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Abstract
Aim: About a third of patients with autism spectrum disorder (ASD) receive pharmacological treatment for 
comorbid symptoms. However, 30%-50% do not respond adequately and/or present severe and long-lasting side 
effects. Previous studies have reported the influence of variants in genes coding for drug targets on the efficacy and 
safety of pharmacological treatments, including genetic polymorphisms in dopaminergic and serotonergic systems. 
However, most studies have focused on the adult population, with relatively few studies in children and 
adolescents, and no clear biomarkers of response have been reported in these populations. The aim of our study 
was to identify genetic predictors of drug response in patients with ASD. This information may be used to 
personalise pharmacological treatment and improve the efficacy and safety of psychotropic drugs in patients with 
ASD.

Methods: Genetic variants in dopaminergic and serotonergic drug targets (SLC6A3, DRD2, DRDRD3, DRD4, HTR2A, 
and HTR2C) and in other genes previously associated with treatment efficacy and/or induced side effects (ANKK1, 
BDNF, COMT, and HTR1A) were investigated in 176 children and adolescents diagnosed with ASD and undergoing 
pharmacological treatment.
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Results: A SLC6A3 genetic variant was associated with response to methylphenidate in our ASD cohort, whereas 
HTR2A and HTR2C allele and haplotype distributions were associated with adverse reactions such as somnolence, 
mood alterations, and BMI. ANKK1, COMT, and BDNF genetic variants were mainly associated with treatment side 
effects.

Conclusion: If confirmed, these genetic variants may be used as predictors of clinical outcome and help to 
personalise pharmacological treatments in patients with ASD.
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INTRODUCTION
Autistic spectrum disorders (ASD) are severe neurodevelopmental alterations characterised by deficits in 
social communications and repetitive and restricted behaviours. Although there is no specific 
pharmacological treatment for ASD, about a third of patients receive pharmacological treatment for 
comorbid symptoms. Stimulant, antipsychotic, and antidepressant drugs are used for the treatment of 
conduct, anxiety, and mood disorders observed in patients with ASD. Pharmacotherapy with 
methylphenidate is the preferred treatment for attention deficit hyperactivity disorder (ADHD) comorbid 
symptoms, as well as antipsychotics and selective serotonin reuptake inhibitors antidepressants for the 
treatment of aggression and mood disorders. However, there is significant individual variability in the 
response to pharmacological treatment. Not all ASD subjects respond to treatment, with 30%-50% not 
responding and/or presenting with severe and long-lasting side effects, including increased irritability, 
aggressiveness, and somnolence[1]. Furthermore, children and adolescents are more susceptible to drug-
induced side effects than adults[2]. Treatment failure and side effects have a negative effect on patients with 
ASD, and predictors of response for the personalisation of pharmacological treatment are required.

There is strong evidence of the influence of genetic factors on the clinical outcome of pharmacological 
treatments. Previous studies have reported the influence of variants in genes coding for targets of 
psychotropic drugs on the efficacy and safety of pharmacological treatments. The dopaminergic and 
serotonergic systems, both major targets for psychotropic drugs, have been implicated in the modulation of 
treatment outcome[1,3,4]. Enzymes involved in the metabolism of catecholamines and proteins involved in 
stress and mood alterations have also been implicated in the modulation of treatment response[3,5,6]. 
However, relatively few pharmacogenetic studies have been performed on drug treated ASD subjects.

