-0221-0
http://dx.doi.org/10.1016/S1369-7021(05)71123-8
http://dx.doi.org/10.1103/physrev.140.a1133
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1016/j.progpolymsci.2021.101374
http://dx.doi.org/10.1002/aenm.201903242
http://dx.doi.org/10.26434/chemrxiv.8323271.v1
http://dx.doi.org/10.1021/jacs.0c09105
http://www.ncbi.nlm.nih.gov/pubmed/33170678
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716341
http://dx.doi.org/10.1016/j.mser.2020.100595
http://dx.doi.org/10.1021/acscatal.9b02531


Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07 Page 39 of 44

2021;9:6130­47. DOI
35. Brown KA, Brittman S, Maccaferri N, Jariwala D, Celano U. Machine learning in nanoscience: big data at small scales. Nano Lett

2020;20:2­10. DOI PubMed
36. Domingos P. A few useful things to know about machine learning. Commun ACM 2012;55:78­87. DOI
37. Halevy A, Norvig P, Pereira F. The unreasonable effectiveness of data. IEEE Intell Syst 2009;24:8­12. DOI
38. Jablonka KM, Ongari D, Moosavi SM, Smit B. Big­data science in porous materials: materials genomics and machine learning. Chem

Rev 2020;120:8066­129. DOI PubMed PMC
39. Xiong J, Shi S, Zhang T. Machine learning of phases and mechanical properties in complex concentrated alloys. J Mater Sci Technol

2021;87:133­42. DOI
40. BONEAU CA. The effects of violations of assumptions underlying the test. Psychol Bull 1960;57:49­64. DOI PubMed
41. Edgell SE, Noon SM. Effect of violation of normality on the t test of the correlation coefficient. Psychological Bulletin 1984;95:576­83.

DOI
42. R. G. Lomax, An introduction to statistical concepts. (Mahwah, N.J.: Lawrence Erlbaum Associates Publishers, 2007), p.10. DOI
43. Breunig MM, Kriegel H, Ng RT, Sander J. LOF: identifying density­based local outliers. SIGMOD Rec 2000;29:93­104. DOI
44. Liu FT, Ting KM, Zhou Z. Isolation­based anomaly detection. ACM Trans Knowl Discov Data 2012;6:1­39. DOI
45. Rousseeuw PJ. Least median of squares regression. J Am Stat Assoc 1984;79:871­80. DOI
46. Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determinant estimator. Technometrics 1999;41:212­23. DOI
47. Schölkopf B, Platt JC, Shawe­Taylor J, Smola AJ, Williamson RC. Estimating the support of a high­dimensional distribution. Neural

Comput 2001;13:1443­71. DOI PubMed
48. Chang C, Lin C. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2011;2:1­27. DOI
49. Zhao Y, Hryniewicki MK. Improving supervised outlier detection with unsupervised representation learning. Available from:

https://arxiv.org/abs/1912.00290 [Last accessed on 10 Jun 2022]
50. Chen T, Guestrin C. XGBoost: a scalable tree boosting system (2016), https://xgboost.readthedocs.io/en/latest/install.html DOI
51. Dorogush AV, Ershove V, Guilin A. CatBoost: gradient boosting with categorical features support (2018). Available from:

https://catboost.ai/docs [Last accessed on 8 Jun 2022]
52. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation.

APL Materials 2013;1:011002. DOI
53. Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S. Recent developments in the inorganic crystal structure database: theoretical crystal

structure data and related features. J Appl Crystallogr 2019;52:918­25. DOI PubMed PMC
54. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high­throughput density functional theory:

The open quantum materials database (OQMD). JOM 2013;65:1501­9. DOI
55. Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies.

npj Comput Mater 2015;1. DOI
56. P. Villars. Materials platform for data science (2019). Available from: https://mpds.io/ [Last accessed on 8 Jun 2022]
57. Su Y. Materials genome engineering databases (University of Science and Technology Beijing, 2018). Available from:

https://www.mgedata.cn/ [Last accessed on 8 Jun 2022]
58. Qian Q, Wang Y, Zhao S. Materials data specification: methods and use cases. Comput Mater Sci 2019;169:109086. DOI
59. Tao Q, Xu P, Li M, Lu W. Machine learning for perovskite materials design and discovery. npj Comput Mater 2021;7. DOI
60. Ramakrishna S, Zhang T, Lu W, et al. Materials informatics. J Intell Manuf 2019;30:2307­26. DOI
61. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The cambridge structural database. Acta Cryst 2016;72:171­9 DOI
62. Grazulis S, Chateigner D, Downs RT, Yokochi AFT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Bail AL. Crystallography

open database ­ an open­access collection of crystal structures. J Appl Crystallogr 2009;42:726­9 DOI
63. Gómez­Bombarelli R,Wei JN, Duvenaud D, et al. Automatic chemical design using a data­driven continuous representation of molecules.

ACS Cent Sci 2018;4:268­76. DOI PubMed PMC
64. G. Landrum. RDKit: Open­source cheminformatics (2012). Available from: http://www.rdkit.org/ [Last accessed on 8 Jun 2022]
65. Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA. Quantum chemistry structures and properties of 134 kilo molecules. Sci Data

2014;1:140022. DOI PubMed PMC
66. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model

2012;52:1757­68. DOI PubMed PMC
67. IBM. World Community Grid. Available from: http://www.worldcommunitygrid.org/ [Last accessed on 8 Jun 2022]
68. Lopez SA, Sanchez­lengeling B, de Goes Soares J, Aspuru­guzik A. Design principles and top non­fullerene acceptor candidates for

organic photovoltaics. Joule 2017;1:857­70. DOI
69. Lopez SA, Pyzer­Knapp EO, Simm GN, et al. The Harvard organic photovoltaic dataset. Sci Data 2016;3:160086. DOI PubMed PMC
70. Venkatraman V, Raju R, Oikonomopoulos SP, Alsberg BK. The dye­sensitized solar cell database. J Cheminform 2018;10:18. DOI

PubMed PMC
71. Odabaşı Ç, Yıldırım R. Performance analysis of perovskite solar cells in 2013­2018 using machine­learning tools. Nano Energy

2019;56:770­91. DOI
72. Odabaşı Ç, Yıldırım R. Machine learning analysis on stability of perovskite solar cells. Sol Energy Mater Sol Cells 2020;205:110284.

