Supplementary Material

BaTiO₃-NaNbO₃ energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density

Peiyao Zhao, Longtu Li, Xiaohui Wang

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Correspondence to: Prof. Xiaohui Wang, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. E-mail: wxh@tsinghua.edu.cn

Figure S1. Schematic diagram of the resistor-capacitance circuit measurement system.

The dielectric capacitor as shown in Figure S1 is the (1-x)BT-xNN ceramics with gold electrodes, which is charged by the power source before measurement. After charging, the dielectric capacitor discharges to the load resistor (*R*). For overdamped discharge measurement, the *R* should meet the condition: $R^2 \gg 4L/C$, where the *L* is the circuit inductance and the *C* is the capacitance of the dielectric capacitor (here $R = 100 \Omega$). For underdamped discharge measurement, the *R* should be small enough to

be ignored $(R^2 \ll {}^{4L}/_{C})$. Here, the dielectric capacitor discharges to the wire of the circuit.

Figure S2. The cross-section SEM images of the (1-*x*)BT-*x*NN ceramics: (A) 0.65BT-0.35NN, (B) 0.60BT-0.40NN, (C) 0.55BT-0.45NN, and (D) 0.50BT-0.50NN.

There are no obvious pores in the cross-section of (1-x)BT-xNN ceramics, suggesting that the ceramics possess high relative density.

Figure S3. The grain size distributions of all samples: (A) 0.65BT-0.35NN, (B) 0.60BT-0.40NN, (C) 0.55BT-0.45NN, and (D) 0.50BT-0.50NN.

Figure S4. The elements (O, Na, Ti, Nb, and Ba) distribution in the 0.60BT-0.40NN ceramics.

All elements (O, Na, Ti, Nb, and Ba) are uniformly distributed in the 0.60BT-0.40NN ceramics.

Figure S5. The current-field (*J*-*E*) curves of (1-*x*)BT-*x*NN ceramics.

Composition	The ratios of the main peak	The amounts of the
	intensities	Ba ₆ Ti ₇ Nb ₉ O ₄₂
0.65BT-0.35NN	0.012	4.31%
0.60BT-0.40NN	0.006	2.20%
0.55BT-0.45NN	0.013	4.66%
0.50BT-0.50NN	0.006	2.20%

Table S1. The amount of the secondary phase (Ba₆Ti₇Nb₉O₄₂).

The ratios of the two main peak intensities (the main peak intensities of the secondary phases $Ba_6Ti_7Nb_9O_{42}$ and the main peak intensities of BT-NN ceramics) are about 0.012, 0.006, 0.013, and 0.006 for *x*=0.35, 0.40, 0.45, and 0.50 respectively. The reference intensity ratio (RIR) of $Ba_6Ti_7Nb_9O_{42}$ is 2.22^[1]. The RIRs of BT-NN ceramics are unknown, and here we choose the RIR of BT (8.34) for calculation. The amounts of the $Ba_6Ti_7Nb_9O_{42}$ can be calculated by the following equations:

$$W_1 = \frac{I_1}{I_1 + \frac{I_2}{K}}$$

$$K = \frac{RIR_2}{RIR_1}$$
$$W_2 = 1 - W_1$$

where the *W* is the amount, 1 and 2 are the BT-NN phases and Ba₆Ti₇Nb₉O₄₂ phases respectively. The W_2 s for (1-*x*)BT-*x*NN ceramics are about 4.31%, 2.20%, 4.66%, and 2.20% for *x*=0.35, 0.40, 0.45, and 0.50 respectively (Supplementary Table 1). The amounts of Ba₆Ti₇Nb₉O₄₂ phases in various ceramics are irregular. The dielectric constants of all BT-NN ceramics at room temperature are about 1000~1200, and the Ba₆Ti₇Nb₉O₄₂ phases are considered to have paraelectric characteristics^[2]. Hence, the Ba₆Ti₇Nb₉O₄₂ phases may not greatly affect the dielectric characteristics of the ceramics.

Composition	Cell parameters
0.65BT-0.35NN	a=b=c=3.9938(4) Å, α=β=γ=90°
0.60BT-0.40NN	a=b=c=3.9916(5) Å, α=β=γ=90°
0.55BT-0.45NN	a=b=c=3.9854(6) Å, α=β=γ=90°
0.50BT-0.50NN	a=b=c=3.9833(2) Å, α=β=γ=90°

Table S2. The cell parameters of the (1-x)BT-xNN ceramics.

Reference

Fang L. Synthesis and X-ray powder study of a new compound: Ba₆Ti₇Nb₉O₄₂.
Journal of Wuhan University of Technology(materials science) 1998;4:42-4.

2. Kim M, Lee J, Kim J, Lee H, Cho S. Microstructure evolution and electrical properties of Ba₂NaNb₅O₁₅ and BaTiO₃ composites. *Ceramics- Silikaty* 2005;49:13-8.