The clinical outcome of psychotropic drugs varies between children and adults[7]. Most studies have focused 
on the adult population, with relatively few studies in children and adolescents. Several studies have 
associated genetic variants in the gene coding for the dopamine transporter (SLC6A3), a direct target of 
methylphenidate in children and adolescents affected by ADHD[7,8]. Variants in genes coding for 
dopaminergic receptors type 2, 3, and 4 (DRD2, DRDRD3, and DRD4, respectively) have also been 
associated with response to methylphenidate in young ADHD subjects[6,9,10]. Findings of association between 
polymorphisms in genes coding for the adrenergic receptor 2A (ADRA2A), brain derived neurotrophic 
factor (BDNF), catechol-O-methyltransferase (COMT), serotonin receptor 2A (HTR2A), serotonin 
transporter (SLC6A4), norepinephrine transporter (SLC6A2), and methylphenidate clinical outcome in 
young ADHD subjects have been reported in independent studies[7,11,12]. However, these findings have not 
been universally replicated or showed inconsistent results[7]. A meta-analysis by Bonvicini et al.[13] did not 
support an association of a polymorphism in the 3’-untranslated region (UTR) in the dopamine transporter 
(SLC6A3) with response to methylphenidate. Significant associations between variants in dopamine 
receptors 1, 3, and 4 (DRD1, DRD3, and DRD4), ADRA2A, COMT, SLC6A3, and SLCA4 genes and response 
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to methylphenidate have been detected in a sample of 64 children with ASD[14]. A study by Correia et al.[15] 
described the influence of genetic variants in the multidrug resistance 1 (MDR1 or ABCB1) gene on clinical 
improvement with risperidone therapy in N = 45 ASD patients. Furthermore, associations between 
treatment response and polymorphisms in BDNF, HTR2A, serotonin receptor 2C (HTR2C), serotonin 
receptor 6 (HTR6), and cytochrome P450 2D6 (CYP2D6) genes were reported in the same study. However, 
these findings were not conclusive. Considering the limited number of pharmacogenetic studies in ASD and 
the moderate sample sizes, further investigation is required to identify predictors of response that could 
improve the efficacy and safety of pharmacological treatments in this population group.

The aim of our study was to identify genetic predictors of drug response in a population group who are 
particularly susceptible to adverse reactions. This information may help to improve the efficacy and safety 
of pharmacological treatments in children and adolescents with ASD.

METHODS
Study samples
A total of N = 176 children (86% boys and 14% girls, average age = 11.77 ± 4.64 SD) diagnosed with ASD 
according to DSM-5 criteria and undergoing pharmacological treatment (N = 146 with methylphenidate 
and N = 30 with antipsychotic, antidepressant, anxiolytics, and mood stabilizers) for at least 8 weeks were 
included in the study. Treatment response was assessed using the Aberrant Behaviour checklist, (ABC-CV, 
Aman et al., 1985), Autism Treatment Evaluation Checklist (Rimland & Edelson, 1999), Clinical Global 
Impression-Severity (CGI-S) for autism symptoms, Conners Rating Scale-Revised for parents and teachers 
for the assessment of ADHD symptoms (Conners, 1997), Child Behaviour Check list for parents, and 
Teacher’s Report Form for teachers to assess general child psychopathology symptoms. Response to 
pharmacological treatment was assessed retrospectively from the parents’ CGI categorical scores (0 = poor 
response, 1 = some response, 2 = good response, 3 = very good response). Global side effects were assessed 
with a score between 0 and 3 (0 = no side effects, 1 = mild side effects lasting less than two weeks, 2 = 
moderate side effects lasting more than 2 weeks, 3 = bad side effects with long lasting side effects of more 
than a month of duration or intolerable side effects resulting in suppression of medication). Specific 
information on the presence or absence of aggression, shutdowns, irritability, mood alterations, and 
somnolence were obtained via parents’ interviews. This sample has a statistical power ≥ 85% to detect 
moderate effect sizes (f ≥ 0.25, α = 0.05). This project was approved by the Ethics committee of the Hospital 
Universitari Mutua Terrassa. Informed consent was obtained from all participants or their legal carers prior 
to introduction in the study.