DOI
73. Odabaşı Ç, Yıldırım R. Assessment of reproducibility, hysteresis, and stability relations in perovskite solar cells using machine learning.

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1021/acssuschemeng.1c00483
http://dx.doi.org/10.1021/acs.nanolett.9b04090
http://www.ncbi.nlm.nih.gov/pubmed/31804080
http://dx.doi.org/10.1145/2347736.2347755
http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1021/acs.chemrev.0c00004
http://www.ncbi.nlm.nih.gov/pubmed/32520531
https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC7453404
http://dx.doi.org/10.1016/j.jmst.2021.01.054
http://dx.doi.org/10.1037/h0041412
http://www.ncbi.nlm.nih.gov/pubmed/13802482
http://dx.doi.org/10.1037/0033-2909.95.3.576
http://dx.doi.org/10.1177/1094428109332197
http://dx.doi.org/10.1145/335191.335388
http://dx.doi.org/10.1145/2133360.2133363
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1080/00401706.1999.10485670
http://dx.doi.org/10.1162/089976601750264965
http://www.ncbi.nlm.nih.gov/pubmed/11440593
http://dx.doi.org/10.1145/1961189.1961199
https://arxiv.org/abs/1912.00290
https://xgboost.readthedocs.io/en/latest/install.html
http://dx.doi.org/10.1145/2939672.2939785
https://catboost.ai/docs
http://dx.doi.org/10.1063/1.4812323
http://dx.doi.org/10.1107/S160057671900997X
http://www.ncbi.nlm.nih.gov/pubmed/31636516
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782081
http://dx.doi.org/10.1007/s11837-013-0755-4
http://dx.doi.org/10.1038/npjcompumats.2015.10
https://mpds.io/
https://www.mgedata.cn/
http://dx.doi.org/10.1016/j.commatsci.2019.109086
http://dx.doi.org/10.1038/s41524-021-00495-8
http://dx.doi.org/10.1007/s10845-018-1392-0
http://dx.doi.org/10.1107/s2052520616003954
http://dx.doi.org/10.1107/s0021889809016690
http://dx.doi.org/10.1021/acscentsci.7b00572
http://www.ncbi.nlm.nih.gov/pubmed/29532027
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833007
http://www.rdkit.org/
http://dx.doi.org/10.1038/sdata.2014.22
http://www.ncbi.nlm.nih.gov/pubmed/25977779
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322582
http://dx.doi.org/10.1021/ci3001277
http://www.ncbi.nlm.nih.gov/pubmed/22587354
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402020
http://www.worldcommunitygrid.org/
http://dx.doi.org/10.1016/j.joule.2017.10.006
http://dx.doi.org/10.1038/sdata.2016.86
http://www.ncbi.nlm.nih.gov/pubmed/27676312
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037972
http://dx.doi.org/10.1186/s13321-018-0272-0
http://www.ncbi.nlm.nih.gov/pubmed/29616364
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882482
http://dx.doi.org/10.1016/j.nanoen.2018.11.069
http://dx.doi.org/10.1016/j.solmat.2019.110284


Page 40 of 44 Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07

Energy Technol 2020;8:1901449. DOI
74. Yılmaz B, Yıldırım R. Critical review of machine learning applications in perovskite solar research. Nano Energy 2021;80:105546. DOI
75. D. Systèmes, BIOVIA MATERIALS STUDIO (Dassault Systèmes, 2002­2021). Available from: https://www.3ds.com/products­

services/biovia/products/molecular­modeling­simulation/biovia­materials­studio/ [Last access on 8 Jun 2022]
76. Kresse G, Furthmüller J. Efficiency of ab­initio total energy calculations for metals and semiconductors using a plane­wave basis set.

Comput Mater Sci 1996;6:15­50. DOI
77. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total­energy calculations using a plane­wave basis set. Phys Rev B

Condens Matter 1996;54:11169­86. DOI PubMed
78. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558­61. DOI PubMed
79. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented­wave method. Phys Rev B 1999;59:1758­75. DOI
80. Frisch MJ, Trucks GW, Schlegel HB et al. Gaussian 16 Rev. C.01. Available from: https://gaussian.com/citation_b01/ [Last accessed on

10Jun 2022]
81. Hartono NTP, Thapa J, Tiihonen A, et al. How machine learning can help select capping layers to suppress perovskite degradation. Nat

Commun 2020;11:4172. DOI PubMed PMC
82. Lundberg SM, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell

2020;2:56­67. DOI PubMed PMC
83. Saidi WA, Shadid W, Castelli IE. Machine­learning structural and electronic properties of metal halide perovskites using a hierarchical

convolutional neural network. npj Comput Mater 2020;6. DOI
84. Zhao Y, Zhang J, Xu Z, et al. Discovery of temperature­induced stability reversal in perovskites using high­throughput robotic learning.

Nat Commun 2021;12:2191. DOI PubMed PMC
85. Mahmood A, Wang J. Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ

Sci 2021;14:90­105. DOI
86. Kode­Chemoinformatics. Dragon 7 (2021). Available from: https://gaussian.com/citation_b01/ [Last accessed on 8 Jun 2022]
87. Available from: https://match.pmf.kg.ac.rs/electronic_versions/Match56/n2/match56n2_237­248.pdf [Last accessed on 10 Jun 2022]
88. Krenn M, Häse F, Nigam A, Friederich P, Aspuru­guzik A. Self­referencing embedded strings (SELFIES): a 100% robust molecular

string representation.Mach Learn : Sci Technol 2020;1:045024. DOI
89. Kar S, Roy JK, Leszczynski J. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative

approaches to assure renewable energy for future. npj Comput Mater 2017;3. DOI
90. Krishna JG, Ojha PK, Kar S, Roy K, Leszczynski J. Chemometric modeling of power conversion efficiency of organic dyes in dye

sensitized solar cells for the future renewable energy. Nano Energy 2020;70:104537. DOI
91. Yap CW. PaDEL­descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011;32:1466­

