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Table S1 Thirty classes of descriptors in Dragon software. We give a brief description for each
type of descriptor and the difficult estimation of their interpretability.

Descriptor Type Brief Description
Interpret
ability

Tool/Library/
Reference

Constitutional indices Reflect chemical composition Easy Dragon/
PaDEL

Ring descriptor Numerical quantities of rings Easy Dragon/PaDE
L

Topological indices Numerical quantifiers of molecular
topology

Easy Dragon/PaDE
L

Walk and path counts Graph representation based on walks
and paths

Hard Dragon/PaDE
L

Connectivity indices Numerical quantifiers of bonds Easy Dragon/PaDE
L

Information indices Numerical quantities of atom-based
properties

Hard Dragon

2D matrix-based
descriptors

Numerical quantities based on
graph-theoretical matrices

Hard Dragon

2D autocorrelations Describe how a considered property is
distributed along with a topological
molecular structure

Hard Dragon/PaDE
L

Burden eigenvalues Eigenvalues in Burden matrix Hard Dragon/PaDE
L

P-VSA-like descriptors Amount of van der Waals surface area
(VSA)

Hard Dragon/PaDE
L

ETA indices Extended topological indices Hard Dragon
Edge adjacency indices Information of edge adjacency matrix Hard Dragon/PaDE

L
Geometrical descriptors Reflect molecular shape Hard Dragon
3D matrix-based
descriptors

3D version of 2D matrix-based
descriptors

Hard Dragon

3D autocorrelations 3D version of 2D autocorrelations Hard Dragon/PaDE
L

RDF descriptors Numerical quantities based on a radial
distribution function

Hard Dragon/PaDE
L

3D-MoRSE descriptors 3D-molecule representation based on
electron diffraction study

Hard Dragon

WHIM descriptors Geometrical descriptors based on the
projections of the atoms along principal
axes

Hard Dragon/PaDE
L

GETAWAY descriptors Chemical structure descriptors derived
from the molecular influence matrix

Hard Dragon

Randic molecular
profiles

Reflect the interatomic geometric
distances of a molecule

Hard Dragon



Functional groups
count

The number of specific functional
groups

Easy Dragon

Atom-centered
fragments

The number of specific atom types Easy Dragon

Atom-type E-state
indices

Reflect number of groups combined
with electro-topological state

Easy Dragon

2D atom pairs Numerical quantifiers of atom pairs in
2D

Easy Dragon

3D atom pairs Numerical quantifiers of atom pairs in
3D

Easy Dragon

Charge descriptors Reflect charge properties of a molecule Easy Dragon
Molecular properties Physic-chemical and biological

properties
Hard Dragon

Drug-like indices Dummy variables taking value equal to
one when all the criteria of the
consensus definition of a drug-like
molecule are satisfied, 0 otherwise

Easy Dragon

CATS 2D Similar to 2D atom pairs but assigning
atoms to defined pharmacophore point
types

Easy Dragon

CATS 3D Similar to 3D atom pairs but assigning
atoms to defined pharmacophore point
types

Easy Dragon

FP Fingerprint Hard Dragon/Chem
axon/RDKit

ECFP Extended connectivity fingerprint Hard Dragon/Chem
axon/CDK/
Canvas

CHF Chemical hashed fingerprint Hard Chemaxon
PF Pharmacophore fingerprint Hard Chemaxon
RF Reaction fingerprint Hard Chemaxon
MACCS-116 FP MACCS-166 fingerprint Hard Chemaxon/

OpenBabel/
RDKit/Canvas

LINGO FP LINGO fingerprint Hard OEChemTK/C
DK

Daylight-like FP Path fingerprint Hard OEChemTK/C
DK/Canvas

Tree FP Daylight-like with non-linear, “tree”
fragments

Hard OEChemTK/
OpenBabel

Pharmacophoric FP Pharmacophoric fingerprints Hard Chemaxon
MOLPRINT2D MOLPRINT2D OpenBabel
Acidic group count / / PaDEL
ALOGP / / PaDEL



APol / / PaDEL
Aromatic atoms count Count aromatic atoms Easy PaDEL
Aromatic bonds count Count aromatic bonds Easy PaDEL
Atom count Count atoms Easy PaDEL
Barysz matrix / / PaDEL
Basic group count Count groups Easy PaDEL
BCUT / / PaDEL
Bond count Count Bonds Easy PaDEL
BPol / / PaDEL
Carbon types Count carbon types / PaDEL
Chi chain / / PaDEL
Chi cluster / / PaDEL
Chi path cluster / / PaDEL
Chi path / / PaDEL
Crippen logP and MR / / PaDEL
Detour matrix / / PaDEL
Eccentric connectivity
index

/ / PaDEL

Atom type
electrotopological state

/ / PaDEL

Extended topochemical
atom

/ / PaDEL

FMFDescriptor / / PaDEL
Fragment complexity / / PaDEL
Hbond acceptor count / / PaDEL
Hbond donor count / / PaDEL
Hybridization ratio / / PaDEL
Information content / / PaDEL
Kappa shape indices / / PaDEL
Largest chain / / PaDEL
Largest Pi system / / PaDEL
Longest aliphatic chain / / PaDEL
Mannhold LogP / / PaDEL
McGowan volume / / PaDEL
Molecular distance
edge

/ / PaDEL

Molecular linear free
energy relation

/ / PaDEL

Petitjean number / / PaDEL
Rotatable bonds count
Rule of five

/ / PaDEL

Wiener numbers / / PaDEL
XLogP / / PaDEL
Zagreb index / / PaDEL



Gravitational index / / PaDEL
Length over breadth / / PaDEL
Moment of inertia / / PaDEL
Petitjean shape index / / PaDEL
Dragon: https://chm.kode-solutions.net/
Chemaxon: https://docs.chemaxon.com/display/docs/chemical-fingerprints.md
PaDEL: http://www.yapcwsoft.com/dd/padeldescriptor/
RDKit: https://www.rdkit.org/docs/source/rdkit.Chem.EState.Fingerprinter.html
OEChemTK: https://www.eyesopen.com/oechem-tk
OpenBabel: http://openbabel.org/wiki/Main_Page
CDK: https://sourceforge.net/projects/cdk/
Canvas: https://www.schrodinger.com/Canvas/

Section S1 Outlier detection algorithms
In this section, 4 outlier detection algorithms are firstly chosen to be introduced in details.