Genetic characterisation
Selected candidates included genes coding for dopaminergic and serotonergic drug targets (SLC6A3, DRD2, 
DRD3, DRD4, HTR2A, and HTR2C) and other genes previously associated with treatment efficacy and/or 
induced side effects (ANKK1, BDNF, COMT, and HTR1A). DNA was extracted from whole blood samples 
using a commercial kit (EZNA SQ Blood DNA Kit II, Omega Bio-Tech, USA) and following manufacturers’ 
instructions. Sixteen single nucleotide polymorphisms (SNPs) and variable number tandem repeats 
(VNTRs) within the 10 selected genes were genotyped using iPlex® Gold chemistry and the MassARRAY 
platform (CEGEN-PRB2-ISCIII, University of Santiago de Compostela, Spain) for the SNPs and agarose gel 
genotyping methods for the VNTRs. Table 1 contains a complete list of the genotyped polymorphisms. 
Polymorphisms were selected based on previously reported associations with response to pharmacological 
treatment.
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Table 1. Summary of statistical analyses in study sample. Regression coefficient and P value (within brackets) provided

Gene Polymorphism Response Side effects Aggress Shutd Irritab Mood Somnol BMI

ANKK1 rs1800497 0.51 (0.61) 2.18 (0.03) -1.72 (0.08) 1.21 (0.23) -0.19 (0.85) -1.22 (0.22) -0.28 (0.77) 0.62 (0.54)

BDNF rs6265 0.46 (0.65) -2.16 (0.03) 1.53 (0.13) 0.91 (0.36) 1.32 (0.19) 0.58 (0.56) 2.13 (0.03) -1.39 (0.17)

COMT rs4680 0.37 (0.72) -2.29 (0.02) 0.06 (0.95) 0.56 (0.58) -1.34 (0.18) -1.76 (0.07) 0.71 (0.48) -2.05 (0.04)

DAT1 3’UTR-VNTR 1.82 (0.07) -0.51 (0.61) 0.30 (0.76) -0.85 (0.39) -0.59 (0.55) 0.01 (0.99) 2.29 (0.02) -1.41 (0.16)

DRD2 rs1801028 0.65 (0.51) -0.66 (0.51) -1.33 (0.18) -1.27 (0.20) -0.57 (0.57) -0.79 (0.43) -1.36 (0.18) -0.77 (0.44)

rs167771 0.44 (0.66) -0.66 (0.51) 0.80 (0.42) -0.06 (0.95) -0.50 (0.62) 0.68 (0.49) -0.32 (0.75) -0.99 (0.32)DRD3

rs6280 0.28 (0.78) -0.84 (0.41) -0.26 (0.79) 0.51 (0.61) 0.69 (0.50) -0.84 (0.40) -1.53 (0.12) -1.11 (0.27)

DRD4 48bp VNTR -0.01 (0.99) 0.67 (0.50) -0.83 (0.41) 0.98 (0.33) -0.19 (0.85) -0.33 (0.74) -1.00 (0.31) 0.55 (0.58)

rs6295 0.55 (0.58) 0.63 (0.53) -0.10 (0.92) 0.58 (0.56) 0.04 (0.97) 1.10 (0.27) 0.65 (0.52) 0.10 (0.92)HTR1A

rs878567 0.35 (0.73) 0.41 (0.68) -0.04 (0.97) 0.62 (0.53) -0.21 (0.84) 1.21 (0.22) 0.74 (0.46) 0.22 (0.83)

rs6311 -0.74 (0.46) -0.15 (0.88) 0.55 (0.58) 1.47 (0.14) 0.13 (0.89) 0.86 (0.39) 1.71 (0.09) 0.42 (0.67)

rs6313 -0.35 (0.72) -0.18 (0.85) 0.61 (0.54) 1.10 (0.28) -0.13 (0.89) 0.95 (0.34) 1.55 (0.12) 0.38 (0.70)