74. DOI PubMed
92. Ju L, Li M, Tian L, Xu P, Lu W. Accelerated discovery of high­efficient N­annulated perylene organic sensitizers for solar cells via

machine learning and quantum chemistry.Mater Today Commun 2020;25:101604. DOI
93. Lu T, Li M, Yao Z, Lu W. Accelerated discovery of boron­dipyrromethene sensitizer for solar cells by integrating data mining and first

principle. J Mater 2021;7:790­801. DOI
94. Shemetulskis NE, Weininger D, Blankley CJ, Yang JJ, Humblet C. Stigmata: an algorithm to determine structural commonalities in

diverse datasets. J Chem Inf Comput Sci 1996;36:862­71. DOI PubMed
95. Cereto­Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia­Vallvé S, Pujadas G. Molecular fingerprint similarity search in virtual screen­

ing.Methods 2015;71:58­63. DOI PubMed
96. Muegge I, Mukherjee P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov

2016;11:137­48. DOI PubMed
97. Pattanaik L, Coley CW. Molecular representation: going long on fingerprints. Chem 2020;6:1204­7. DOI
98. Sun W, Zheng Y, Yang K, et al. Machine learning­assisted molecular design and efficiency prediction for high­performance organic

photovoltaic materials. Sci Adv 2019;5:eaay4275. DOI PubMed PMC
99. Kranthiraja K, Saeki A. Experiment­oriented machine learning of polymer:non­fullerene organic solar cells. Adv Funct Mater

2021;31:2011168. DOI
100. Lo. Mentel. mendeleev – a python resource for properties of chemical elements, ions and isotopes (2014). Available from:

https://github.com/lmmentel/mendeleev [Last accessed on 8 Jun 2022]
101. Li C, Hao H, Xu B, et al. A progressive learning method for predicting the band gap of ABO3 perovskites using an instrumental variable.

J Mater Chem C 2020;8:3127­36. DOI
102. Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open­source python library for materials analysis.

Comput Mater Sci 2013;68:314­9. DOI
103. Pilania G, Balachandran PV, Kim C, Lookman T. Finding new perovskite halides via machine learning. Front Mater 2016;3. DOI
104. N. Chen, Bond parameter function and application (In Chinese), 1st ed. (CHINA SCIENCE PUBLISHING & MEDIA LTD, Beijing,

China, 1976. DOI
105. Slater JC. A simplification of the hartree­fock method. Phys Rev 1951;81:385­90. DOI
106. Available from: https://jsc.niic.nsc.ru/ [Last accessed on 10 Jun 2022]
107. Pauling L. The nature of the chemical bond. application of results obtained from the quantum mechanics and from a theory of paramag­

netic susceptibility to the structure of molecules. J Am Chem Soc 1931;53:1367­400. DOI

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1002/ente.201901449
http://dx.doi.org/10.1016/j.nanoen.2020.105546
https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/physrevb.54.11169
http://www.ncbi.nlm.nih.gov/pubmed/9984901
http://dx.doi.org/10.1103/physrevb.47.558
http://www.ncbi.nlm.nih.gov/pubmed/10004490
http://dx.doi.org/10.1103/physrevb.59.1758
https://gaussian.com/citation_b01/
http://dx.doi.org/10.1038/s41467-020-17945-4
http://www.ncbi.nlm.nih.gov/pubmed/32820159
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441172
http://dx.doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326367
http://dx.doi.org/10.1038/s41524-020-0307-8
http://dx.doi.org/10.1038/s41467-021-22472-x
http://www.ncbi.nlm.nih.gov/pubmed/33850155
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044090
http://dx.doi.org/10.1039/d0ee02838j
https://chm.kode-solutions.net/
https://match.pmf.kg.ac.rs/electronic_versions/Match56/n2/match56n2_237-248.pdf
http://dx.doi.org/10.1088/2632-2153/aba947
http://dx.doi.org/10.1038/s41524-017-0025-z
http://dx.doi.org/10.1016/j.nanoen.2020.104537
http://dx.doi.org/10.1002/jcc.21707
http://www.ncbi.nlm.nih.gov/pubmed/21425294
http://dx.doi.org/10.1016/j.mtcomm.2020.101604
http://dx.doi.org/10.1016/j.jmat.2020.12.018
http://dx.doi.org/10.1021/ci950169+
http://www.ncbi.nlm.nih.gov/pubmed/8768771
http://dx.doi.org/10.1016/j.ymeth.2014.08.005
http://www.ncbi.nlm.nih.gov/pubmed/25132639
http://dx.doi.org/10.1517/17460441.2016.1117070
http://www.ncbi.nlm.nih.gov/pubmed/26558489
http://dx.doi.org/10.1016/j.chempr.2020.05.002
http://dx.doi.org/10.1126/sciadv.aay4275
http://www.ncbi.nlm.nih.gov/pubmed/31723607
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839938
http://dx.doi.org/10.1002/adfm.202170168
https://github.com/lmmentel/mendeleev
http://dx.doi.org/10.1039/c9tc06632b 
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.3389/fmats.2016.00019
http://dx.doi.org/10.1163/26669323-00901005
http://dx.doi.org/10.1103/physrev.81.385
https://jsc.niic.nsc.ru/ 
http://dx.doi.org/10.1021/ja01355a027


Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07 Page 41 of 44

108. Quill LL. The chemistry and metallurgy of miscellaneous materials. J Chem Educ 1950;27:583. DOI
109. Zachariasen WH. A set of empirical crystal radii for ions with inert gas configuration. Zeitschrift für Kristallographie ­ Crystalline

Materials 1931;80:137­53. DOI
110. Sanderson RT. Principles of electronegativity Part I. general nature. J Chem Educ 1988;65:112. DOI
111. Beskow G. V. M. Goldschmidt: geochemische verteilungsgesetze der elemente. Geologiska Föreningen i Stockholm Förhandlingar

2010;46:738­43. DOI
112. Lu W, Lv W, Zhang Q, Lu K, Ji X. Material data mining in Nianyi Chen’s scientific family: material data mining in Nianyi Chen’s

scientific family. J Chemom 2018;32:e3022. DOI
113. Murray JS, Lane P, Brinck T, Paulsen K, GriceME, Politzer P. Relationships of critical constants and boiling points to computedmolecular

surface properties. J Phys Chem 1993;97:9369­73. DOI
114. Byrd EF, Rice BM. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys

Chem A 2006;110:1005­13. DOI PubMed
115. Rice BM, Byrd EF. Evaluation of electrostatic descriptors for predicting crystalline density. J Comput Chem 2013;34:2146­51. DOI

PubMed
116. T. Lu. fast machine learning (2021). Available from: https://pypi.org/project/fast­machine­learning/ [Last accessed on 8 Jun 2022]
117. Sun W, Li M, Li Y, et al. The use of deep learning to fast evaluate organic photovoltaic materials. Adv Theory Simul 2019;2:1800116.