Then the codes about how to employ the outlier detection algorithms in Python codes will be
illustrated, considering the readers’ interests of their utilizations. Finally, we will introduce our
inhouse integrated module to utilize the currently outlier methods tools to perform a fast searching
for the optimal outlier method and parameters.
Local outlier factor (LOF)

LOF method measures the so-called local density deviation of each data point with respect to
its neighbors in a given data set. The outlier samples could be detected by inspecting their lower
density than their neighbors.1

Firstly, the terms of o, p, q are denoted as sample points, and the term C displays a set of
samples. The term �(�, �) is the distance between samples p and q, while �(�, �) stands for the
minimum distance between sample p and the sample in C. Thence, according to the work of
Breunig et al.1, the notion of k-distance of sample p, denoted as k-distance(p), is defined as the
distance �(�, �) between sample p and the sample o in data set (denoted as D), in which at least k
samples �' ∈ � \ {�} hold that � �, �' ≤ �(�, �) and at most k-1 samples �' ∈ � \ {�} hold that
� �, �' < �(�, �). The term � \ {�} indicates that the data set D excluding sample p. Given the
notion of k-distance(p), it could be noted that the k-distance neighborhood of sample p contains
every sample whose distance from p is lower than k-distance(p), which could be defined as
equation 1.

�� � = ��−�������� � = � ∈ � \ {� � �, � ≤ ����� � # 1
To simplify the notations, the ��−��������(�) is represeneted as ��(�) , signaling the

numeber of k-distance neighborhood of sample p, while �����(�) is the shorthand of
k-distance(p).

Then, the notion of reachability distance of sample p is defined as equation 2.
�����

����ℎ �, � = max ����� � , � �, � # 2
The local reachability density (lrd) of a sample p could be defined based on equation 2 as

equation 3.
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The lrd of a sample p could reflect the inverse of the average reachability distance of sample
p. And at last, the local outlier factor (lof) of sample p is defined as equation 4.

���� � =
�∈�� �

���� �
���� ��

�� �
# 4

The lof of sample p is the average of the ratio of the local reachability density of p and those
of the k neighbors of p. The lower lrd of p, the higher lrd of sample o will be and thence the higher
lof of p will be, which indicates the higher probability of p to be an outlier.
Isolated forest (iForest)

By taking the advantages of two outliers’ quantitative properties: i) they are the minority
consisting of fewer instances and ii) they have attribute-values that are very different from normal
samples, Liu et al.2 argue that the outliers are more easily to be isolated closer to the root of a tree
structure when applying the data set into a tree model, whereas the normal samples are isolated at
the deeper end of the tree structure. Such the isolation characteristic of a tree model may help us to
detect the outliers more effectively.

Given a data set of � samples � = {�1, �2, …, ��}, the samples � were recursively divided
by randomly selecting an attribute and a split value, until the tree reaches a limited depth, or the
remnant sample set could not be divided anymore. Thus, the path length ℎ(�) for a sample x could
be defined as the number of edges x traverses a tree structure from the root node to a terminate
node. The outlier score is then defined based on ℎ(�) as equation 5.

� �, � = 2−
� ℎ �

� � # 5

�(ℎ � ) is the average of ℎ � from a collection of fitted tree structures, while � � is
calculated based on the data set of n samples as equation 6.

� � = 2� � − 1 −
2 � − 1

�
# 6

�(�) is the harmonic number and could be estimated by ln � + 0.5772156649.
By sorting the samples by the order of outlier score in equation 5, the outliers could be easily

detected according to the top of the ranked sample list.
One-class support vector machine (one-class SVM)

Similar to the binary support vector classification task (SVC), the idea of one-class SVM is
determining a decision function to discriminate the binary sample classes, namely the normal and
outlier samples, in which the decision function should cover the most normal samples and the least
outlier samples as possible.3 According to the work of Schölkopf et al.3 and Chang et al.4, given
training vectors �� ∈ ��, � = 1, …, � without classification labels, the primal problem of one-class
SVM is to minimize the value of equation 7.

min
�,�,�

1
2

��� − � +
1
��

�=1

�

��� # 7

������� �� = ��� �� ≥ � − ��

= �� ≥ 0, � = 1, …, �



In equation 1, � �� maps �� into a higher-dimensional space. � and � are a weight
vector and an offset parameterizing a hyperplane. Thence ��� �� determines the decision
function in the feature space. �� is slack variable that is used to introduce the “soft margin” of
decision function, which aims allow for some errors. Parameter � is introduced to control the size
of soft margin. To solve equation 1, a Lagrangian could be introduced as equation 8, in which �, �
are constants respectively.
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The derivatives with respect to the primal variables, yielding equation 4.
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The decision function could be equation 10, in which the ���(�) equals 1 for � ≥ 0 and -1
other wise.

���
�=1

�

��� ��� − � = ���
�=1

�

��� � ��
�� �� − � # 10

Thence, the outlier samples will be detected depending on the value of decision function
Extreme gradient boosting outlier detection (XGBOD)

Zhao et al.5 proposed a supervised three-phase framework embedding extreme gradient
boosting (XGBoost) algorithm, which is named XGBoost outlier detection (XGBOD).

In phase 1, given a data set of n samples and d features � ∈ ��×� , a set of unsupervised
outlier detection methods are regarded as outlier scoring functions Φ( ⋅ ) for XGBOD, where each
function Φ�( ⋅ ) would output a vector consisting of the 1 or 0 values on data set � as the
transformed outlier scores (TOS) to describe the outlying degree for each sample. Combing k
outlier scoring functions, k TOS vectors could be constructed as new matrix Φ = Φ1, …, Φ�

which would be used as the input matrix for the next phase.
Phase 2 is to pick up p (p<k) TOS vectors from the matrix Φ, based on the consideration that

not all the TOS vectors would contain useful information to detect the outliers. Two selection
methods are considered. The first is the accurate selection that selects top p most accurate TOS
vectors, in which the accuracy measurement could be chosen from any accuracy metrics such as
the area under receiver operating characteristic curve (ROC). Let the ���� ⋅ as the accuracy
metric function, each TOC vectors could be evaluated by using equation 11 along with the true
labels y (this is the reason why XGBOD is a supervised method).

���� = ��� Φ�, � # 11
The second selection method is balance selection that maintains the balance between diverse

and accurate TOS vectors, in which the Pearson correlation �(Φ�, Φ�) between two TOC vectors
Φ� and Φ� is introduced into equation 11, as displayed in equation 12.