HTR2A

rs6314 0.07 (0.94) 1.16 (0.25) -0.65 (0.51) -0.95 (0.34) 0.15 (0.88) -2.17 (0.03) -1.73 (0.08) -1.96 (0.05)

rs1414334 -1.41 (0.16) 0.03 (0.97) 0.005 (0.99) 0.13 (0.89) 1.05 (0.29) 0.75 (0.45) 1.00 (0.13) 1.85 (0.07)

rs3813929 0.16 (0.86) 0.77 (0.44) -0.36 (0.71) -0.63 (0.53) -0.37 (0.71) -0.78 (0.44) -0.55 (0.58) -0.08 (0.94)

HTR2C

rs6318 0.65 (0.52) 0.20 (0.84) -0.002 (0.99) -0.002 (0.99) 0.004 (0.99) 0.002 (0.99) 0.04 (0.97) 0.51 (0.61)

Statistical analyses
Multivariate analyses, including gender, age, drug type, and dose as covariables, were conducted for each 
single polymorphism analysed. Haplotype analyses were also conducted within those genes with more than 
one polymorphism genotyped. Separate analyses were also conducted for the subgroup of patients treated 
with methylphenidate. Statistical analyses were performed using the statistical package PLINK (version 
1.07.2)[16].

RESULTS
All SNPs and individuals investigated showed genotyping success rates over 95%. Additionally, all 
genotyped SNPs were in Hardy-Weinberg equilibrium and were included in the analyses. Table 1 
summarises the results of the multivariate analyses in the study sample. Single marker analyses including 
gender, age, drug type (i.e., methylphenidate, antipsychotics, antidepressants, or others), and dose as 
covariates did not reveal any significant association with the level of response to pharmacological treatment 
in patients with ASD. The ANKK1 rs1800497 polymorphism was associated with presence of side effects (P 
= 0.03) as were SNPs in BDNF (rs6265, P = 0.03) and COMT (rs4680, P = 0.02). Analyses of specific side 
effects revealed association between the HTR2A rs6314 polymorphism and mood alterations (P = 0.03). The 
level of somnolence was associated with BDNF (rs6265, P = 0.03) and SLC6A3 (3’ UTR VNTR, P = 0.02) 
variants. Finally, COMT and HTR2A variants (rs4680 and rs6314, respectively) were nominally associated 
with BMI (P = 0.04 and P = 0.05, respectively). Haplotype analyses (data facilitated on request) revealed 
association between HTR2A allelic combinations and mood alterations, presence of somnolence, and BMI 
(P = 0.02, P = 0.01, and P = 0.04, respectively). A HTR2C haplotype was significantly associated with BMI (P 
= 0.005). Finally, a DRD3 haplotype was nominally associated with the presence of shutdowns (P = 0.04). No 
other statistically significant associations were observed.

Table 2 summarises the results in the subgroup of ASD subjects treated with methylphenidate. The 3’ UTR 
VNTR variant in SLC6A3 was associated with response to methylphenidate (P = 0.03) and the BDNF rs6265 
polymorphisms was associated with the presence of side effects (P = 0.03). No other single marker 
association was detected. Haplotype analyses within this subgroup revealed association between HTR2C 
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Table 2. Summary of statistical analyses in group of ASD subjects treated with methylphenidate. Regression coefficient and P value 
(within brackets) provided

Gene Polymorphism Response Side effects Aggress Shutd Irritab Mood Somnol BMI

ANKK1 rs1800497 0.67 (0.50) 1.83 (0.07) -0.93 (0.35) 1.29 (0.20) 0.33 (0.74) -1.46 (0.14) NA 0.52 (0.61)

BDNF rs6265 -0.01 (0.99) -2.25 (0.03) 1.51 (0.13) 1.14 (0.25) 1.48 (0.14) 1.42 (0.15) NA -0.78 (0.43)

COMT rs4680 1.53 (0.13) 1.42 (0.16) -1.65 (0.10) -1.90 (0.06) -0.48 (0.63) -0.52 (0.61) NA -0.05 (0.96)

DAT1 3’UTR-VNTR 2.21 (0.03) -0.24 (0.81) 0.71 (0.48) -1.10 (0.27) -0.35 (0.73) 0.33 (0.74) NA -1.52 (0.13)