DOI
118. Jang J, Gu GH, Noh J, Kim J, Jung Y. Structure­based synthesizability prediction of crystals using partially supervised learning. J Am

Chem Soc 2020;142:18836­43. DOI PubMed
119. Chen C, Ye W, Zuo Y, Zheng C, Ong SP. Graph networks as a universal machine learning framework for molecules and crystals. Chem

Mater 2019;31:3564­72. DOI
120. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties.

Phys Rev Lett 2018;120:145301. DOI PubMed
121. T. Stephens. gplearn: Genetic Programming in Python (2016). Available from: https://gplearn.readthedocs.io/ [Last accessed on 8 Jun

2022]
122. Fortin FA, Rainville FMD, Gardner MA, Parizeau M, Gagné C. DEAP: Evolutionary AlgorithmsMade Easy J Mach Learn Res 13, 2171

(2012). Available from: https://www.jmlr.org/papers/v13/fortin12a.html [last accessed on 10 Jun 2022]
123. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressed­sensing method for identifying the best low­

dimensional descriptor in an immensity of offered candidates. Phys Rev Materials 2018;2. DOI
124. Bartel CJ, Sutton C, Goldsmith BR, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv

2019;5:eaav0693. DOI PubMed PMC
125. Varoquaux G, Gramfort A, Pedregosa F, Michel V, Thirion B. Multi­subject dictionary learning to segment an atlas of brain spontaneous

activity. J Mach Learn Res 2011;12: 2825 DOI
126. Golbraikh A, Shen M, Xiao Z, Xiao Y, Lee K, Tropsha A. Rational selection of training and test sets for the development of validated

QSAR models. J Comput Aided Mol Des 2003;17:241­53. DOI PubMed
127. Golbraikh A, Tropsha A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set

selection.Mol Divers 2000;5:231­43.
128. Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng 2014;40:16­28. DOI
129. Guyon I, Nikravesh M, Gunn S, Zadeh LA. Feature Extraction. Fuzziness Soft Comput 2006;207:778 DOI
130. Ding C, Peng H.Minimum redundancy feature selection frommicroarray gene expression data. J BioinformComput Biol 2005;3:185­205.

DOI PubMed
131. PengH, Long F, DingC. Feature selection based onmutual information: criteria ofmax­dependency, max­relevance, andmin­redundancy.

IEEE Trans Pattern Anal Mach Intell 2005;27:1226­38. DOI PubMed
132. Ramírez­gallego S, Lastra I, Martínez­rego D, et al. Fast­mRMR: fast minimum redundancy maximum relevance algorithm for high­

dimensional big data: fast­mRMR algorithm for big data. Int J Intell Syst 2017;32:134­52. DOI
133. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning

2022;46:389­422. DOI
134. Genetic programming in python, with a scikit­learn inspired API (2016), https://gplearn.readthedocs.io/ [Last accessed on 8 Jun 2022]
135. Collette Y, Hansen N, Pujol G, Salazar Aponte D, Le Riche R. In multidisciplinary design optimization in computational mechanics

(2013), pp. 499. DOI
136. S. Mirjalili. in Evolutionary algorithms and neural networks: theory and applications, edited by Seyedali Mirjalili. Springer International

Publishing: Cham; 2019. pp. 43. DOI
137. Whitley D. A genetic algorithm tutorial. Stat Comput 1994;4. DOI
138. Ferri F, Pudil P, Hatef M, Kittler J. Comparative study of techniques for large­scale feature selection. Comparative Studies and Hybrid

Systems. Elsevier; 1994. pp. 403­13. DOI
139. Baraniuk R. Compressive sensing [Lecture Notes]. IEEE Signal Process Mag 2007;24:118­21. DOI
140. L. Breiman, J. H. Friedman, and R. A. Olshen, Classification and regression trees. (Wadsworth International Group, Belmont, CA, 1984).

DOI
141. Wen Y, Fu L, Li G, Ma J, Ma H. Accelerated discovery of potential organic dyes for dye­sensitized solar cells by interpretable machine

learning models and virtual screening. Sol RRL 2020;4:2000110. DOI

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1021/ed027p583.2
http://dx.doi.org/10.1524/zkri.1931.80.1.137
http://dx.doi.org/10.1021/ed065p112
http://dx.doi.org/10.1080/11035892409454037
http://dx.doi.org/10.1002/cem.3022
http://dx.doi.org/10.1021/j100139a019
http://dx.doi.org/10.1021/jp0536192
http://www.ncbi.nlm.nih.gov/pubmed/16420001
http://dx.doi.org/10.1002/jcc.23369
http://www.ncbi.nlm.nih.gov/pubmed/23813635
https://pypi.org/project/fast-machine-learning/
http://dx.doi.org/10.1002/adts.201800116
http://dx.doi.org/10.1021/jacs.0c07384
http://www.ncbi.nlm.nih.gov/pubmed/33104335
http://dx.doi.org/10.1021/acs.chemmater.9b01294
http://dx.doi.org/10.1103/PhysRevLett.120.145301
http://www.ncbi.nlm.nih.gov/pubmed/29694125
https://gplearn.readthedocs.io/
https://www.jmlr.org/papers/v13/fortin12a.html
http://dx.doi.org/10.1103/physrevmaterials.2.083802
http://dx.doi.org/10.1126/sciadv.aav0693
http://www.ncbi.nlm.nih.gov/pubmed/30783625
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368436
http://dx.doi.org/10.1007/978-3-642-22092-0_46
http://dx.doi.org/10.1023/a:1025386326946
http://www.ncbi.nlm.nih.gov/pubmed/13677490
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1007/978-3-540-35488-8
http://dx.doi.org/10.1142/s0219720005001004
http://www.ncbi.nlm.nih.gov/pubmed/15852500
http://dx.doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
http://dx.doi.org/10.1002/int.21833
http://dx.doi.org/10.1023/a:1012487302797
https://gplearn.readthedocs.io/
http://dx.doi.org/10.1002/9781118600153.ch14
http://dx.doi.org/10.1007/978-3-319-93025-1_4
http://dx.doi.org/10.1007/bf00175354
http://dx.doi.org/10.1016/b978-0-444-81892-8.50040-7
http://dx.doi.org/10.1109/MSP.2007.4286571
http://dx.doi.org/10.1201/9781315139470-8
http://dx.doi.org/10.1002/solr.202000110


