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Abstract
The consensus tracking problem is investigated for a class of multi-agent systems (MASs) under communication
constraints. In particular, as a result of the impact of amplitude attenuation and random interference, communication
among followers may inevitably suffer from the fading phenomenon. Meanwhile, the controllers may also be subject
to malicious deception attacks, which will disrupt the correct operation of the MASs. Thus, the agents can only
update their states based on fading information exchanged with their neighbors and the false control input under
attacks. The consensus tracking error variables are first designed via the fading signal received from neighbors. Then,
an online estimation strategy is introduced to estimate the unknown attacks, based on which the adaptive sliding
mode controller is designed to attenuate the effect of the time-varying attacks on MASs. Convergence analysis of
the MASs under the designed control strategy is provided by using the Lyapunov stability theory and adaptive sliding
mode control method. Finally, the effectiveness of the theoretical results is verified via numerical simulations.

Keywords: Multi-agent systems, consensus tracking, adaptive mechanism, sliding mode control, deception attacks,
channel fading
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1. INTRODUCTION
As typical autonomous cyber-physical systems, multi-agent systems (MASs) provide an effective means to
coordinate spatially distributed and networked agents, where agents interact together to optimize decisions
and achieve system objectives. In recent decades, the development of cluster control has motivated more and
more research on the consensus problem for MASs, such as multi-UAVs (Unmanned Aerial Vehicles) con-
trol [1–3], underwater cooperative operations [4], robot formation control [5–8], wireless sensors collaboration [9],
microgrids control [10] and so on. As a key issue in the research of MASs, the consensus problem has received
extensive attention in the past few decades. For example, Hu et al. proposed a new consensus protocol for
complex networks composed of multiple subnetworks to ensure convergence [11]. Yao et al. considered the
finite-time consensus problem of MASs based on the finite-time Lyapunov stability theory [12]. Rehman et
al. investigated the consensus problem of leader-following MASs in both fixed undirected topology and fixed
directed topology and proposed two distributed control protocols [13]. Liu et al. studied the positive consensus
problem of MASs with directed communication topologies where all agents have identical continuous-time
positive linear dynamics [14].

To handle the consensus problem, various control methods have been proposed including fuzzy control [15],
robust 𝐻∞ control [16], predictive control [17,18], adaptive control [19–21], sliding mode control (SMC) [22], and
so on. Due to the strong robustness to external disturbance and parameter uncertainties, the sliding mode
control method has been used widely in the MASs consensus research. For the leaderless MASs, Wang et al.
designed a special SMC protocol for the consensus problem [23]. Cong et al. proposed a distributed nonsingu-
lar controller to deal with the consensus problem for a class of nonlinear single-integrator MASs with input
uncertain dynamics [24]. Rahmani et al. proposed a projection recurrent neural network, which was suitable
for robotic MASs, and designed a new optimal SMC technique to achieve consensus tracking [25].

However, a key feature of the aforementioned works is that the information can be transmitted accurately
among agents. In practical MASs, a satisfying communication environment cannot be guaranteed under wire-
less transmission networks. As a result of the impact of amplitude attenuation and random interference, the
wireless link communication among agents will suffer from the fading phenomenon, resulting in the distor-
tion of the data. This unfavorable factor motivated some interesting research on consensus tracking of wireless
MASs subject to channel fading. Oral et al. [26] considered link outages between agents and obtained the prob-
ability expression for MASs reaching consensus. Gu et al. designed a distributed SMC law to deal with the
impact of the information fading phenomenon in communication channels [27]. Ding et al. investigated the
finite-time consensus control for MASs with channel fading via SMC technique. [28]

Another adverse phenomenon in the wireless transmission network is the inevitable malicious attacks, thereby
rendering the secure control of MASs fundamental significance [29]. Considering the different mechanisms
and effects on the MASs consensus problem, cyber-attacks can be divided into various types, for example,
deception attacks [30], replay attacks [31] and denial-of-service (DoS) attacks [32]. Among them, deception at-
tacks may lead to erroneous information feedback by tampering with the real packets via injecting false data.
Cui et al. investigated the consensus tracking problem of MASs, which may be subject to deception attacks
randomly. Recently, SMC strategy combined with adaptive mechanism has shown promising performance
for constrained systems, for example, Chen et al. constructed an adaptive sliding mode control law to deal
with the effects of adversarial cyber injection attacks [33]. It is of great practical significance to investigate the
consensus problem for MASs against deception attacks [34]. Meanwhile, it is challenging to design a feasible
SMC law under unknown and time-varying deception attacks.