DRD2 rs1801028 0.66 (0.51) -0.68 (0.50) -1.41 (0.16) -1.24 (0.22) -0.51 (0.61) -0.81 (0.42) NA -0.77 (0.44)

rs167771 0.51 (0.61) -1.00 (0.32) 0.41 (0.68) 0.53 (0.60) -0.66 (.51) 0.71 (0.48) NA 0.74 (0.46)DRD3

rs6280 0.20 (0.84) -1.15 (0.25) -0.71 (0.48) 0.22 (0.83) -1.02 (0.30) -0.46 (0.64) NA -0.33 (0.74)

DRD4 48bp VNTR 0.06 (0.95) 0.46 (0.65) -0.42 (0.67) 0.84 (0.40) -0.05 (0.96) 0.13 (0.89) NA 0.77 (0.45)

rs6295 0.76 (0.45) 1.43 (0.16) 0.53 (0.60) 0.29 (0.77) 0.44 (0.66) 0.86 (0.39) NA -0.12 (0.91)HTR1A

rs878567 0.54 (0.59) 1.21 (0.23) 0.58 (0.56) 0.33 (0.74) 0.17 (0.86) 0.98 (0.33) NA 0.002 (0.99)

rs6311 -1.22 (0.22) 0.38 (0.71) 1.06 (0.29) 0.65 (0.51) 0.21 (0.84) 0.49 (0.62) NA 0.06 (0.96)

rs6313 -0.83 (0.41) 0.29 (0.77) 1.19 (0.23) 0.20 (0.84) -0.04 (.97) 0.56 (0.58) NA 0.01 (0.99)

HTR2A

rs6314 0.14 (0.89) 0.83 (0.41) -0.57 (0.57) -0.80 (0.42) 0.18 (0.85) -1.91 (0.06) NA -1.57 (0.12)

rs1414334 -1.90 (0.06) -0.40 (0.69) 0.004 (0.99) 0.21 (0.84) 0.60 (0.55) 0.84 (0.40) NA 1.79 (0.08)

rs3813929 0.35 (0.73) 0.47 (0.64) -0.64 (0.52) -0.64 (0.52) -0.65 (0.52) -0.93 (0.35) NA -0.12 (0.90)

HTR2C

rs6318 0.97 (0.34) -0.23 (0.82) -0.002 (0.99) 0.002 (0.99) 0.001 (0.99) 0.002 (0.99) NA 0.61 (0.55)

NA: Not available.

allelic combinations and response to methylphenidate treatment (P = 0.02) and BMI (P = 0.02). Association 
was also observed between a HTR2A haplotype and mood alterations (P = 0.04). Finally, a DRD3 allelic 
combination was associated with presence of side effects (P = 0.05).

DISCUSSION
We aimed to identify genetic predictors of response to pharmacological treatment by investigating 16 SNPs 
and VNTRs within 10 candidate genes and their influence on clinical outcome in a cohort of N = 176 
children and adolescents with ASD. Several significant associations were observed that may help to identify 
patients with ASD likely to show poor response and/or develop side effects.

Previous evidence indicates that variants in dopaminergic genes are associated with emotional dysregulation 
and ADHD symptoms in patients with ASD[17] and with methylphenidate response in children with 
ADHD[6,9,18-21], although these findings have not been universally replicated[22-24]. We investigated 
polymorphisms in several dopaminergic genes including SLC6A3, DRD2 (and the ANKK1 Taq I), DRD3, 
and DRD4, and their possible relation to symptom improvement after pharmacological treatment in ASD 
children.