Ψ Φ� =
����

�=1
� � Φ�, Φ��
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������� �� Φ� ∈ � , ���� > 0
� means the selected TOS vector set while Ψ Φ� is the defined discounted accuracy

function. The Pearson correlation between a TOS of Φ� (TOSi) and the TOS in � (TOSS) is

aggregated as �=1
� � Φ�, Φ�� . If TOSi is highly related to TOSS, the accuracy of TOSi will be

discounted, which thereby discouraging to select the similar TOS vector and increase the account
of diverse TOS vector. After each TOS vector is iteratively evaluated by equation 12, the top p
TOS vectors with the highest discounted accuracies will be selected for phase 3.

At last, an XGBoost classifier is applied to train the classification model based on the
selected TOS matrix, in which the XGBoost could be replaced by other classifiers. Then the model
could be used to predict the outlier sample for unknown data set.
Minimum covariance determinant (MCD)

Minimum covariance determinant (MCD) method6 determines an outlier in a given training
vectors �� ∈ ��, � = 1, …, � with p features by inspecting its Mahalanobis distance (MD):

�� �� = �� − �� ��−1 �� − �� # 13
Herein, �� is the mean value of training vectors, � is the classical covariance matrix of the
training set of � samples. To overcome the so-called masking effect that the resulting MD values
are highly affected by the outlying points and no longer detect the outliers, the mean value and
covariance matrix are usually calculated based on a subset of training set that includes as few
outliers as possible. Considering a subset � of ℎ training samples selected from � samples, the
modifiedMahalanobis distance is defined as:

�� �� = �� − �� ���
−1 �� − �� # 14

Herein, �� is the mean value of ℎ training vectors, �� is the covariance matrix of the training
subset �. The objective of MCD method is to find h samples whose classical covariance matrix
has the lowest determinant, which corresponds to find the subset concentrating the most likely
samples. To search an optimal subset � efficiently, Rousseeuw et al.7 proposed a fast-MCD
algorithms as followed:

1) Draw a random ℎ-subset �, and compute its �� and ��
−1;

2) Compute the MD for each sample, and select the top ℎ samples with lowest MD values to
form a new ℎ-subset �;

3) Repeat step 1 ~ 2 for e.g., 10 times (or the �� determinant reaches 0 or keeps unchanged),
and store the results;

4) Repeat step 1 ~ 3 for e.g., 30 times, and select e.g., 10 ℎ -subset � whose �� has the
lowest determinants;

5) Iterate the selected 10 ℎ-subset � as the starts to exert step 1 ~ 2 and store the results;
6) Select one ℎ-subset � whose �� has the lowest determinant;
7) Output the corresponding MD values and determine the outliers.

Angle-based outlier detection (ABOD)
Angle-based outlier detection (ABOD)8 utilizes the angles between difference vectors to pairs

of other points to evaluate each sample point. As for a point within a cluster, the most angles
might differ widely, and exhibit the higher variance. The angles of an outlier to most pairs of



points will be small since most normal points are clustered in some directions, showing the lower
variance. The algorithm of ABOD could be summarized as followed:

1) Select a sample from the data set and calculate the variance of all the angles between
difference vectors to pairs of other points;

2) Iterate all the samples;
3) Sort the variances and determine the outliers.

Performing outlier detection in code
Compared to the algorithm details of outlier detection, the usage on how to apply them into

practice may be more appealing to us. As far as all we know, the Python tools PyOD and
scikit-learn are the most commonly used packages to perform the outlier detection, which have
involved the majority of algorithms (including the 4 algorithms that we have introduced above).
Table S 2 list all the algorithms that are extracted from PyOD and scikit-learn, and Table S 3
displays the outlier detecting Python tools that we have known. Since PyOD has covered the most
algorithms among the other Python packages, we will show examples mainly on it.

Figure S 1 exhibits the code to perform the outlier detection, including LOF, iForest and
OCSVM. The outlier detection method could be chosen by switching the value of
“outlier_detection”. The toy data set is generated from the module
“sklearn.datasets.make_regression” with 100 samples and 5 features as the original data set. The
leaving-one-out cross-validation (LOOCV) determination coefficient (R2) of original data set by
using XGBoost algorithm is 0.792. The original data set is then transferred to the outlier module
along with the hyper-parameter “contamination” that stands for the account of outlier samples and
needs to be optimized by the users. The values of “contamination” are set 0.03 for OCSVM, 0.04
for LOF, and 0.04 for iForest respectively. Then we could obtain the pruned data set and evaluate
it by using LOOCV validation and XGBoost, yielding the LOOCV R2 of 0.820 for OCSVM, 0.813
for LOF, and 0.828 for iForest respectively.

Table S2 Outlier detection methods. Extracted from https://github.com/yzhao062/pyod and
http://scikit-learn.org/stable/modules/outlier_detection.html.

Algorithm Source
Minimum Covariance Determinant (MCD) PyOD, scikit-learn
One-Class Support Vector Machines PyOD, scikit-learn, libsvm
Deviation-based Outlier Detection PyOD
Local Outlier Factor PyOD, scikit-learn
Connectivity-Based Outlier Factor PyOD
Memory Efficient Connectivity-Based Outlier
Factor

PyOD

Clustering-Based Local Outlier Factor PyOD
LOCI: Fast outlier detection using the local
correlation integral

PyOD

Histogram-based Outlier Score PyOD
Subspace Outlier Detection PyOD
Rotation-based Outlier Detection PyOD
Angle-Based Outlier Detection PyOD
COPOD: Copula-Based Outlier Detection PyOD
Fast Angle-Based Outlier Detection using PyOD



approximation
Median Absolute Deviation (MAD) PyOD
Stochastic Outlier Selection PyOD
Isolation Forest PyOD, scikit-learn
Feature Bagging PyOD
LSCP: Locally Selective Combination of
Parallel Outlier Ensembles

PyOD

Extreme Boosting Based Outlier Detection
(Supervised)

PyOD

Lightweight On-line Detector of Anomalies PyOD
Fully connected AutoEncoder (use
reconstruction error as the outlier score)

PyOD

Variational AutoEncoder (use reconstruction
error as the outlier score)

PyOD

Variational AutoEncoder (all customized loss
term by varying gamma and capacity)

PyOD

Single-Objective Generative Adversarial
Active Learning

PyOD

Multiple-Objective Generative Adversarial
Active Learning

PyOD

Deep One-Class Classification PyOD
Table S3 Python tools for outlier detections. Extracted from
https://github.com/yzhao062/anomaly-detection-resources.