Inspired by the above discussion and based on the expanded research of ref. [28], this paper will be concerned
with the secure consensus control problem for multi-agent systems with malicious attacks and channel fading
via the adaptive sliding mode technique, and the main contributions are highlighted as follows: (1) Both the
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position error and the velocity error are used to reflect the consistency of MASs, then the consensus tracking
problem of MASs can be transformed into the stability problem of the tracking error system� (2) Coping with
the effect of the fading channel between followers, the incomplete fading information received by the agent is
introduced into the controller design� (3) An online estimation strategy is employed to estimate the unknown
and time-varying attacks, based on which, an adaptive sliding mode controller is designed to attenuate the
effect of the attacks on MASs� and (4) The distributed adaptive SMC strategy is designed to ensure the mean
square consistency of MASs, despite the communication constraints.

Notation: R𝑛 and R𝑚×𝑛 mean the 𝑛 dimension Euclidean space and the 𝑚 × 𝑛 real matrix set. The symbol |·|
denotes the Euclidean norm and ⊗ denotes the Kronecker product. Denote sgn(𝑥) the sign symbolic function,
1𝑁 = [1, 1, · · · , 1]𝑇 , 0𝑁 = [0, 0, · · · , 0]𝑇 .

2. PROBLEM FORMULATION
2.1. Graph theory
Graph theory is an important tool to study MASs, which is a graph composed of several nodes and edges
connecting the node. Each agent can be represented as a node, and the information interaction between
agents can be denoted as an edge in graph theory. A directed weighted graph is represented by 𝐺 = {V,E}.
For MASs with one leader and 𝑁 agents, the node-set V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } indicates the set of all points on
the graph and E = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ V, 𝑖 ≠ 𝑗} represents the set of all edges. 𝐴 = [𝑎𝑖 𝑗 ] ∈ R𝑁×𝑁 is a non-negatively
weighted adjacency matrix. If 𝑎𝑖 𝑗 > 0, it means that agent 𝑖 can receive information from agent 𝑗 ; conversely, if
𝑎𝑖 𝑗 = 0, agent 𝑖 cannot receive information from agent 𝑗 . Define the matrix 𝐵 = diag(𝑏1, 𝑏2, · · · , 𝑏𝑁 ) to denote
the communication between the leader and all followers, and the degree matrix 𝐷 = [𝑑𝑖𝑖] with 𝑑𝑖𝑖 =

∑𝑁
𝑗=1 𝑎𝑖 𝑗 .

So, we can obtain the Laplace matrix 𝐿 = [𝑙𝑖 𝑗 ] as:

𝐿 = 𝐷 − 𝐴. (1)

with

𝑙𝑖 𝑗 =

{ ∑𝑁
𝑘=1 𝑎𝑖𝑘 , 𝑖 = 𝑗 ,

−𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗 .
(2)

Lemma 1 [35] The matrix 𝐿 + 𝐵 is invertible if the directed graph 𝐺 has a directed spanning tree.

Definition 1 Consider a multi-agent system with 𝑁 agents and let 𝑥𝑖 (𝑡) represent the state of agent 𝑖. If
𝑙𝑖𝑚𝑡→∞‖𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)‖ = 0, for all 𝑖, 𝑗 = 1, 2, · · · , 𝑁 , it is said that the multi-agent system can reach a con-
sensus. Furthermore, if there exists a leader whose state is 𝑥0(𝑡), then 𝑙𝑖𝑚𝑡→∞‖𝑥𝑖 (𝑡) − 𝑥0(𝑡)‖ = 0, for all
𝑖, 𝑗 = 1, 2, · · · , 𝑁 , means the tracking consensus is achieved.

2.2.System model
Consider a second-order MASs consisting of a leader labeled as node 0 and 𝑁 followers indexed by 𝑖 ∈
{1, 2, · · · , 𝑁}, and the 𝑖th follower’s dynamic is given as:{

¤𝑥𝑖 (𝑡) = 𝑣𝑖 (𝑡),
¤𝑣𝑖 (𝑡) = 𝑢𝑖 (𝑡),

(3)

where 𝑥𝑖 (𝑡) ∈ R𝑚 , 𝑣𝑖 (𝑡) ∈ R𝑚 , 𝑢𝑖 (𝑡) ∈ R𝑚 represent the 𝑖th follower’s position, velocity and the control input,
respectively. According to equation (3), it is obvious that we are focused on double integrators.
The leader’s dynamic is of the following form:{

¤𝑥0(𝑡) = 𝑣0(𝑡),
¤𝑣0(𝑡) = 𝑢0(𝑡),

(4)
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with 𝑥0(𝑡) ∈ R𝑚 , 𝑣0(𝑡) ∈ R𝑚 the leader’s position and velocity, respectively, and 𝑢0(𝑡) ∈ R𝑚 representing the
control input.
Define the 𝑖th follower’s consensus tracking errors as follows:{