Page 42 of 44 Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07

142. Shapley LS. A value for n­person games. (Contrib. Theor. Games, 1953). DOI
143. Zhang S, Lu T, Xu P, Tao Q, Li M, Lu W. Predicting the formability of hybrid organic­inorganic perovskites via an interpretable machine

learning strategy. J Phys Chem Lett 2021;12:7423­30. DOI PubMed
144. Guolin K, Qi M, Thomas F, Taifeng W, et al. In advances in neural information processing systems 30 (NIPS 2017) (Long Beach, CA,

USA, 2017). DOI
145. Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high­performance deep learning library. (Curran Associates, Inc, 2019),

pp. 8024. Available from: https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740­Paper.pdf [Last accessed
on 13 Jun 2022]

146. M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow: large­scale machine learning on heterogeneous systems (2015). Available from:
https://arxiv.org/abs/1603.04467 [Last accessed on 13 Jun 2022]

147. Zárate Hernández LA, Camacho­Mendoza RL, González­Montiel S, Cruz­Borbolla J. The chemical reactivity and QSPR of organic
compounds applied to dye­sensitized solar cells using DFT. J Mol Graph Model 2021;104:107852. DOI PubMed

148. Wu Y, Guo J, Sun R, Min J. Machine learning for accelerating the discovery of high­performance donor/acceptor pairs in non­fullerene
organic solar cells. npj Comput Mater 2020;6. DOI

149. David TW, Anizelli H, Tyagi P, Gray C, Teahan W, Kettle J. Using large datasets of organic photovoltaic performance data to elucidate
trends in reliability between 2009 and 2019. IEEE J Photovoltaics 2019;9:1768­73. DOI

150. Kar S, Roy J, LeszczynskaD, Leszczynski J. Power conversion efficiency of arylamine organic dyes for dye­sensitized solar cells (DSSCs)
explicit to cobalt electrolyte: understanding the structural attributes using a direct QSPR approach. Computation 2017;5:2. DOI

151. Roy JK, Kar S, Leszczynski J. Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye­
sensitizers on TiO2(101) surface: first principles approach. Sci Rep 2018;8:10997. DOI PubMed PMC

152. Roy JK, Kar S, Leszczynski J. Electronic structure and optical properties of designed photo­efficient indoline­based dye­sensitizers with
D­A­𝜋­A framework. J Phys Chem C 2019;123:3309­20. DOI

153. Roy K, Ambure P, Kar S, Ojha PK. Is it possible to improve the quality of predictions from an “intelligent” use of multiple
QSAR/QSPR/QSTR models?: quality of predictions from an “intelligent” use of multiple models. J Chemom 2018;32:e2992. DOI

154. Cramer J. The origins of logistic regression. SSRN J . DOI
155. Tolles J, Meurer WJ. Logistic regression: relating patient characteristics to outcomes. JAMA 2016;316:533­4. DOI PubMed
156. Walker SH, Duncan DB. Estimation of the probability of an event as a function of several independent variables.Biometrika 1967;54:167.

PubMed
157. YuY, TanX, Ning S,WuY.Machine learning for understanding compatibility of organic­inorganic hybrid perovskites with post­treatment

amines. ACS Energy Lett 2019;4:397­404. DOI
158. J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33

DOI
159. Santosa F, Symes WW. Linear inversion of band­limited reflection seismograms. SIAM J Sci and Stat Comput 1986;7:1307­30. DOI
160. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970;12:55­67. DOI
161. Li X, Dan Y, Dong R, et al. Computational screening of new perovskite materials using transfer learning and deep learning. Appl Sci

2019;9:5510. DOI
162. Stoddard RJ, Dunlap­shohl WA, Qiao H, Meng Y, KauWF, Hillhouse HW. Forecasting the decay of hybrid perovskite performance using

optical transmittance or reflected dark­field imaging. ACS Energy Lett 2020;5:946­54. DOI
163. Padula D, Simpson JD, Troisi A. Combining electronic and structural features in machine learning models to predict organic solar cells

properties.Mater Horiz 2019;6:343­9. DOI
164. Wu X, Kumar V, Ross Quinlan J, et al. Top 10 algorithms in data mining. Knowl Inf Syst 2008;14:1­37. DOI
165. Raccuglia P, Elbert KC, Adler PD, et al. Machine­learning­assisted materials discovery using failed experiments. Nature 2016;533:73­6.

DOI PubMed
166. Jiménez­luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell 2020;2:573­84. DOI
167. Breiman L. Pasting small votes for classification in large databases and on­line.Machine Learning 1999; 36:85­103. DOI
168. Breiman L. Bagging predictors. Mach Learn 1996;24:123­40. DOI
169. Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Machine Intell ;20:832­44. DOI
170. Louppe G, Geurts P. Ensembles on random patches. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 346. Available from:

https://link.springer.com/chapter/10.1007/978­3­642­33460­3_28 [Last accessed on 13 Jun 2022]
171. Takahashi K, Takahashi L, Miyazato I, Tanaka Y. Searching for hidden perovskite materials for photovoltaic systems by combining data

science and first principle calculations. ACS Photonics 2018;5:771­5. DOI
172. Freund Y, Schapire RE. A decision­theoretic generalization of on­line learning and an application to boosting. J Comput and Sys Sci

1997;55:119­39. DOI
173. J. H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat 2001; 29, 1189 (2001), DOI
174. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.­Y. Liu, in Proceedings of the 31st International Conference on

Neural Information Processing Systems (Curran Associates Inc., Long Beach, California, USA, 2017), pp. 3149. DOI
175. Prokhorenkova L, . Gusev G, A. Vorobev, A. V. Dorogush, A. Gulin. CatBoost: unbiased boosting with categorical features. Available

from: https://arxiv.org/abs/1706.09516 [Last accessed on 13 Jun 2022]
176. Sahu H,Ma H. Unraveling correlations between molecular properties and device parameters of organic solar cells using machine learning.