We did not find association between the SLC6A3 3’ UTR VNTR variant investigated and treatment 
response in the study sample that included subjects treated with a variety of psychotropics. Nevertheless, the 
SLC6A3 3’ UTR VNTR variant was associated with somnolence (P = 0.02) in the total cohort and with 
response in the subgroup of methylphenidate treated patients. Interestingly, previous studies have reported 
association between this variant and response to methylphenidate in children with ADHD[14,20]. The 
dopamine transporter is a direct target of methylphenidate, a drug widely used in the ASD population for 
the treatment of ADHD co-morbid symptoms. Although suggestive, these results require further 
investigation. An association was observed between the ANKK1 rs1800497 polymorphism (alternative 
nomenclature: DRD2 Taq I) and presence of side effects in the study cohort (P = 0.03). Interestingly, a 
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previous study reported this polymorphism associated with insulin-resistance in patients with ASD treated 
with risperidone[25]. We did not find any significant association with the other dopaminergic variants 
investigated (DRD2 rs18012028, DRD3 rs167771 & rs6280, and a 48bp repeat in DRD4), although DRD3 
haplotype combinations were found nominally associated with shutdowns in the total sample (P = 0.04) and 
with side effects in the methylphenidate subgroup (P = 0.05). Previous studies reported association between 
the DRD3 rs6280 polymorphism and methylphenidate response in a group of 64 children with ASD[14] and 
risperidone response in a sample of 45 patients with ASD[15]. These findings require further investigation in 
larger samples to confirm the possible contribution of DRD3 variants to treatment response variability in 
ASD.

Abnormalities in the serotonergic system have been implicated in several psychiatric disorders. A significant 
reduction of serotonin type 1A and 2A (5-HT1A and 5-HT2A) receptor binding densities was observed in 
brain regions of patients with ASD[26]. HTR1A variants, including rs878567, have been associated with 
ADHD risk[27]. HTR2A polymorphisms have also been associated with depression, gastrointestinal disorders, 
and risk in patients with ASD[28-32]. Several studies have associated HTR2A and HTR2C polymorphisms with 
response to antipsychotic and antidepressant drugs as well as weight gain or increased BMI during 
antipsychotic treatment[3,33,34]. HTR1A variants have also been shown to associate with antipsychotic 
response[35] but not with antidepressant outcomes[36]. In our study, we found significant associations between 
the HTR2A rs6314 (His452Tyr) polymorphism and BMI and mood alterations. Carriers of the Tyr452 
variant, with reduced functionality[37], were more likely to experience mood alterations and somnolence 
during treatment but showed less BMI. Haplotype analyses of HTR2A allele combinations showed 
significant findings with mood alterations (P = 0.02), somnolence (P = 0.01), and BMI (P = 0.04) in the total 
cohort and with mood alterations in the methylphenidate subgroup (P = 0.04). These findings seem to agree 
with previous studies that linked HTR2A variants with BMI during pharmacological interventions[33,38] and 
with major depression[39].

The serotonin 2C (5-HT2C) receptor modulates eating behaviour and has been reported to influence 
antipsychotic-induced weight gain and BMI[3,16,40]. Although we did not observe single marker associations, 
we found significant associations between HTR2C haplotype combinations and BMI in the study sample (P 
= 0.005) and between overall response (P = 0.02), as well as between BMI (P = 0.01) in the subgroup of 
methylphenidate patients. Previous studies had also reported association between HTR2C genetic variants 
and response to psychotropic treatments[3]. Finally, we did not find any significant association between the 
two HTR1A polymorphisms genotyped, rs6295 and rs878567, and the phenotypes investigated.