Outlier detection tools URL
PyOD https://github.com/yzhao062/pyod
scikit-learn http://scikit-learn.org/stable/modules/outlier_detection.html
PySAD https://github.com/selimfirat/pysad
SUOD https://github.com/yzhao062/suod
alibi-detect https://github.com/SeldonIO/alibi-detect



Figure S1 Code to perform outlier detection.
Selecting an optimal outlier detection in code

Dazzling by the various outlier methods in Figure S 2, we may feel confused to select a
suitable method along with its parameter “contaminant”. Thence, we developed a simple
integrated module in our inhouse package9 to perform a fast searching for an optimal outlier
method from the dazzling method choices provided from PyOD, which covers at least 17
unsupervised outlier methods.

The integral code has little difference from Figure S 1, except that:
a) we import the module “fml.outlier.HpOutlierDetect” instead of the methods provided from

PyOD, which is marked in Figure S 2 a;
b) Use the “HpOutlierDetect” to perform the searching for the optimal outlier method and

contamination value, which is marked in Figure S 2 b. The best result could be found in
“best_param”;

c) Use the optimal outlier method and contamination value directly from the step b, which is
marked in Figure S 2 c.

After searching automatically and quickly, we may find that the size of pruned data set is
reduced to 88 samples along with the more favorable LOOCV R2 and LOOCV RMSE values of
0.849 and 55.533.



Figure S2 Code to perform a fast searching for the optimal outlier method and its parameter

Section S2 Illustration for Mor14p, Mor24m, R2s
Mor14p and Mor24m

Mor14p and Mor24m belong to the descriptor “3D-molecule representation based on electron
diffraction study (MORSE)” from Dragon software. Their meanings might be hard to be
understood. For the adequate comprehension for this feature, the background would be introduced
tightly. The detail information could be found in the original papers.10,11

Taking Mor14p as the start, let’s see the original definition as:

Mor14p =
�=2

�

�=1

�=1

����
��� 13���

13���
�� # 13

where P is carbon-scaled polarizability, r is the Euclidean distance between ith and jth atoms.
Each summand in this descriptor mainly depends on distance r and thence could be considered as
a radial basis function itself, which could be treated as:

� � = �1�2
sin 13�

13�
# 14

where f(r) represents the radial basis function of atomic pairs as well as the summand in Mor14p.



Hence, Mor14p could be treated as the sum of contributions by different atomic pairs, which could
be rewrote as (taking a system of C, N as the example):

Mor14p = ����
sin 13�

13�
� + ����

sin 13�
13�

� + ����
sin 13�

13�
� # 15

Then for each atomic pair, there are different distances:

����
sin 13�

13�� = ���� ×
sin 13�1

13�1
+

sin 13�2

13�2
+ … # 16

Considering the data set (targeted to power convention efficiency PCE) in our work12, three
atomic pairs of C-S, C-C and C-O are mainly influencing Mor14p. Thence the three determined
radial basis functions f(r) are plotted in Figure S 3. We could deduce that the positive values of
functions f(r) would lead to positive contribution for Mor14p and the contrary for PCE values.
Thus, the most favorable atomic pairs are located at the distances about 1.329, 1.812 Å while the
most detrimental pairs are located at 1.087, 1.571 Å.

There is the same condition for Mor24m which belongs to the vertical model. Mor24m could
be defined as:

Mor24m =
�=2

�

�=1

�=1

����
��� 23���

23���
�� # 17

where m is carbon-scaled atomic mass and the others are the same in Mor14p. Similarly, the
summand could be treated as a radial basis function:

� � = �1�2
���23�

23�
# 18

where the f(r) is the summand in Mor23m.
In our data set12, two atomic pairs of C-S and C-O are considered. The determined radial

basis functions f(r) are presented in Figure S 4. Due to the positive coefficient of Mor24m, the
most favorable atomic pairs are located at the distance around 1.161, 1.434, 1.707, 1.981 Å, while
the most detrimental pairs are at 1.024, 1.298, 1.571, 1.844 Å.

Figure S 3 Radial basis functions of Mor14p descriptor corresponding to different atomic pairs



Figure S 4 Radial basis functions of Mor24m descriptor corresponding to different atomic pairs

R2s
R2s belongs to GETAWAY descriptors, which was defined by Consonni et al.13,14 Before

understanding the meaning of R2s, more backgrounds should be acknowledged. The first should
be introduced is the molecular influence matrix H (MIM), which is defined as:

� = � �� � −1 �T# 19
where M is the molecular matrix constituted by A rows corresponding to the atoms in a molecule
(hydrogen included) and three columns corresponding to the Cartesian coordinates x, y, z of each
atom in optimized molecular structure. Atomic coordinates are assumed to be calculated with
respect to the geometrical center of the molecule to obtain translational invariance. The matrix H
is a symmetric A×A matrix, where A represents the number of atoms, with the following
mathematical properties:

0 ≤ ℎ�� ≤ 1;
�=1

�

ℎ��� = 3 ���� ��� 3� − ��������� # 20

where h denotes the elements of the MIM. The diagonal elements hii, called leverages, encode
atomic information and represent the “influence” of each molecule atom in determining the whole
shape of the molecule. The mantle atoms always have higher hii values than the atoms near the
molecule geometric center.

Then, based on the MIM, the influence/distance matrix R is determined as following:

� �� ≡
ℎ��ℎ��

��� ��

� ≠ �# 21

where rij is the geometric distance of ith and jth atoms. The diagonal elements of the matrix R are
zero. In one molecule, the largest values of the matrix elements derive from the most external
atoms that are simultaneously next to each other in the molecular space. The lower values of [R]ij
is dependent on the atoms near molecule geometric center.

Then we could define R2u descriptor as:



�2 � =
�−1

�−1

�>�
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where u means unweighted, dij is the topological distance between atoms i and j, δ(2; dij) is
Dirac-delta function (δ=1 if dij =2, zero otherwise). Apparently, R2u is the sum of the elements in
R matrix, where the values are determined by the atomic leverages and interatom distances. To
reduce R2u values, the atom density near molecule geometric center should be higher and the
mantle density is prone to be lower.

It’s very close to the subjected descriptor R2s, where s substitutes u. The s represents intrinsic
state of the ith atom (I-state) which is defined as:

�� =

2
��

2

⋅ �� + 1

��
# 23

where L is the principal quantum number, δv is the number of valence electrons, δ is the number of
sigma electrons in the H-depleted molecular structure. Disregarding the bond types, the I-state
values of the elements in the periodic table tend to be larger, such as R-C(2.5)≡R, R≡N(6.0),
R-F(8.0), R-Si(1.389)≡R. In the terms of bond types, the higher bonds, the higher the I-state
would be, such as R-C(2.5)≡R, R-C(2)H=R, R-Car(1.667), R-C(1.5)H2=R. Since the I-state is
only defined for non-H atoms, Dragon fixes the value of 1 for hydrogen.