𝑒1𝑖 (𝑡) =
∑𝑁

𝑗=1 𝑎𝑖 𝑗
(
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)

)
+ 𝑏𝑖 (𝑥𝑖 (𝑡) − 𝑥0(𝑡)) ,

𝑒2𝑖 (𝑡) =
∑𝑁

𝑗=1 𝑎𝑖 𝑗
(
𝑣𝑖 (𝑡) − 𝑣 𝑗 (𝑡)

)
+ 𝑏𝑖 (𝑣𝑖 (𝑡) − 𝑣0(𝑡)) ,

(5)

with 𝑒1𝑖 (𝑡) and 𝑒2𝑖 (𝑡) the tracking error variables of position and velocity, 𝑎𝑖 𝑗 represents the element of 𝐴, 𝑏𝑖
determines whether there is information interaction between the leader and the followers, when 𝑏𝑖 > 0, agent
𝑖 can receive information from the leader, otherwise, 𝑏𝑖 = 0.
The tracking errors can be rewritten in the compact form:{

𝑒1(𝑡) = (𝐿 + 𝐵) ⊗ 𝐼𝑚 · (𝑥(𝑡) − 1𝑁 ⊗ 𝑥0(𝑡)),
𝑒2(𝑡) = (𝐿 + 𝐵) ⊗ 𝐼𝑚 · (𝑣(𝑡) − 1𝑁 ⊗ 𝑣0(𝑡)),

(6)

with 𝑒1(𝑡) ≜ [𝑒𝑇11(𝑡), · · · , 𝑒𝑇1𝑁 ]𝑇 , 𝑒2(𝑡) ≜
[
𝑒𝑇21(𝑡), · · · , 𝑒𝑇2𝑁 (𝑡)

]𝑇 , 𝑥(𝑡) ≜ [
𝑥𝑇1 (𝑡), · · · , 𝑥𝑇𝑁 (𝑡)

]𝑇 , 𝑣(𝑡) ≜ [
𝑣𝑇1 (𝑡), · · · ,

𝑣𝑇𝑁 (𝑡)]𝑇 , 𝑢(𝑡) ≜
[
𝑢𝑇1 (𝑡), · · · , 𝑢𝑇𝑁 (𝑡)

]𝑇 , 𝐵 ≜diag{𝑏1, 𝑏2, · · · , 𝑏𝑁 }.

From the above definition, one can obtain the tracking error system as:{
¤𝑒1(𝑡) = 𝑒2(𝑡),
¤𝑒2(𝑡) = (𝐿 + 𝐵) ⊗ 𝐼𝑚 · (𝑢(𝑡) − 1𝑁 ⊗ 𝑢0(𝑡)).

(7)

Now, the consensus tracking problem of MASs (3)-(4) converts to the stabilization problem of the tracking
error system (7). The objective of this work is to achieve leader-follower consistency.

2.3. Fading channel
As stated in the Introduction, the transmission between followers may be inevitably suffered from the channel
fading phenomenon. In this work, the network channel is considered as a continuous one with time-varying
channel gain, the transmitted data will be modeled as the actually received information with random attenua-
tion. Hence, introduce the following memoryless multiplicative fading model:{

𝑥𝑖 𝑗 (𝑡) = 𝜌𝑖 𝑗 (𝑡)𝑥 𝑗 (𝑡),
𝑣𝑖 𝑗 (𝑡) = 𝜌𝑖 𝑗 (𝑡)𝑣 𝑗 (𝑡),

(8)

where 𝑥𝑖 𝑗 (𝑡) and 𝑣𝑖 𝑗 (𝑡) are the fading position and speed signal of the 𝑗 th agent received by the 𝑖th agent, and
𝑥 𝑗 (𝑡) and 𝑣 𝑗 (𝑡) are the signal and speed signal sent by the 𝑗 th agent, respectively. The random coefficient
𝜌𝑖 𝑗 (𝑡) ∈ (0, 1] are mutually independent random variables with mathematical expectation E

(
𝜌𝑖 𝑗 (𝑡)

)
= 𝜌̄.

Assuming that fading occurs only in the channel between followers, the special case of channel fading from
the leader to the followers is not considered in this work. Hence, based on the fading information (8), the
tracking errors (5) are rewritten as:

𝑒1𝑖 (𝑡) =
∑𝑁

𝑗=1 𝑎𝑖 𝑗

(
𝑥𝑖 (𝑡) − 1

𝜌̄Λ𝑖 𝑗 (𝑡)𝑥 𝑗 (𝑡)
)
+ 𝑏𝑖 (𝑥𝑖 (𝑡) − 𝑥0(𝑡)) ,

𝑒2𝑖 (𝑡) =
∑𝑁

𝑗=1 𝑎𝑖 𝑗

(
𝑣𝑖 (𝑡) − 1

𝜌̄Λ𝑖 𝑗 (𝑡)𝑣 𝑗 (𝑡)
)
+ 𝑏𝑖 (𝑣𝑖 (𝑡) − 𝑣0(𝑡)) .