J Phys Chem Lett 2019;10:7277­84. DOI PubMed

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1515/9781400881970-018
http://dx.doi.org/10.1021/acs.jpclett.1c01939
http://www.ncbi.nlm.nih.gov/pubmed/34337946
http://dx.doi.org/10.15420/usc.2017:13:1
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://arxiv.org/abs/1603.04467
http://dx.doi.org/10.1016/j.jmgm.2021.107852
http://www.ncbi.nlm.nih.gov/pubmed/33556645
http://dx.doi.org/10.1038/s41524-020-00388-2
http://dx.doi.org/10.1109/jphotov.2019.2939070
http://dx.doi.org/10.3390/computation5010002
http://dx.doi.org/10.1038/s41598-018-29368-9
http://www.ncbi.nlm.nih.gov/pubmed/30030505
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054641
http://dx.doi.org/10.1021/acs.jpcc.8b10708
http://dx.doi.org/10.1002/cem.2992
http://dx.doi.org/10.2139/ssrn.360300
http://dx.doi.org/10.1001/jama.2016.7653
http://www.ncbi.nlm.nih.gov/pubmed/27483067
http://www.ncbi.nlm.nih.gov/pubmed/6049533
http://dx.doi.org/10.1021/acsenergylett.8b02451
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1137/0907087
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.3390/app9245510
http://dx.doi.org/10.1021/acsenergylett.0c00164
http://dx.doi.org/10.1039/c8mh01135d
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1038/nature17439
http://www.ncbi.nlm.nih.gov/pubmed/27147027
http://dx.doi.org/10.1038/s42256-020-00236-4
http://dx.doi.org/10.1023/a:1007563306331
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1109/34.709601
https://link.springer.com/chapter/10.1007/978-3-642-33460-3_28
http://dx.doi.org/10.1021/acsphotonics.7b01479
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/icsgea.2017.72
https://arxiv.org/abs/1706.09516
http://dx.doi.org/10.1021/acs.jpclett.9b02772
http://www.ncbi.nlm.nih.gov/pubmed/31702163


Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07 Page 43 of 44

177. Cortes C, Vapnik V. Support­vector networks.Mach Learn 1995;20:273­97. DOI
178. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput 2004;14:199­222. DOI
179. Wu T, Wang J. Global discovery of stable and non­toxic hybrid organic­inorganic perovskites for photovoltaic systems by combining

machine learning method with first principle calculations. Nano Energy 2019;66:104070. DOI
180. Ambikasaran S, Foreman­Mackey D, Greengard L, Hogg DW, O’Neil M. Fast direct methods for gaussian processes. IEEE Trans Pattern

Anal Mach Intell 2016;38:252­65. DOI
181. Rasmussen CE, Williams CKI. Gaussian processes for machine learning. The MIT Press, 2006. DOI
182. Pyzer­knapp EO, Simm GN, Aspuru Guzik A. A Bayesian approach to calibrating high­throughput virtual screening results and applica­

tion to organic photovoltaic materials.Mater Horiz 2016;3:226­33. DOI
183. Li J, Pradhan B, Gaur S, Thomas J. Predictions and strategies learned frommachine learning to develop high­performing perovskite solar

cells. Adv Energy Mater 2019;9:1901891. DOI
184. Sanchez­Lengeling B, Aspuru­Guzik A. Inverse molecular design using machine learning: generative models for matter engineering.

Science 2018;361:360­5. DOI PubMed
185. Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE

Signal Process Mag 2018;35:53­65. DOI
186. Goodfellow I, Pouget­abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139­44. Available from:

https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3­Abstract.html [Last accessed on 13 Jun 2022]
187. Goodfellow I J, Pouget­Abadie J,MirzaM, et al. GenerativeAdversarial Networks. 2014. Available from: https://arxiv.org/abs/1406.2661

[Last accessed on 13 Jun 2022]
188. Kingma D P, Welling M. Auto­encoding variational bayes. Available from: https://arxiv.org/abs/1312.6114 [Last accessed on 13 Jun

2022]
189. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 1987;20:53­65.

DOI
190. Choudhary K, Bercx M, Jiang J, Pachter R, Lamoen D, Tavazza F. Accelerated discovery of efficient solar­cell materials using quantum

and machine­learning methods. Chem Mater 2019;31:5900­8. DOI PubMed PMC
191. Komer B, Socastro MT, Kim W. Hyperopt: distributed hyperparameter optimization (2012­2021). Available from:

https://github.com/hyperopt/hyperopt [Last accessed on 9 Jun 2022]
192. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. A next­generation hyperparameter optimization framework. Preferred Networks, Inc.,

2017­2021. DOI
193. Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I. tune: scalable hyperparameter tuning (The Ray Team, 2018). Available

from: https://docs.ray.io/en/latest/tune/index.html [Last accessed on 10 Jun 2022]
194. Lu S, Zhou Q, Ma L, Guo Y, Wang J. Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine

learning. Small Methods 2019;3:1900360. DOI
195. Kim C, Pilania G, Ramprasad R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites.

J Phys Chem C 2016;120:14575­80. DOI
196. Körbel S, Marques MAL, Botti S. Stability and electronic properties of new inorganic perovskites from high­throughput ab initio calcu­

lations. J Mater Chem C 2016;4:3157­67. DOI
197. Gómez­Bombarelli R, Aguilera­Iparraguirre J, Hirzel TD, et al. Design of efficient molecular organic light­emitting diodes by a high­

throughput virtual screening and experimental approach. Nat Mater 2016;15:1120­7. DOI PubMed
198. Tao Q, Lu T, Sheng Y, Li L, Lu W, Li M. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting.