So, R2s is the combination of R2u and I-state, which is formulated as:

�2 � =
�−1

�−1

�>�

� �� ⋅ �� ⋅ �� ⋅ � 2; ����� # 24

In our work12, to compress the effect of R2s, the proportion of atoms with high I-state should
be lowered, such as R=O(7.0), R-F(8.0), R≡N(6.0) while the density of geometric centered atoms
should be increased and the vice versa.

Section S3 Atomic parameters
Table S 4 lists the ionic radii for various ions from the work of Pauling15, Sanderson16,

Белов17, Ahrens17, Kordes17, Goldschmidt18, Quill19, Zachariasen20, and Chen21. Table S 5 lists
covalent radii from the work of Белов17. Table S 6 ~ Table S 10 list ionization energies, metal radii,
valence electrons to covalent radius ratios, electronegativities and equivalent conductance from
the work of Chen21.

Table S4 Ionic radius
Ion Ionic radius (Å) Source
H- 2.08 Pauling

Li+

0.60 Pauling
0.69 Sanderson
0.68 Белов-Бокий
0.68 Ahrens
0.71 Kordes

Be2+
0.31 Pauling
0.49 Sanderson
0.34 Белов-Бокий



0.35 Ahrens
0.38 Kordes

B3+

0.20 Pauling
0.41 Sanderson
0.20 Белов-Бокий
0.23 Ahrens
0.25 Kordes

C4+

0.15 Pauling
0.34 Sanderson
0.20 Белов-Бокий
0.16 Ahrens
0.18 Kordes

C4- 2.60 Pauling

N5+

0.11 Pauling
0.31 Sanderson
0.15 Белов-Бокий
0.13 Ahrens
0.14 Kordes

N3- 1.71 Pauling
O6+ 0.09 Pauling
O2- 1.40 Pauling
F7+ 0.07 Pauling
F- 1.36 Pauling