(9)

It can be seen that the tracking errors (9) involve the expectation of the random variable 𝜌𝑖 𝑗 (𝑡), which is
introduced to compute the consistent tracking error variable among the agents more accurately.
Define 𝑒1(𝑡)≜[𝑒𝑇11(𝑡), · · · , 𝑒𝑇1𝑁 (𝑡)]𝑇 , 𝑒2(𝑡)≜

[
𝑒𝑇21(𝑡) , · · · , 𝑒𝑇2𝑁 (𝑡)]𝑇 . Then, the compact form of tracking errors

(9) is of the following form:
𝑒1(𝑡) =

∑𝑁
𝑖=1 𝛼𝑖 (𝐴 ⊗ 𝐼𝑚) · 1

𝜌̄Λ𝑖 (𝑡)𝑥 (𝑡) − (𝐿 + 𝐵) ⊗ 𝐼𝑚
(1𝑛 ⊗ 𝑥0(𝑡)

)
−(𝐵 + 𝐷) ⊗ 𝐼𝑚 · 𝑥 (𝑡) ,

𝑒2(𝑡) =
∑𝑁

𝑖=1 𝛼𝑖 (𝐴 ⊗ 𝐼𝑚) · 1
𝜌̄Λ𝑖 (𝑡)𝑣 (𝑡) − (𝐿 + 𝐵) ⊗ 𝐼𝑚

(1𝑛 ⊗ 𝑣0(𝑡)
)

−(𝐵 + 𝐷) ⊗ 𝐼𝑚 · 𝑣 (𝑡) ,

(10)
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Figure 1. System over fading network subject to attacks on agent 𝑖.

where 𝛼𝑖 ≜ diag{𝛿1
𝑖 , 𝛿

2
𝑖 , . . . , 𝛿

𝑁
𝑖 }, 𝛿𝑘𝑖 (·) being the Kronecker delta function, which compares values of 𝑖 and

𝑘 and returns 0 when they are not equal; otherwise, it returns 1. Λ1(𝑡) ≜ diag{0, 𝜌12(𝑡), · · · , 𝜌1𝑁 (𝑡)}, · · · ,
Λ𝑁 (𝑡) ≜ diag{𝜌𝑁1(𝑡), 𝜌𝑁2(𝑡), · · · , 0}. Considering the effect of channel fading, since only faded data is avail-
able, accurate neighbors’ information cannot be used for the controller design. In the following section 3.1,
the SMC law will be designed based on the consensus tracking errors 𝑒1(𝑡) and 𝑒2(𝑡).

Remark 1. There are two special cases considered in the channel fading model (8): when 𝜌𝑖 𝑗 (𝑡) = 0, it means
that there is no information interaction between agents and the communication channel is blocked, that is, the
channel fading model is simplified to a packet loss model. In contrast, if 𝜌𝑖 𝑗 (𝑡) = 1, it indicates that the data
transmission between agents is complete and without any attenuation.

2.4. Deception attacks
Among various cyber-attacks, the deception attack on controllers is a common form and usually satisfies the
following assumptions: the hackers can steal the state information or measurement output of the agents to
generate false data, which can then be injected into the controller. As shown in Figure 1, the hackers can attack
the controller of agent 𝑖 by injecting false data. Thus, the actual data received by the actuator of agent 𝑖 is as
follows:

𝑢̌𝑖 (𝑡) = 𝑢𝑖 (𝑡) +𝑊 (𝑡)Ψ𝑎 (𝑥𝑖 (𝑡), 𝑡). (11)

The compact form of expression (11) can be written as:

𝑢̌(𝑡) = 𝑢(𝑡) +𝑊 (𝑡)Ψ𝑎 (𝑥(𝑡), 𝑡). (12)

where 𝑢(𝑡) is the designed control input and𝑊 (𝑡)Ψ𝑎 (𝑥(𝑡), 𝑡) is the false data. The matrix𝑊 (𝑡) is an unknown
and time-varying matrix that satisfies ‖𝑊 (𝑡)‖ ≤ 𝜇(𝑡) with 𝜇(𝑡) unknown and bounded, represents the in-
jection patterns of the false data, for example, 𝑊 (𝑡) may be a matrix composed of elements 0 and 1, that is,
sometimes false data is injected, sometimes not, to confuse users. Thus, the attack is difficult to be detected
by users. Ψ𝑎 (𝑥(𝑡), 𝑡) is a function of 𝑥(𝑡), which means the false data generated via the state 𝑥(𝑡), and satisfy
‖Ψ𝑎 (𝑥(𝑡), 𝑡)‖ ≤ 𝜓(𝑥(𝑡), 𝑡) with 𝜓(𝑥(𝑡), 𝑡) a known nonnegative function.