J Energy Chem 2021;60:351­9. DOI
199. Xu P, Lu T, Ju L, Tian L, Li M, Lu W. Machine learning aided design of polymer with targeted band gap based on DFT computation. J

Phys Chem B 2021;125:601­11. DOI PubMed
200. Jin H, Zhang H, Li J, et al. Discovery of novel two­dimensional photovoltaic materials accelerated by machine learning. J Phys Chem

Lett 2020;11:3075­81. DOI PubMed
201. Rajagopal A, Yao K, Jen AK. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial

engineering. Adv Mater 2018;30:e1800455. DOI PubMed
202. Li Z, Klein TR, Kim DH, et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater 2018;3. DOI PubMed
203. Zhou G, Chu W, Prezhdo OV. Structural deformation controls charge losses in MAPbI3: unsupervised machine learning of nonadiabatic

molecular dynamics. ACS Energy Lett 2020;5:1930­8. DOI
204. Kennard RW, Stone LA. Computer Aided design of experiments. Technometrics 1969;11:137­48. DOI
205. Park H, Jun C. A simple and fast algorithm for K­medoids clustering. Expert Syst Appl 2009;36:3336­41. DOI
206. Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug­like molecules based on molecular complexity and fragment

contributions. J Cheminform 2009;1:8. DOI PubMed PMC
207. Venkatraman V, Yemene AE, de Mello J. Prediction of absorption spectrum shifts in dyes adsorbed on titania. Sci Rep 2019;9:16983.

DOI PubMed PMC
208. Isida fragmentor. Available from: http://infochim.u­strasbg.fr/downloads/manuals/Fragmentor2017/Fragmentor2017_Manual_nov2017.pdf

[Last accessed on 13 Jun 2022]
209. Cooper CB, Beard EJ, Vázquez­mayagoitia Á, et al. Design­to­device approach affords panchromatic co­sensitized solar cells. Adv

Energy Mater 2019;9:1802820. DOI

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1023/b:stco.0000035301.49549.88
http://dx.doi.org/10.1016/j.nanoen.2019.104070
http://dx.doi.org/10.1109/tpami.2015.2448083
http://dx.doi.org/10.7551/mitpress/3206.001.0001
http://dx.doi.org/10.1039/c5mh00282f
http://dx.doi.org/10.1002/aenm.201970181
http://dx.doi.org/10.1126/science.aat2663
http://www.ncbi.nlm.nih.gov/pubmed/30049875
http://dx.doi.org/10.1109/msp.2017.2765202
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1021/acs.chemmater.9b02166
http://www.ncbi.nlm.nih.gov/pubmed/32165788
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067045
https://github.com/hyperopt/hyperopt
http://dx.doi.org/10.1145/3292500.3330701
https://docs.ray.io/en/latest/tune/index.html
http://dx.doi.org/10.1002/smtd.201900360
http://dx.doi.org/10.1021/acs.jpcc.6b05068
http://dx.doi.org/10.1039/c5tc04172d
http://dx.doi.org/10.1038/nmat4717
http://www.ncbi.nlm.nih.gov/pubmed/27500805
http://dx.doi.org/10.1016/j.jechem.2021.01.035
http://dx.doi.org/10.1021/acs.jpcb.0c08674
http://www.ncbi.nlm.nih.gov/pubmed/33411516
http://dx.doi.org/10.1021/acs.jpclett.0c00721
http://www.ncbi.nlm.nih.gov/pubmed/32239944
http://dx.doi.org/10.1002/adma.201800455
http://www.ncbi.nlm.nih.gov/pubmed/29883006
http://dx.doi.org/10.1021/acsami.6b05862
http://www.ncbi.nlm.nih.gov/pubmed/27428311
http://dx.doi.org/10.1021/acsenergylett.0c00899
http://dx.doi.org/10.1080/00401706.1969.10490666
http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.1186/1758-2946-1-8
http://www.ncbi.nlm.nih.gov/pubmed/20298526
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225829
http://dx.doi.org/10.1038/s41598-019-53534-2
http://www.ncbi.nlm.nih.gov/pubmed/31740733
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861231
http://infochim.u-strasbg.fr/downloads/manuals/Fragmentor2017/Fragmentor2017_Manual_nov2017.pdf
http://dx.doi.org/10.1002/aenm.201970014


Page 44 of 44 Lu et al. J Mater Inf 2022;2:7 I http://dx.doi.org/10.20517/jmi.2022.07

210. Swain MC, Cole JM. ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. J
Chem Inf Model 2016;56:1894­904. DOI PubMed

211. Lee M. Insights from machine learning techniques for predicting the efficiency of fullerene derivatives­based ternary organic solar cells
at ternary blend design. Adv Energy Mater 2019. DOI

212. Zhao Z, del Cueto M, Geng Y, Troisi A. Effect of increasing the descriptor set on machine learning prediction of small molecule­based
organic solar cells. Chem Mater 2020;32:7777­87. DOI

213. Meftahi N, Klymenko M, Christofferson AJ, Bach U, Winkler DA, Russo SP. Machine learning property prediction for organic photo­
voltaic devices. npj Comput Mater 2020;6. DOI

214. Carbonell P, Carlsson L, Faulon JL. Stereo signature molecular descriptor. J Chem Inf Model 2013;53:887­97. DOI PubMed
215. Scharber M, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk­heterojunction solar cells­towards 10 % energy­conversion

efficiency. Adv Mater 2006;18:789­94. DOI
216. Winkler DA, Burden FR. Robust QSAR models from novel descriptors and bayesian regularised neural networks. Mol Simul

2006;24:243­58. DOI
217. Lucic B, Amic D, Trinajstic N. Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR

data sets. J Chem Inf Comput Sci 2000;40:403­13. DOI PubMed
218. David TW, Anizelli H, Jacobsson TJ, Gray C, Teahan W, Kettle J. Enhancing the stability of organic photovoltaics through machine

learning. Nano Energy 2020;78:105342. DOI
219. Reese MO, Gevorgyan SA, Jørgensen M, et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol

Energy Mater Sol Cells 2011;95:1253­67. DOI
220. Flake GW, Lawrence S. .Efficient SVM regression training with SMO.Machine Learning 2002;46:271­90. DOI
221. Du X, Lüer L, Heumueller T, et al. Elucidating the full potential of OPV materials utilizing a high­throughput robot­based platform and

machine learning. Joule 2021;5:495­506. DOI
222. Quinlan JR. Induction of decision trees.Mach Learn 1986;1:81­106. DOI
223. J. R. Quinlan, C4.5: Programs for machine learning.Mach Learn 1994;16:235­240. DOI
224. Lu T, Li H, Li M, Wang S, Lu W. Predicting experimental formability of hybrid organic­inorganic perovskites via imbalanced learning.