Na+

0.95 Pauling
0.99 Sanderson
0.98 Белов-Бокий
0.97 Ahrens
0.95 Kordes

Mg2+

0.65 Pauling
0.75 Sanderson
0.74 Белов-Бокий
0.66 Ahrens
0.66 Kordes

Al3+

0.50 Pauling
0.62 Sanderson
0.57 Белов-Бокий
0.51 Ahrens
0.52 Kordes

Si4+

0.41 Pauling
0.62 Sanderson
0.57 Белов-Бокий
0.51 Ahrens
0.52 Kordes



Si4- 2.71 Pauling

P5+

0.34 Pauling
0.48 Sanderson
0.35 Белов-Бокий
0.35 Ahrens
0.34 Kordes

P-3 2.12 Pauling

S6+

0.29 Pauling
0.43 Sanderson
0.29 Белов-Бокий
0.30 Ahrens
0.31 Kordes

S2- 1.84 Pauling
Cl7+ 0.26 Pauling
Cl- 1.81 Pauling

K+

1.33 Pauling
1.33 Sanderson
1.33 Белов-Бокий
1.33 Ahrens
1.33 Kordes

Ca2+

0.99 Pauling
1.00 Sanderson
1.04 Белов-Бокий
0.99 Ahrens
0.99 Kordes

Sc3+

0.81 Pauling
0.79 Sanderson
0.83 Белов-Бокий
0.81 Ahrens
0.81 Kordes

Ge4+ 0.53 Pauling
Ge4- 2.72 Pauling

As5+

0.47 Pauling
0.65 Sanderson
0.47 Белов-Бокий
0.46 Ahrens
0.46 Kordes

As3- 2.22 Pauling

Se6+

0.42 Pauling
0.60 Sanderson
0.35 Белов-Бокий
0.42 Ahrens
0.41 Kordes



Se2- 1.98 Pauling
Br7+ 0.39 Pauling
Br- 1.95 Pauling

Ti4+

0.68 Pauling
0.69 Sanderson
0.64 Белов-Бокий
0.68 Ahrens
0.68 Kordes

V5+

0.59 Pauling
0.62 Sanderson
0.40 Белов-Бокий
0.59 Ahrens
0.59 Kordes

Cr6+

0.52 Pauling
0.58 Sanderson
0.35 Белов-Бокий
0.52 Ahrens
0.52 Kordes

Cu+

0.96 Pauling
0.96 Sanderson
0.98 Белов-Бокий
0.96 Ahrens
0.93 Kordes

Zn2+

0.74 Pauling
0.84 Sanderson
0.83 Белов-Бокий
0.74 Ahrens
0.72 Kordes

Ga3+

0.62 Pauling
0.75 Sanderson
0.62 Белов-Бокий
0.62 Ahrens
0.60 Kordes

Rb+

1.48 Pauling
1.46 Sanderson
1.49 Белов-Бокий
1.47 Ahrens
1.47 Kordes

Sr2+

1.13 Pauling
1.09 Sanderson
1.20 Белов-Бокий
1.12 Ahrens
1.15 Kordes



Y3+

0.93 Pauling
0.88 Sanderson
0.97 Белов-Бокий
0.92 Ahrens
0.96 Kordes

Sn4+

0.71 Pauling
0.77 Sanderson
0.67 Белов-Бокий
0.71 Ahrens
0.71 Kordes

Sn4- 2.94 Pauling

Sb5+

0.62 Pauling
0.72 Sanderson
0.62 Белов-Бокий
0.62 Ahrens
0.63 Kordes

Sb3- 2.45 Pauling

Te6+

0.56 Pauling
0.67 Sanderson
0.56 Белов-Бокий
0.56 Ahrens
0.57 Kordes

Te2- 2.21 Pauling
I7+ 0.50 Pauling
I- 2.16 Pauling

Zr4+

0.80 Pauling
0.76 Sanderson
0.82 Белов-Бокий
0.79 Ahrens
0.83 Kordes

Nb5+

0.70 Pauling
0.68 Sanderson
0.66 Белов-Бокий
0.69 Ahrens
0.73 Kordes

Mo6+

0.62 Pauling
0.64 Sanderson
0.65 Белов-Бокий
0.62 Ahrens
0.65 Kordes

Ag+
1.26 Pauling
1.08 Sanderson
1.13 Белов-Бокий



1.26 Ahrens
1.21 Kordes

Cd2+

0.97 Pauling
0.94 Sanderson
0.99 Белов-Бокий
0.97 Ahrens
0.96 Kordes

In3+

0.81 Pauling
0.85 Sanderson
0.92 Белов-Бокий
0.81 Ahrens
0.81 Kordes

Cs+

1.69 Pauling
1.64 Sanderson
1.65 Белов-Бокий
1.67 Ahrens
1.74 Kordes

Ba2+

1.35 Pauling
1.24 Sanderson
1.38 Белов-Бокий
1.34 Ahrens
1.37 Kordes

La3+

1.15 Pauling
0.95 Sanderson
1.04 Белов-Бокий
1.14 Ahrens
1.16 Kordes

Pb4+

0.84 Pauling
0.83 Sanderson
0.76 Белов-Бокий
0.84 Ahrens
0.84 Kordes

Bi5+

0.74 Pauling
0.77 Sanderson
0.74 Белов-Бокий
0.74 Ahrens
0.75 Kordes

Au+

1.37 Pauling
1.11 Sanderson
1.37 Белов-Бокий
1.37 Ahrens
1.37 Kordes

Hg2+ 1.10 Pauling



0.97 Sanderson
1.12 Белов-Бокий
1.10 Ahrens
1.10 Kordes

Tl+

0.95 Pauling
0.90 Sanderson
1.05 Белов-Бокий
0.95 Ahrens
0.95 Kordes

Mn4+

0.55 Sanderson
0.46 Белов-Бокий
0.46 Ahrens
0.46 Kordes

Fe2+

0.81 Sanderson
0.80 Белов-Бокий
0.74 Ahrens
0.76 Kordes

Fe3+

0.73 Sanderson
0.67 Белов-Бокий
0.64 Ahrens
0.64 Kordes

Co2+

0.80 Sanderson
0.78 Белов-Бокий
0.72 Ahrens
0.74 Kordes

Co3+

0.72 Sanderson
0.64 Белов-Бокий
0.63 Ahrens
0.63 Kordes

Ni2+

0.79 Sanderson
0.74 Белов-Бокий
0.69 Ahrens
0.73 Kordes

Ni3+ 0.72 Sanderson

Ge4+

0.68 Sanderson
0.44 Белов-Бокий
0.53 Ahrens
0.52 Kordes

Ru2+ 0.85 Sanderson

Ru4+

0.71 Sanderson
0.62 Белов-Бокий
0.67 Ahrens
0.66 Kordes



Rh4+
0.71 Sanderson
0.65 Белов-Бокий

Rh3+

0.78 Sanderson
0.75 Белов-Бокий
0.68 Ahrens
0.72 Kordes

Pd2+
0.88 Sanderson
0.80 Ahrens
1.01 Kordes

Pd4+

0.73 Sanderson
0.64 Белов-Бокий
0.65 Ahrens
0.74 Kordes

Hf4+

0.81 Sanderson
0.82 Белов-Бокий
0.78 Ahrens
0.82 Kordes

Ta5+

0.72 Sanderson
0.66 Белов-Бокий
0.68 Ahrens
0.74 Kordes

W6+

0.68 Sanderson
0.65 Белов-Бокий
0.62 Ahrens
0.68 Kordes

Re4+
0.64 Sanderson
0.57 Ahrens

Os2+ 0.89 Sanderson

Os4+

0.75 Sanderson
0.65 Белов-Бокий
0.69 Ahrens
0.69 Kordes

Ir2+ 0.89 Sanderson

Ir4+

0.75 Sanderson
0.65 Белов-Бокий
0.68 Ahrens
0.69 Kordes

Pt2+
0.90 Sanderson
0.80 Ahrens
1.12 Kordes

Pt4+
0.76 Sanderson
0.64 Белов-Бокий
0.65 Ahrens



0.87 Kordes

Ce3+
1.14 Quill
1.18 Goldschmidt

Ce4+ 1.01 Quill

Pr3+
1.12 Quill
1.16 Goldschmidt

Nd3+
1.10 Quill
1.15 Goldschmidt

Pm3+ 1.08 Quill

Sm3+
1.07 Quill
1.13 Goldschmidt

Sm2+
1.16 Quill
1.26 Goldschmidt

Eu3+
1.05 Quill
1.12 Goldschmidt

Eu2+
1.14 Quill
1.24 Goldschmidt

Gd3+
1.03 Quill
1.11 Goldschmidt

Tb3+
1.02 Quill
1.09 Goldschmidt

Dy3+
1.00 Quill
1.07 Goldschmidt

Ho3+
0.99 Quill
1.05 Goldschmidt

Er3+
0.98 Quill
1.03 Goldschmidt

Th3+
0.96 Quill
1.01 Goldschmidt

Yb3+
0.95 Quill
1.00 Goldschmidt

Tl+
1.49 Goldschmidt
1.44 Pauling

Mn+
0.91 Goldschmidt
0.80 Pauling

Fe2+
0.83 Goldschmidt
0.76 Pauling

Co2+
0.82 Goldschmidt
0.69 Pauling

Cu2+ 0.80 Goldschmidt
Pd2+ 0.89 Goldschmidt

Pb2+
1.32 Goldschmidt
1.21 Pauling



Sn2+ 1.10 Quill
V2+ 0.82 Quill
W2+ 0.87 Quill
Mo2+ 0.83 Quill
Ga2+ 0.76 Quill
Tl2+ 1.19 Quill
Ti2+ 0.85 Quill

Ti3+
0.69 Goldschmidt
0.64 Quill

V3+
0.65 Goldschmidt
0.69 Quill

Cr3+
0.64 Goldschmidt
0.62 Quill

Mn3+
0.70 Goldschmidt
0.66 Quill

Fe3+
0.67 Goldschmidt
0.64 Quill

Co3+ 0.63 Quill
Ru3+ 0.72 Quill

Rh3+
0.68 Goldschmidt
0.72 Quill

Pd3+ 0.74 Quill
Pt3+ 0.83 Quill
P3+ 0.55 Quill
As3+ 0.69 Quill
Sb3+ 0.92 Quill
Bi3+ 1.08 Quill