Remark 2. The deception attacks considered in this work focus on the controller, that is, 𝑢(𝑡) may be suffered
from the false data injection, such as the problem considered in some literature [30,36] and so on. The deception
attacks can also occur in the communication channel between agents, that is, 𝑥(𝑡) may be affected by false data
injection during transmission [34].

3. MAIN RESULTS
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3.1. Adaptive SMC law
To cope with the impact of the deception attacks, the information about the attack is usually utilized to design
the controller. For example, when the upper bounds 𝜇(𝑡) and 𝜓(𝑥(𝑡), 𝑡) of the attack are known, the de-
sign of the controller is relatively easy to implement, but the fixed upper bounds will inevitably lead to larger
conservativeness. To overcome this problem, an online estimation strategy will be employed to estimate the
time-varying and unknown attacks, based on which, an adaptive sliding mode controller will be designed to
attenuate the effect of the unknown attacks on MASs.

Design the sliding function as follows:

𝑠𝑖 (𝑡) = 𝑐𝑒1𝑖 (𝑡) + 𝑒2𝑖 (𝑡), (13)

with 𝑐 > 0 the sliding gain, denoted 𝑠(𝑡) ≜
[
𝑠𝑇1 (𝑡), 𝑠𝑇2 (𝑡), · · · , 𝑠𝑇𝑁 (𝑡)

]𝑇 , the compact form of sliding function
(13) can be written as:

𝑠(𝑡) = 𝑐𝑒1(𝑡) + 𝑒2(𝑡), (14)

From (7), we can obtain the derivative of the sliding function:

¤𝑠(𝑡) = 𝑐𝑒2(𝑡) + ¤𝑒2(𝑡)
= 𝑐𝑒2(𝑡) + (𝐿 + 𝐵) ⊗ 𝐼𝑚 · (𝑢̌(𝑡) − 𝐼𝑁 ⊗ 𝑢0(𝑡)) .

(15)

Under these constraints considered in this work, the 𝑖th agent cannot receive accurate and complete informa-
tion from neighbor agents, the switching function (13) under fading channel is rewritten as:

𝑠𝑖 (𝑡) = 𝑐𝑒1𝑖 (𝑡) + 𝑒2𝑖 (𝑡). (16)

The compact form of expression (16) as:

𝑠(𝑡) = 𝑐𝑒1(𝑡) + 𝑒2(𝑡). (17)

Then, construct the sliding mode controller as follow:

𝑢(𝑡) = 𝑢𝑎 (𝑡) + 𝑢𝑏 (𝑡), (18)

where the robust term 𝑢𝑎 (𝑡) is designed as :

𝑢𝑎 (𝑡) = −(𝐿 + 𝐵)−1 ⊗ 𝐼𝑚 · (𝑘1 · sgn(𝑠(𝑡)) + 𝑐𝑒2(𝑡)) + 𝐼𝑁 ⊗ 𝑢0(𝑡), (19)

with 𝑘1 > 0, and the adaptive term 𝑢𝑏 (𝑡) is designed as:

𝑢𝑏 (𝑡) = −(𝐿 + 𝐵)−1 ⊗ 𝐼𝑚 · (‖𝐿 + 𝐵‖ 𝜇̂(𝑡)𝜓(𝑥(𝑡), 𝑡) · sgn(𝑠(𝑡))). (20)

where 𝜇̂(𝑡) is the estimation of 𝜇(𝑡) under the following adaptive law:

¤̂𝜇(𝑡) = 𝜃 ‖𝐿 + 𝐵‖ · Proj( 𝜇̂(𝑡),


𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡)), (21)

with 𝜃 an adaptive parameter, and Proj the smooth projection [37] as:

Proj( 𝜇̂(𝑡),


𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡))

=




𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡), if 𝜑( 𝜇̂(𝑡)) ≤ 0,

𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡), if 𝜑( 𝜇̂(𝑡)) ≥ 0 and 𝜑′( 𝜇̂(𝑡))



𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡) ≤ 0,

𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡) − 𝜑( 𝜇̂(𝑡))𝜑′ ( 𝜇̂(𝑡))‖𝑠𝑇 (𝑡)‖𝜓(𝑥(𝑡),𝑡)
‖𝜑′ ( 𝜇̂(𝑡))‖′ 𝜑′𝑇 ( 𝜇̂(𝑡)), otherwise,

(22)

where the continuous function 𝜑( 𝜇̂(𝑡)) defined as:

𝜑( 𝜇̂(𝑡)) ≜ 2
𝛿
( 𝜇̂

2(𝑡)
𝜇̂2
𝑚𝑎𝑥

− 1 + 𝛿) (23)
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with 𝜇̂𝑚𝑎𝑥 the given bound of projection, and scalar 0 < 𝛿 < 1.

