Artificial intelligence streamlines diagnosis and assessment of prognosis in Brugada syndrome: a systematic review and meta-analysis

Cameron J. Leong¹, Sohat Sharma¹, Jayant Seth¹, Simon W. Rabkin^{1,2}

¹Faculty of Medicine, University of British Columbia, Vancouver BC V6T 1Z3, Canada. ²Division of Cardiology, University of British Columbia, Vancouver BC V5Z 1M9, Canada.

Correspondence to: Dr. Simon W. Rabkin, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver BC V5Z 1M9, Canada. E-mail: simon.rabkin@ubc.ca

Supplementary S1. Search strategy in Ovid MEDLINE, Embase, Scopus, and The Web of Science from database inception to inception to Nov 6, 2023

1. exp Brugada syndrome/

2. exp electrocardiogram/

3. (ecg or ekg or electrocardiogra*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword heading word, floating subheading word, candidate term word]

4. 2 or 3

5. exp artificial intelligence/ or exp deep learning/ or exp machine learning/ or (AI or "artificial intelligence" or "classification algorithm*" or "computer heuristic*" or "decision support system*" or "decision tree" or "deep learning" or "data science" or "feature detection" or "generative pre-trained transformer" or "language learning model*" or "large language model*" or "learning algorithm*" or "machine learning" or (Markov adj3 model*) or ((multifactor* or multicriteria) adj3 ("decision analysis" or "decision making")) or "natural language process*" or "nearest neighbor*" or "neural network*" or "outlier detection" or "generative" or "transfer learning" or "Bing chat" or ChatGPT* or "Chat GPT" or "Google* Bard" or "IBM Watson" or "Microsoft* Bing" or OpenAI or "OpenAI" or PathAI or "PathAI").mp.

6. 1 and 4 and 5

Artificial intelligence search filter:

Campbell SM, Kung J. Filter to Retrieve Studies Related to Artificial Intelligence from the OVID EMBASE Database. Geoffrey & Robyn Sperber Health Sciences Library, University of Alberta. Rev July 13, 2023.

https://docs.google.com/document/d/1eWyO0jv9_6FYsxyC5LUYwFe9eH_3h83tPNZ6wmos18/edit#heading=h.ldbxqb34y1kj

Study	Validation	Study	Data selection and preparation process	Model threshold	
	method	type		selection	
Tse et al. (2020)	2-fold cross-	Prognostic	ECG features included HR, PR interval, QRS duration,	Threshold was selected	
	validation,		and QTc	based on ROC curve	
	external				
	validation				
Romero <i>et al</i> .	10-fold	Prognostic	Preprocessing steps of ECGs included automatic QRS	Threshold was selected	
(2016)	cross		detection, baseline drift attenuation by cubic spline	based on ROC curve	
	validation		interpolation, and Butterworth low pass filtering for the		
			purpose of denoising. ECG features used to train the		
			model included morphological QRS features and HRV		
			markers. Feature selection used a hybrid approach		
			consisting of a simple filter algorithm and a sequential		
			floating feature selection method		
Randazzo <i>et al</i> .	5-fold cross	Prognostic	ECG features were chosen based on the risk	NR	
(2023)	validation		stratification guidelines for BrS. These features were		
			manually extracted from selected ECGs (e.g., PR		
			interval, QRS duration in V1, QT interval in V5, etc.).		
			These were fed into an MLP and a BDT algorithm		
Lee et al. (2021)	5-fold cross	Prognostic	BrS patients were stratified based on symptoms at	Threshold was selected	
	validation		presentation (asymptomatic, syncope, or VT/VF). Cox	based on optimal	
			regression was used to determine significant predictors	precision and recall	
			of shorter time to VT/VF on follow-up. A random		

Supplementary Table 2. Validation, data selection, preparation process, and model threshold selection

			survival forest (RSF) model was then trained on latent	
			features extracted by NMF on risk predictors according	
			to a sensitivity analysis. 26 features were included (e.g.,	
			prior VT/VF, syncope, age, QTc interval, QRS axis)	
Romero <i>et al</i> .	Repeated	Prognostic	Pre-processing steps followed a similar method to	Threshold was selected
(2022)	10-fold		Romero 2016. ECG features included properties of the	based on ROC curve
	cross-		QRS complex, STT interval, and heart rate recovery	
	validation			
Lee et al. (2022)	5-fold cross	Prognostic	Pre-developed risk scores for developing VT/VF were	Not applicable. F1,
	validation		analyzed by ROC. The best performing algorithm	sensitivity, specificity,
			(Sierira score) was modified by adding additional risk	NPV, PPV, and accuracy
			factors identified via Cox regression to develop a	are not reported
			modified risk score. 7 machine learning algorithms were	
			also developed based on ECG data	
Nakamura <i>et</i>	5-fold cross	Prognostic	12-lead ECG used to train CNN to diagnose on a per	Threshold was selected
al. (2023)	validation		ECG basis (individual ECG) and a per-patient basis (all	based on ROC curve
			ECGs taken for a given patient)	
Micheli <i>et al</i> .	double	Diagnostic	ECG leads V1 and V2 were inputted into a CNN	NR
(2023)	cross-			
	validation (5			
	external and			
	4 internal			
	folds)			