V4+
0.61 Goldschmidt
0.50 Pauling

Mn4+
0.52 Goldschmidt
0.50 Pauling

Nb4+
0.69 Goldschmidt
0.67 Pauling

Mo4+
0.68 Goldschmidt
0.66 Pauling

W4+
0.68 Goldschmidt
0.66 Pauling

Ru4+
0.65 Goldschmidt
0.63 Pauling

Os4+
0.67 Goldschmidt
0.65 Pauling

Ir4+
0.66 Goldschmidt
0.64 Pauling



Bi4+ 0.88 Quill

Te4+
0.89 Goldschmidt
0.81 Pauling

Th4+
1.10 Goldschmidt
1.02 Pauling
0.99 Zachariasen

Pa4+
0.89 Sanderson
0.96 Zachariasen

Pa5+
0.84 Sanderson
0.90 Zachariasen

U3+
0.96 Sanderson
1.03 Zachariasen

U4+
0.89 Sanderson
0.93 Zachariasen

U5+
0.83 Sanderson
0.87 Zachariasen

U6+
0.79 Sanderson
0.83 Zachariasen

Np3+
0.96 Sanderson
1.01 Zachariasen

Np4+
0.88 Sanderson
0.92 Zachariasen

Np5+
0.83 Sanderson
0.88 Zachariasen

Np6+
0.78 Sanderson
0.82 Zachariasen

Pu3+
0.95 Sanderson
1.00 Zachariasen

Pu4+
0.88 Sanderson
0.90 Zachariasen

Pu5+
0.82 Sanderson
0.87 Zachariasen

Pu6+
0.78 Sanderson
0.81 Zachariasen

Am3+
0.95 Sanderson
0.99 Zachariasen

Am4+
0.88 Sanderson
0.89 Zachariasen

Am6+
0.86 Sanderson
0.80 Zachariasen

CN- 1.82 Chen
CNS- 1.95 Chen
NO2- 1.55 Chen



HCO2- 1.58 Chen
CH3CO2- 1.59 Chen
IO3- 1.82 Chen
NO3- 1.89 Chen
BrO3- 1.91 Chen
ClO3- 2.00 Chen
ClO4- 2.36 Chen
MnO4- 2.40 Chen
IO4- 2.49 Chen
NH2- 1.30 Chen
OH- 1.40 Chen
HCO3- 1.63 Chen
OH•H2O 1.75 Chen
HS- 1.95 Chen
HSO4- 2.06 Chen
CI32- 1.85 Chen
SO42- 2.30 Chen
CrO4- 2.40 Chen
SeO42- 2.43 Chen
MoO42- 2.54 Chen
TeO42- 2.54 Chen
WO42- 2.57 Chen
BO43- 1.91 Chen
PO43- 2.38 Chen
AsO43- 2.48 Chen
SbO43- 2.60 Chen
SiO44- 2.40 Chen
NH4+ 1.43 Chen
PH4+ 1.80 Chen
N(CH3)4+ 3.00 Chen
N(C2H5)4+ 3.63 Chen

Table S5 Covalent radius from Белов-Бокий. The Roman numeral in bracket is the coordination
number.

Atom Radius
H 0.37
He 0.93
Li 1.32
Be 0.96
B 0.84
C 0.77
N 0.74
O 0.74



F 0.72
Ne 1.31
Na 1.58
Mg 1.38
Al 1.26
Si 1.17
P 1.10
S 1.04
Cl 1.00
Ar 1.74
K 2.02
Ca 1.74
Sc 1.44
Ti 1.32
V 1.21
Cr 1.19
Mn 1.19
Fe 1.20
Co 1.18
Ni 1.17
Cu 1.25
Zn 1.27
Ga 1.25
Ge 1.22
As 1.22
Se 1.17
Br 1.14
Kr 1.89
Rb 2.15
Sr 1.91
Y 1.61
Zr 1.45
Nb 1.32
Mo 1.32
Tc 1.20
Ru 1.26
Rh 1.27
Pd 1.30
Ag 1.42
Cd 1.43
In 1.46
Sn 1.40
Sb 1.41



Te 1.37
I 1.33
Xe 2.09
Cs 2.33
Ba 1.97
La 1.68
Ce 1.62
Pr 1.62
Nd 1.62
Pm 1.67
Sm 1.64
Eu 1.62
Gd 1.60
Tb 1.59
Dy 1.58
Ho 1.57
Er 1.56
Tu 1.55
Yb 1.70
Lu 1.55
Hf 1.44
Ta 1.32
W 1.30
Re 1.25
Os 1.27
Ir 1.28
Pt 1.30
Au 1.43
Hg 1.45
Tl 1.50
Pb 1.50
Bi 1.49
Rn 2.14
Fr 2.46
Ra 2.35
Ac 1.79
Th 1.58
Pa (IV) 1.64
Pa (V) 1.52
U (IV) 1.62
U (V) 1.50
U (VI) 1.42
Np (IV) 1.60



Np (V) 1.49
NP (VI) 1.41
Pu (IV) 1.58
Pu (V) 1.48
Pu (VI) 1.40
Am (IV) 1.57
Am (V) 1.47
Am (VI) 1.39

Table S6 Ionization energy.
Degree

Atom I II III IV V VI VII VIII
H 13.595
He 24.581 54.403
Li 5.390 75.619
Be 9.320 18.206 153.850
B 8.296 25.149 37.920 259.298
C 11.256 24.376 47.871 64.476 391.986
N 14.53 29.593 47.426 77.450 97.863 551.925
O 13.614 35.105 54.886 77.394 113.873 138.080 739.114
F 17.418 34.98 62.646 84.14 114.214 157.117 185.139 953.60
Na 5.138 47.29
Mg 7.644 15.031 80.12
Al 5.984 18.823 28.44 119.96
Si 8.149 16.34 33.46 45.13 166.73
P 10.484 19.72 30.156 51.351 65.007 220.414
S 10.357 23.4 35.0 47.29 72.5 88.029 280.99
Cl 13.01 23.80 33.9 53.5 67.80 96.79 114.27 348.3
K 4.339 31.81
Ca 6.111 11.868 51.21
Sc 6.54 12.80 24.75 73.9
Ti 6.82 13.57 27.47 43.24 99.8
V 6.74 14.65 29.31 48 65 129
Cr 6.764 16.49 30.95 50 73 91 161
Mn 7.432 15.636 33.69 76 119 196
Fe 7.87 16.18 30.643
Co 7.86 17.05 33.49
Ni 7.633 18.15 35.16
Cu 7.724 20.29 36.83
Zn 9.391 17.96 39.70
Ga 6.00 20.51 30.70 64.2
Ge 7.88 15.93 34.21 45.7 93.4
As 9.81 18.63 28.34 50.1 62.6 127.5