According to Imbedded Convex Sets Assumption [37], we obtain:


Proj
(
𝜇̂(𝑡),



𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡))


 ≤‖𝑠𝑇 (𝑡)‖𝜓(𝑥(𝑡), 𝑡), (24)

and
( 𝜇̂(𝑡) − 𝜇(𝑡)) (Proj( 𝜇̂(𝑡),



𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡)) − 

𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡)) ≤ 0 (25)

and these two conditions will be used in the following derivation.

Remark 3. In some existing reliable control methods, the known bounds of attacks are usually utilized, which
may inevitably yield larger conservativeness. To overcome this shortcoming, the online estimationmechanism
for unknown attacks/faults was proposed in some related works [33,38]. Inspired by these works, the online
estimation mechanism of the attack is integrated with the SMC technique in this work.

3.2. Consistence and Reachability
Theorem1. Consider theMASs (3)-(4) with channel fading (8) and deception attacks (12), under the proposed
SMC law (19)-(20), the reachability of the sliding surface 𝑠(𝑡) = 0 can be guaranteed in the sense of mean
square.
Proof. Choose the Lyapunov function as follows:

𝑉 (𝑠, 𝑡) = 1
2
𝑠𝑇 (𝑡)𝑠(𝑡) + 1

2
𝜃−1𝜇2(𝑡), (26)

where 𝜇̃(𝑡) = 𝜇̂(𝑡) − 𝜇(𝑡) is the estimated error with ¤̃𝜇(𝑡) = ¤̂𝜇(𝑡).

Then, by the expressions (15) and (21), the derivative of 𝑉1(𝑠, 𝑡) can be given as:

¤𝑉 (𝑠, 𝑡) =𝑠𝑇 (𝑡) ¤𝑠(𝑡) + 𝜃−1 𝜇̃(𝑡) ¤̃𝜇(𝑡)
=𝑠𝑇 (𝑡) (𝑐𝑒2(𝑡) − 𝑐𝑒2(𝑡) + (𝐿 + 𝐵) ⊗ 𝐼𝑚 ·𝑊 (𝑡)Ψ𝑎 (𝑥(𝑡), 𝑡))
− ‖𝐿 + 𝐵‖ · 𝜇̂𝜓(𝑥(𝑡), 𝑡) · sgn(𝑠(𝑡)) − 𝑘1 sgn(𝑠(𝑡))) + 𝜃−1 𝜇̃(𝑡) ¤̃𝜇(𝑡).

(27)

Taking mathematical expectation to the above expression (27), one has:

E[ ¤𝑉 (𝑠, 𝑡)] =𝑠𝑇 (𝑡) [𝑐𝑒2(𝑡) − 𝑐E(𝑒2(𝑡)) − 𝑘1E(sgn(𝑠(𝑡))) + (𝐿 + 𝐵) ⊗ 𝐼𝑚

·𝑊 (𝑡)Ψ𝑎 (𝑥(𝑡), 𝑡) − ‖𝐿 + 𝐵‖ 𝜇̂𝜓(𝑥(𝑡), 𝑡)E(sgn(𝑠(𝑡)))]
+ ‖𝐿 + 𝐵‖( 𝜇̂(𝑡) − 𝜇(𝑡))Proj( 𝜇̂(𝑡),



𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡)). (28)

It can be easily verified from expressions (5) and (9) that E (𝑒1(𝑡)) = E (𝑒1(𝑡)), E (𝑒2(𝑡)) = E (𝑒2(𝑡)). Mean-
while, it follows from (14) and (17) that E (𝑠(𝑡)) = E (𝑠(𝑡)). Then, one can obtain:

E
[ ¤𝑉 (𝑠, 𝑡)

]
= − 𝑘1𝑠

𝑇 (𝑡) sgn(𝑠(𝑡)) + 𝑠𝑇 (𝑡) (𝐿 + 𝐵) ⊗ 𝐼𝑚 ·𝑊 (𝑡)Ψ𝑎 (𝑥(𝑡), 𝑡)
+ ‖𝐿 + 𝐵‖( 𝜇̂(𝑡) − 𝜇(𝑡))Proj( 𝜇̂(𝑡),



𝑠𝑇 (𝑡)