Melo et al.	7-fold cross	Diagnostic	12-lead digital ECG was reduced to single de-noised	Used Youden's J statistic
(2023)	validation		heartbeats and are then inputted into the DNN	to select a threshold of
				0.5
Zanchi et al.	10-fold	Diagnostic	P-wave features were used to train the model	NR
(2023)	cross			
	validation			
Liu et al. (2022)	5-fold cross	Diagnostic	Developed a source network to diagnose RBBB and	Threshold was selected
	validation,		then used a transfer learning strategy to train a DNN to	based on ROC curve,
	external		classify the type 1 Brugada pattern based on 12-lead	without preference for
	validation		ECG	sensitivity
	(independent			
	cohort from			
	Japan)			
Liao <i>et al</i> .	external	Diagnostic	12-lead ECG data split into 3 training and 2 testing	Model sensitivity was
(2022)	validation		cohorts were created, the validated on an external	predefined at 50%, 80%,
			"deployment" cohort	and 90%. Other
				parameters were
				measured in relation to
				the preset sensitivity. The
				best performing model
				with respect to F1 score
				was achieved with the
				model set to 90%
				sensitivity

ECG: electrocardiogram; HR: heart rate; HRV: heart rate variability; BrS: Brugada syndrome; MLP: multi-layered perceptron; BDT: boosted decision tree; VT/VF: ventricular tachycardia/ventricular fibrillation; ROC: receiver operating characteristic; CNN: convoluted neural network; DNN : deep neural network; RBBB: right bundle branch block; NR: not reported.

	Domain 1: participants		Domain 2: predictors		Domain 3: outcome		Domain 4:	Overall judgement	
							analysis		
Study	А.	B. Concerns	А.	B. Concerns	A. Risk	B. Concerns	А.	A. Risk	B. Concerns
	Risk	regarding	Risk	regarding	of bias	regarding	Risk	of bias	regarding
	of	applicability	of	applicability		applicability	of		applicability
	bias		bias				bias		
Lee et al.	Low	Low	Low	Low	Unclear	Low	Low	Unclear	Low
(2021)									
Nakamura <i>et</i>	Low	Low	Low	Low	Low	Low	Low	Low	Low
al. (2023)									
Lee et al.	Low	Low	Low	Low	Low	Low	Low	Low	Low
(2021)									
Randazzo et al.	Low	High	Low	Low	Low	Low	Low	High	Low
(2023)									
Romero et al.	Low	Low	Low	Low	High	Low	Low	High	Low
(2016)									
Lee <i>et al</i> .	Low	Low	Low	Low	Low	Low	High	High	Low
(2022)									
Tse <i>et al</i> .	Low	Low	Low	Low	Low	Low	Low	Low	Low
(2020)									
Romero et al.	Low	Low	Low	Low	Unclear	Low	Low	Unclear	Low
(2022)									

Supplementary Table 3. PROBAST Risk-of-bias assessment for prognostic studies

Wolff RF, Moons KGM, Riley RD, et al.; PROBAST Group[†]. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. *Ann Intern Med* 2019;170:51-58. doi: 10.7326/M18-1376. PMID: 30596875.

	Domain	1: patient	Doma	in 2: index	Domain	3: reference	Domain	n 4:
	selection		test(s)		standard		flow and timing	
Study	A. Risk	B. Concerns	А.	B. Concerns	A. Risk	B. Concerns	А.	
	of Bias	regarding	Risk	regarding	of Bias	regarding	Risk	
		applicability	of	applicability		applicability	of	
			Bias				Bias	
Zanchi et	Low	Low	Low	Low	Low	Low	Low	
al., 2023								
Liao <i>et al.</i> ,	Low	Low	Low	Low	Low	Low	Low	
2022								
Liu et al.,	High	Low	Low	Low	Low	Low	Low	
2022								
Melo et al.,	Unclear	Low	Low	Low	Low	Low	Low	
2023								
Micheli et	Unclear	Unclear	Low	Low	Unclear	Low	Low	
al., 2023								

Supplementary Table 4. QUADAS-2 risk-of-bias assessment for diagnostic studies

Whiting PF, Rutjes AW, Westwood ME, et al.; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med* 2011;155:529-36. doi: 10.7326/0003-4819-155-8-201110180-00009. PMID: 220070.