Se 9.75 21.5 32 43 68 82 155
Br 11.84 21.6 35.9 47.3 59.7 88.6 103 193
Rb 4.176 27.5
Sr 5.692 11.027 57
Nb 6.88 14.32 25.04 38.3 50 103
Mo 7.10 16.15 27.13 46.4 61.2 68 126
Ru 7.364 16.76 28.46
Rh 7.46 18.07 31.05
Pd 8.33 19.42 32.92
Ag 7.574 21.48
Cd 8.991 16.904 37.47
In 5.785 18.86 28.03 54.4
Sn 7.342 14.628 30.49 40.72 72.3
Sb 8.639 16.5 25.3 44.1 56 108
Te 9.01 18.6 31 38 60 72 137
Cs 3.893 25.1
Ba 5.210 10.001
La 5.61 11.43 19.17
Au 9.22 20.5
Hg 10.43 18.751 34.2
Tl 6.106 20.42 29.8 50.7
Pb 7.415 15.028 31.93 42.31 68.8
Bi 7.287 16.68 25.56 45.3 56.0 88.3

Table S7 Metal radius (Coordination 12)
Metal atom Radius
Li 1.58
Be 1.12
Na 1.92
Mg 1.60
Al 1.43
K 2.38
Ca 1.97
Sc 1.66
Ti 1.47
V 1.35
Cr 1.29
Mn 1.37
Fe 1.26
Co 1.25
Ni 1.25
Cu 1.28
Zn 1.37



Ga 1.53
Ge 1.39
Rb 2.53
Sr 2.15
Y 1.82
Zr 1.60
Nb 1.47
Mo 1.40
Tc 1.35
Ru 1.34
Rh 1.34
Pd 1.37
Ag 1.44
Cd 1.52
In 1.67
Sn 1.58
Sb 1.61
Cs 2.72
Ba 2.24
La 1.82
Hf 1.59
Ta 1.47
W 1.41
Re 1.37
Os 1.35
Ir 1.69
Pt 1.39
Au 1.44
Hg 1.55
Tl 1.71
Pb 1.75
Bi 1.82

Table S8 Valence electrons to covalent radius ratio.
Atom Ratio
H 2.7
Li 0.76
Be 2.08
B 3.57
C 5.19
N 6.67
O 8.11
F 9.72



Na 0.63
Mg 1.45
Al 2.38
Si 3.42
P 4.55
S 5.77
Cl 7.00
K 0.50
Ca 1.15
Sc 2.08
Ti 3.04
V 4.13
Cr 5.04
Mn 5.88
Fe 2.50
Co 1.69
Ni 1.71
Cu 0.80
Zn 1.57
Ga 2.40
Ge 3.28
As 4.10
Se 5.13
Br 6.14
Rb 0.47
Sr 1.05
Y 1.86
Zr 2.76
Nb 3.79
Mo 4.55
Tc 5.83
Ru 3.17
Rh 3.15
Pd 3.08
Ag 0.70
Cd 1.40
In 2.05
Sn 2.86
Sb 3.55
Te 4.38
I 5.26
Ca 0.43
Ba 1.02



La 1.79
Hf 2.78
Ta 3.79
W 4.62
Re 5.60
Os 3.15
Ir 3.13
Pt 3.08
Au 0.70
Hg 1.38
Tl 2.00
Rb 2.67
Bi 3.36
Fr 0.41
Ra 0.85
Ac 1.68
Th 2.53
U 4.22
Ce 1.85
PrNd 1.85
Pm 1.85
Sm 1.80
Eu 1.83
Gd 1.88
Tb 1.89
Dy 1.90
Ho 1.91
Er 1.92
Tu 1.94
Yb 1.76
Lu 1.94

Table S9 Electronegativity
Atom Pauling electronegativity Белов-Бокий electronegativity
H 2.15
Li 1.0 0.95
Be 1.5 1.5
B 2.0 2.0
C 2.5 2.6
N 3.0 3.0
O 3.5 3.5
F 4.0 3.9
Na 0.9 0.9



Mg 1.2 1.2
Al 1.5 1.5
Si 1.8 1.9
P 2.1 2.1
S 2.5 2.6
Cl 3.0 3.1
K 0.8 0.8
Ca 1.0 1.0
Sc 1.3 1.3
Ti 1.5 1.1
V 1.6 1.4
Cr 1.6 1.4
Mn 1.5 1.4
Fe 1.8 1.7
Co 1.8 1.7
Ni 1.8 1.8
Cu 1.9 1.8
Zn 1.6 1.6
Ga 1.6 1.6
Ge 1.8 2.0
As 2.0 2.0
Se 2.4 2.4
Br 2.8 2.9
Rb 0.8 0.8
Sr 1.0 1.0
Y 1.2 1.2
Zr 1.4 1.5
Nb 1.6 1.7
Mo 1.8 1.6
Tc 1.9 1.9
Ru 2.2 2.0
Rh 2.2 2.1
Pd 2.2 2.1
Ag 1.9 1.9
Cd 1.7 1.7
In 1.7 1.7
Sn 1.8 1.7
Sb 1.9 1.8
Te 2.1 2.1
I 2.5 2.6
Cs 0.7 0.75
Ba 0.9 0.9
La 1.2



La-Lu 1.1-1.2
Hf 1.3 1.4
Ta 1.5 1.3
W 1.7 1.6
Re 1.9 1.8
Os 2.2 2.1
Ir 2.2 2.1
Pt 2.2 2.2
Au 2.4 2.3
Hg 1.9 1.8
Tl 1.8 1.4
Pb 1.8 1.6
Bi 1.9 1.8
Po 2.0 2.0
At 2.2 2.2
Fr 0.7 0.7
Ra 0.9 0.9
Ac 1.1
Th 1.3 1.0
Pa 1.5
U 1.7 1.4
Np 1.4
Np-No 1.3
Ce 1.2
Pr 1.2
Nd 1.3
Pm 1.3
Sm 1.3
Eu 1.2
Gd 1.3
Tb 1.3
Dy 1.3
Ho 1.3
Er 1.3
Tu 1.3
Yb 1.2
Lu 1.3
Pa 1.3
Pu 1.3
Am 1.3
Cm 1.3
Bk 1.3
Cf 1.3



Table S10 Equivalent conductance for molten chloride.
Chloride Equivalent conductance (Ω-1cm-2)
HCl 1*10-6

LiCl 166
BeCl2 0.086
BCl3 0
CCl4 0
NaCl 133.5
MgCl2 28.8
AlCl3 1.5*10-6

SiCl4 0
PCl5 0
KCl 103.5
CaCl2 51.9
ScCl3 15
TiCl4 0
VCl4 0
RbCl 78.2
SrCl2 55.7
YCl3 9.5
ZrCl4
NbCl5 2*10-7

MoCl5 1.8*10-6

CsCl 66
BaCl2 65.5
LaCl3 29
HfCl4
TaCl5 3*10-7

WCl5 2*10-6

ThCl4 16
UCl4 0.34
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