𝜓(𝑥(𝑡), 𝑡))
− 𝑠𝑇 (𝑡)‖𝐿 + 𝐵‖ 𝜇̂(𝑡) · 𝜓(𝑥(𝑡), 𝑡) sgn(𝑠(𝑡))

≤ − 𝑘1‖𝑠𝑇 (𝑡)‖ + ‖𝐿 + 𝐵‖‖𝑊 (𝑡)‖ ‖Ψ𝑎 (𝑥(𝑡), 𝑡)‖ ‖𝑠𝑇 (𝑡)‖
+ ‖𝐿 + 𝐵‖( 𝜇̂(𝑡) − 𝜇(𝑡))Proj( 𝜇̂(𝑡), ‖𝑠𝑇 (𝑡)‖ · 𝜓(𝑥(𝑡), 𝑡))
− ‖𝐿 + 𝐵‖ 𝜇̂(𝑡)𝜓(𝑥(𝑡), 𝑡)‖𝑠𝑇 (𝑡)‖.

(29)

By the conditions ‖𝑊 (𝑡)‖ ≤ 𝜇(𝑡), ‖Ψ𝑎 (𝑥(𝑡), 𝑡)‖ ≤ 𝜓(𝑥(𝑡), 𝑡), one has:

E
[ ¤𝑉 (𝑠, 𝑡)

]
≤ − 𝑘1‖𝑠𝑇 (𝑡)‖ + ‖𝐿 + 𝐵‖(𝜇(𝑡) − 𝜇̂(𝑡)) (‖𝑠𝑇 (𝑡)‖
· 𝜓(𝑥(𝑡), 𝑡) − Proj( 𝜇̂(𝑡),



𝑠𝑇 (𝑡)

 · 𝜓(𝑥(𝑡), 𝑡))). (30)
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Then, it follows from (25) that:
E
[ ¤𝑉 (𝑠, 𝑡)

]
≤ − 𝑘1‖𝑠𝑇 (𝑡)‖
≤0.

(31)

Hence, the reachability of the sliding surface 𝑠(𝑡) = 0 can be ensured in the sense of mean square.
□

Theorem 2. Considering the MASs (3)-(4) subject to deception attacks (12) and channel fading model (8), the
consensus tracking for MASs (3)-(4) will be achieved under the proposed sliding surface (14) and the SMC
law (19)-(20).
Proof. Select the Lyapunov function:

𝑈 (𝑡) = 1
2
𝑒1(𝑡)𝑇 𝑒1(𝑡) +

1
2
𝑒2(𝑡)𝑇 𝑒2(𝑡), (32)

Its derivative is given as:
¤𝑈 (𝑡) = 𝑒𝑇1 (𝑡) ¤𝑒1(𝑡) + 𝑒𝑇2 (𝑡) ¤𝑒2(𝑡)

= 𝑒𝑇1 (𝑡)𝑒2(𝑡) + 𝑒𝑇2 (𝑡) ¤𝑒2(𝑡).
(33)

When the sliding surface 𝑠(𝑡) = 0, it follows from (14) and (7) that 𝑒2(𝑡) = −𝑐𝑒1(𝑡) and ¤𝑒2(𝑡) = −𝑐𝑒2(𝑡), then
we can obtain:

¤𝑈 (𝑡) = 𝑒𝑇1 (𝑡)𝑒2(𝑡) + 𝑒𝑇2 (𝑡) ¤𝑒2(𝑡)
= −𝑐𝑒1(𝑡)𝑇 𝑒1(𝑡) − 𝑐𝑒𝑇2 (𝑡)𝑒2(𝑡)
= −𝑐 ‖𝑒1(𝑡)‖2 − 𝑐 ‖𝑒2(𝑡)‖2

≤ 0.

(34)

Combining the results of Theorem 1, the consensus tracking of MASs (3)-(4) can be ensured under the pro-
posed sliding surface (14) and the SMC law (19)-(20). □

4. SIMULATION
Consider the second-orderMASswith one leader and 4 followers, where the communication topology between
agents is shown in Figure 2. The blue arrows indicate that the followers receive the complete information from
the leader, while the red arrows indicate that the information interaction between followers is over fading
channel. Thereby, follower 1 and follower 2 can receive accurate information from the leader, follower 3 can
only receive the fading data from follower 1, and follower 4 can only receive the incomplete data from both
follower 1 and follower 2. For simplicity, in this simulation example, the adjacency weights between neighbor
agents are set as 1.

Then, according to the leader and followers’ topology, we can get the adjacency matrix 𝐴, the diagonal matrix
𝐵, and the Laplace matrix 𝐿 of these MASs as follows:

𝐴 =


0 0 0 0
0 0 0 0
1 0 0 0
1 1 0 0


, 𝐿 =


0 0 0 0
0 0 0 0
−1 0 1 0
−1 −1 0 2


, 𝐵 = 𝑑𝑖𝑎𝑔

{
1 1 0 0

}
.