J Phys Chem Lett 2022;13:3032­8. DOI PubMed
225. Im J, Lee S, Ko T, Kim HW, Hyon Y, Chang H. Identifying Pb­free perovskites for solar cells by machine learning. npj Comput Mater

2019;5. DOI
226. Sun S, Hartono NT, Ren ZD, et al. Accelerated development of perovskite­inspired materials via high­throughput synthesis and machine­

learning diagnosis. Joule 2019;3:1437­51. DOI
227. Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J. Accelerated discovery of stable lead­free hybrid organic­inorganic perovskites via

machine learning. Nat Commun 2018;9:3405. DOI PubMed PMC
228. Li Z, Xu Q, Sun Q, Hou Z, Yin W. Thermodynamic stability landscape of halide double perovskites via high­throughput computing and

machine learning. Adv Funct Mater 2019;29:1807280. DOI
229. Schmidt J, Shi J, Borlido P, Chen L, Botti S,MarquesMAL. Predicting the thermodynamic stability of solids combining density functional

theory and machine learning. Chem Mater 2017;29:5090­103. DOI
230. Venkatraman V, Foscato M, Jensen VR, Alsberg BK. Evolutionary de novo design of phenothiazine derivatives for dye­sensitized solar

cells. J Mater Chem A 2015;3:9851­60. DOI
231. Majeed N, Saladina M, Krompiec M, Greedy S, Deibel C, Mackenzie RCI. Using deep machine learning to understand the physical

performance bottlenecks in novel thin­film solar cells. Adv Funct Mater 2020;30:1907259. DOI
232. Pokuri BSS, Ghosal S, Kokate A, Sarkar S, Ganapathysubramanian B. Interpretable deep learning for guided microstructure­property

explorations in photovoltaics. npj Comput Mater 2019;5. DOI
233. Sahu H, Yang F, Ye X, Ma J, Fang W, Ma H. Designing promising molecules for organic solar cells via machine learning assisted virtual

screening. J Mater Chem A 2019;7:17480­8. DOI
234. Sahu H, Rao W, Troisi A, Ma H. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors. Adv

Energy Mater 2018;8:1801032. DOI
235. Padula D, Troisi A. Concurrent optimization of organic donor­acceptor pairs through machine learning. Adv Energy Mater

2019;9:1902463. DOI
236. Nagasawa S, Al­Naamani E, Saeki A. Computer­aided screening of conjugated polymers for organic solar cell: classification by random

forest. J Phys Chem Lett 2018;9:2639­46. DOI PubMed

http://dx.doi.org/10.20517/jmi.2022.07
http://dx.doi.org/10.1021/acs.jcim.6b00207
http://www.ncbi.nlm.nih.gov/pubmed/27669338
http://dx.doi.org/10.1002/aenm.201900891
http://dx.doi.org/10.1021/acs.chemmater.0c02325
http://dx.doi.org/10.1038/s41524-020-00429-w
http://dx.doi.org/10.1021/ci300584r
http://www.ncbi.nlm.nih.gov/pubmed/23527586
http://dx.doi.org/10.1002/adma.200501717
http://dx.doi.org/10.1080/08927020008022374
http://dx.doi.org/10.1021/ci990061k
http://www.ncbi.nlm.nih.gov/pubmed/10761147
http://dx.doi.org/10.1016/j.nanoen.2020.105342
http://dx.doi.org/10.1016/j.solmat.2015.12.032
http://dx.doi.org/10.1023/a:1012474916001
http://dx.doi.org/10.1016/j.joule.2020.12.013
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/bf00993309
http://dx.doi.org/10.1021/acs.jpclett.2c00603
http://www.ncbi.nlm.nih.gov/pubmed/35348327
http://dx.doi.org/10.1038/s41524-019-0177-0
http://dx.doi.org/10.1016/j.joule.2019.05.014
http://dx.doi.org/10.1038/s41467-018-05761-w 
http://www.ncbi.nlm.nih.gov/pubmed/30143621
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109147
http://dx.doi.org/10.1002/adfm.201807280
http://dx.doi.org/10.1021/acs.chemmater.7b00156
http://dx.doi.org/10.1039/c5ta00625b
http://dx.doi.org/10.1002/adfm.201907259
http://dx.doi.org/10.1038/s41524-019-0231-y
http://dx.doi.org/10.1039/c9ta04097h
http://dx.doi.org/10.1002/aenm.201801032
http://dx.doi.org/10.1002/aenm.201902463
http://dx.doi.org/10.1021/acs.jpclett.8b00635
http://www.ncbi.nlm.nih.gov/pubmed/29733216

	INTRODUCTION
	MACHINE LEARNING AND DEEP LEARNING WORKFLOW
	Data collection
	Qualified datasets
	Data sources

	Descriptor generation
	Molecular descriptors
	Atomic descriptors
	Other forms of representation

	Data preprocessing
	Feature selection
	ML model construction
	ML algorithms
	Evaluation metrics
	Hyperparameter optimization

	ML model applications combined with domain knowledge
	High-throughput screening
	Online ML models
	Model analysis


	RECENT PROGRESS OF DATA-DRIVEN METHODS
	Data-driven progress in PSCs
	Data-driven progress in DSSCs
	Data-driven progress in OSCs

	CONCLUSION AND OUTLOOK
	Declarations
	Availability of data and materials
	Authors' contributions
	Conflicts of interest
	Financial support and sponsorship
	Ethical approval and consent to participate
	Consent for publication
	Copyright


