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Figure S1. Schematic diagram of the resistor-capacitance circuit measurement 

system. 

 

The dielectric capacitor as shown in Figure S1 is the (1-x)BT-xNN ceramics with gold 

electrodes, which is charged by the power source before measurement. After charging, 

the dielectric capacitor discharges to the load resistor (𝑅). For overdamped discharge 

measurement, the 𝑅 should meet the condition: 𝑅2 ≫ 4𝐿
𝐶⁄ , where the 𝐿 is the 

circuit inductance and the 𝐶 is the capacitance of the dielectric capacitor (here 𝑅 =

100 Ω). For underdamped discharge measurement, the 𝑅 should be small enough to 



be ignored (𝑅2 ≪ 4𝐿
𝐶⁄ ). Here, the dielectric capacitor discharges to the wire of the 

circuit. 

 

 

Figure S2. The cross-section SEM images of the (1-x)BT-xNN ceramics: (A) 

0.65BT-0.35NN, (B) 0.60BT-0.40NN, (C) 0.55BT-0.45NN, and (D) 0.50BT-0.50NN. 

 

There are no obvious pores in the cross-section of (1-x)BT-xNN ceramics, suggesting 

that the ceramics possess high relative density. 

 



 

Figure S3. The grain size distributions of all samples: (A) 0.65BT-0.35NN, (B) 

0.60BT-0.40NN, (C) 0.55BT-0.45NN, and (D) 0.50BT-0.50NN. 

 

 

Figure S4. The elements (O, Na, Ti, Nb, and Ba) distribution in the 0.60BT-0.40NN 

ceramics. 

 

All elements (O, Na, Ti, Nb, and Ba) are uniformly distributed in the 0.60BT-0.40NN 

ceramics. 



 

 

Figure S5. The current-field (J-E) curves of (1-x)BT-xNN ceramics. 

 

Table S1. The amount of the secondary phase (Ba6Ti7Nb9O42). 

Composition 
The ratios of the main peak 

intensities 

The amounts of the 

Ba6Ti7Nb9O42 

0.65BT-0.35NN 0.012 4.31% 

0.60BT-0.40NN 0.006 2.20% 

0.55BT-0.45NN 0.013 4.66% 

0.50BT-0.50NN 0.006 2.20% 

 

The ratios of the two main peak intensities (the main peak intensities of 

the secondary phases Ba6Ti7Nb9O42 and the main peak intensities of 

BT-NN ceramics) are about 0.012, 0.006, 0.013, and 0.006 for x=0.35, 

0.40, 0.45, and 0.50 respectively. The reference intensity ratio (RIR) of 

Ba6Ti7Nb9O42 is 2.22[1]. The RIRs of BT-NN ceramics are unknown, and 

here we choose the RIR of BT (8.34) for calculation. The amounts of the 

Ba6Ti7Nb9O42 can be calculated by the following equations: 

𝑊1 =
𝐼1

𝐼1 +
𝐼2

𝐾

 



𝐾 =
𝑅𝐼𝑅2

𝑅𝐼𝑅1
 

𝑊2 = 1 − 𝑊1 

where the 𝑊 is the amount, 1 and 2 are the BT-NN phases and 

Ba6Ti7Nb9O42 phases respectively. The 𝑊2s for (1-x)BT-xNN ceramics 

are about 4.31%, 2.20%, 4.66%, and 2.20% for x=0.35, 0.40, 0.45, and 

0.50 respectively (Supplementary Table 1). The amounts of Ba6Ti7Nb9O42 

phases in various ceramics are irregular. The dielectric constants of all 

BT-NN ceramics at room temperature are about 1000~1200, and the 

Ba6Ti7Nb9O42 phases are considered to have paraelectric characteristics[2]. 

Hence, the Ba6Ti7Nb9O42 phases may not greatly affect the dielectric 

characteristics of the ceramics. 

 

Table S2. The cell parameters of the (1-x)BT-xNN ceramics. 

Composition Cell parameters 

0.65BT-0.35NN a=b=c=3.9938(4) Å, α=β=γ=90° 

0.60BT-0.40NN a=b=c=3.9916(5) Å, α=β=γ=90° 

0.55BT-0.45NN a=b=c=3.9854(6) Å, α=β=γ=90° 

0.50BT-0.50NN a=b=c=3.9833(2) Å, α=β=γ=90° 
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