In this simulation, the initial state of the leader’s position, speed, and control input are set as 𝑥0 = [10,−10]𝑇 ,
𝑣0 = [10,−10]𝑇 , 𝑢0 = [𝑐𝑜𝑠(𝑡), 𝑠𝑖𝑛(𝑡)]𝑇 , the initial state of the followers’ position and speed are set as 𝑥1 =
[10,−2]𝑇 , 𝑣1 = [20,−2]𝑇 , 𝑥2 = [15, 15]𝑇 , 𝑣2 = [20, 3]𝑇 , 𝑥3 = [25, 5]𝑇 , 𝑣3 = [15, 0]𝑇 , 𝑥4 = [45, 15]𝑇 ,
𝑣4 = [35, 0]𝑇 , and the injection packets𝑊 (𝑡)Ψ𝑎 (𝑥(𝑡), 𝑡) set as𝑊 (𝑡) = [1, 1, 1, 1] andΨ𝑎 (𝑥(𝑡), 𝑡) = 10𝑥(𝑡)𝑠𝑖𝑛(𝑡).
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Figure 2. Communication topology diagram of MASs. MASs: multi-agent systems.
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Figure 3. The trajectories of the MASs under the robust control term 𝑢𝑎 (𝑡 )(19). MASs: multi-agent systems.

The sliding mode controller parameters are chosen as 𝑐 = 1, 𝑘1 = 0.1.

Simulation results are shown in Figures 3-7. Among them, Figure 3 shows the tracking trajectories of MASs
under the robust control term 𝑢𝑎 (𝑡) (19), and the horizontal and vertical axis represent the position state of
different dimensions, respectively. As we can see from the Figure 3, the trajectories of the agents don’t converge
to a point, which indicates that the MASs under the robust control term 𝑢𝑎 (𝑡) (19) can’t achieve consensus
under the deception attacks. For comparison, Figure 4 shows the tracking trajectories of the agents under
the proposed adaptive SMC law (18), and it is shown that the closed-loop MASs under channel fading and
deception attacks can achieve consensus tracking. Figures 5 and 6 show the position error 𝑒1(𝑡) and velocity
error 𝑒2(𝑡) between followers respectively. Figure 7 shows the sliding variable 𝑠(𝑡) of the followers, respectively.

Remark 4. As shown in Figures 5-7, agents 1 and 2 have better consensus tracking performance with smaller
amplitude oscillating and smoother curves, that is, because they can receive accurate information from the
leader. In contrast, agents 3 and 4 perform worse because they cannot obtain information from the leader, but
only from neighbor agents over fading channel ( as shown in Figure 2). Even so, the proposed adaptive SMC
scheme can still guarantee consensus tracking of all followers, as shown in Figure 4.
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Figure 4. The trajectories of the MASs under the adaptive SMC law (18). SMC: sliding mode control.
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Figure 5. The position error 𝑒1 (𝑡 ) of the followers in Figure 5A-D. A: Position error of the 1st agent; B: Position error of the 2nd agent; C:
Position error of the 3rd agent; D: Position error of the 4th agent.

5. CONCLUSION
This work considered the consensus control problem of MASs under deception attacks and fading channels.
Due to the fading channels, the position and velocity errors cannot be calculated accurately. To solve this
problem, the consensus tracking error variables have been designed based on the fading data received from
neighbor agents. Meanwhile, the distributed adaptive SMC strategy via fading information has been proposed
to deal with the time-varying and unknown deception attacks injected by the hacker. Utilizing the proposed
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Figure 6. The velocity error 𝑒2 (𝑡 ) of the followers in Figure 6A-D. A: Velocity error of the 1st agent; B: Velocity error of the 2nd agent; C:
Velocity error of the 3rd agent; D: Velocity error of the 4th agent.
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Figure 7. Sliding variables 𝑠 (𝑡 ) of the followers in Figure 7A-D. A: Sliding variable 𝑠 (𝑡 ) of the 1st agent; B: Sliding variable 𝑠 (𝑡 ) of the 2nd agent;
C: Sliding variable 𝑠 (𝑡 ) of the 3rd agent; D: Sliding variable 𝑠 (𝑡 ) of the 4th agent.

scheme, consensus tracking can be achieved. Only malicious attacks and channel fading have been considered
in this work. In practical applications, there may coexist multiple constraints, such as actuator/sensor faults,
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packet dropout, random noise [39,40], etc. Under these constraints, how to design a feasible consensus control
method is worthy to research in future work.
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