BDNF is a protein that modulates stress and mood alterations and several studies link BDNF altered levels 
with ASD[41]. It has been reported that methylphenidate treatment increases BDNF serum levels in children 
with ADHD[20,42]. BDNF genetic variants may contribute to ASD pathogenesis[43] and methylphenidate 
response in children with ASD[44]. Our own results showed an association between the BDNF rs6265 variant 
and presence of side effects (P = 0.03 for both the study cohort and the methylphenidate subgroup) during 
pharmacological treatment in children with ASD. Additionally, patients carrying the Met66 allele showed 
higher levels of somnolence (P = 0.03 in total cohort). However, we were not able to find association 
between the rs6265 Vall66 allele and response to methylphenidate (P = 0.26) as previously reported in 
Korean children with ADHD[44]. Reports of association between the rs6265 polymorphism and aggression in 
patients with schizophrenia were not confirmed by us and other investigators[45]. Correia et al.[15] found 
association between the Met66 allele and higher prolactin levels during risperidone treatment of children in 
ASD, although no direct association with risperidone response was detected. Insulin resistance during 
risperidone treatment was associated with this polymorphism in adolescents with ASD[25]. These results, 
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taken together, suggest that genetic variation in BDNF contributes to adverse reactions rather than to the 
efficacy of pharmacological treatment in ASD subjects. However, the possible role of these genetic variants 
on BDNF plasma levels and their contribution to treatment side effects need further investigation.

COMT is one of the main enzymes involved in the degradation of catecholamines including dopamine, 
epinephrine, and norepinephrine, whose pathways are targeted by methylphenidate and other 
psychotropics. The COMT rs4680(Val158Met) polymorphism has been associated with methylphenidate 
response in children and adolescents with ADHD[19,48-50] and children with ASD[14]. Furthermore, the level of 
irritability was predicted by COMT variants in children with ADHD treated with methylphenidate[48]. The 
COMT rs4680 variant was not associated with treatment response in our sample, but was marginally 
associated with presence of side effects, with rs4680-G/G (Val/Val) individuals presenting more lasting side 
effects (P = 0.02) and BMI (P = 0.04) in the study cohort.

In summary, we observed several associations between the candidate genes analysed and clinical outcome in 
patients with ASD treated with a variety of psychotropics. A SLC6A3 genetic variant predicted response to 
methylphenidate in our ASD cohort, whereas HTR2A and HTR2C allele and haplotype distributions were 
mainly associated with adverse reactions such as somnolence, mood alterations, and BMI. ANKK1, COMT, 
and BDNF genetic variants were mainly associated with treatment side effects. These associations resembled 
those observed in other pathologies, suggesting a similar mechanism of action in ASD and/or confirming 
the common origin of the symptoms treated.

Our study has several limitations. None of the findings reported in this study survived multiple analyses 
corrections, considering the number of polymorphisms and phenotypes analysed. Our findings require 
confirmation in independent studies. The study sample size is moderate, which may have affected the 
statistical significance of the findings and produced false positives or negatives. However, it is one of the 
largest cohorts collated for ASD pharmacogenetic studies. Furthermore, most of our findings coincide with 
the pharmacogenetic results observed in other pathologies, suggesting they are true findings. Another 
limitation is that we did not investigate functional variants in drug metabolising hepatic enzymes. Although 
there is extensive evidence on the influence on functional variants in cytochrome P450 (CYP) metabolic 
enzymes on treatment response, the main drug used in our study cohort, methylphenidate, is metabolised 
mainly by CES1. Inconsistent results on the genetic influence of CES1 variants on treatment response have 
been reported[51,52]. However, reports of associations between genetic variants in CYP enzymes and response 
to psychotropic treatment in children with schizophrenia or ASD merit further investigation in independent 
studies[2,53].

In conclusion, our study showed that genetic variation in dopamine (SLCA3) and serotonin (HTR2A and 
HTR2C) may influence response to psychotropic treatment in patients with ASD and side effects, whereas 
ANKK1, COMT, and BDNF polymorphisms may contribute to adverse reactions. Associations between the 
SLC6A3 and methylphenidate response have been reported in other pathologies and may constitute a useful 
biomarker for the selection of adequate treatment. The genetic associations with adverse reactions may help 
to predict or prevent the development of side effects, although their value to discriminate between 
treatments is unclear. Nevertheless, if confirmed these genetic variants may be used as predictors of clinical 
outcome and help to personalise pharmacological treatments in patients with ASD.
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