1	Supplementary Materials
2	
3	Hydrophilic Ti-MWW for catalyzing epoxidation of allyl alcohol
4	
5	Xianchen Gong ¹ , Jie Tuo ¹ , Jilong Wang ¹ , Xintong Li ¹ , Chengwei Zhai ¹ , Hao Xu ^{1,2,*} ,
6	Peng Wu ^{1,2,*}
7	
8	¹ Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key
9	Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and
10	Molecular Engineering, East China Normal University, Shanghai 200062, China.
11	² Institute of Eco-Chongming, Shanghai 202162, China.
12	
13	*Correspondence to: Profs. Hao Xu, Peng Wu, Shanghai Key Laboratory of Green
14	Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular &
15	Process Engineering, School of Chemistry and Molecular Engineering, East China
16	Normal University, No. 3663 North Zhongshan Road, Shanghai 200062, China. E-mail:
17	hxu@chem.ecnu.edu.cn; pwu@chem.ecnu.edu.cn

Supplementary Figure 1. (A) TG curve and (B) ¹³C MAS NMR spectrum of
Re-Ti-MWW.

21

18

22 As shown in Supplementary Figure 1A, the weight loss of water (< 150 °C), organics

23 between the layers (150-300 °C) and organics inside the pores (300-800 °C) were 2.5%,

- 5.7% and 7.4%, respectively, indicating that PI entered the interlayer and pores of
- 25 Ti-MWW. Supplementary Figure 1B shows that the signals associated with PI
- 26 molecules were detected in the range of 0-60 ppm, indicating that PI molecules were
- 27 present in the Re-Ti-MWW.

29 Supplementary Figure 2. GLY conversion over Ti-MWW and Re-Ti-MWW during

30 hydrolysis of GLY in H₂O and MeCN solvents. The labels in this figure represent

- 31 "sample name-solvent".
- 32

33 Reaction conditions: catalyst, 0.1 g; GLY, 10 mmol; Solvent, 5 mL; H₂O₂, 10 mmol;

- 34 temperature, 313 K; time, 20-300 min.
- 35

36 The presence of interlayer PI inhibited the hydrolysis of GLY effectively in the

37 presence of H_2O_2 and H_2O .

- 39 Supplementary Figure 3. Adsorption isotherms of AAL at 313 K over (a) Ti-MWW,
- 40 (b) Re-Ti-MWW, (c) TS-1, and (d) Ti-MOR.

42 Supplementary Figure 4. The lifetime of Ti-MWW in the continuous epoxidation of

- 43 AAL. Reaction conditions: catalyst, 1 g; temperature, 313 K; AAL/H₂O₂ molar ratio,
- 44 1.5; H₂O/AAL mass ratio, 4; WHSV(H₂O₂) = 0.4 h^{-1} ; 500 rpm.

Supplementary Scheme 1. The schematic description of continuous slurry bed reactor

48 for AAL epoxidation.

- 50
- 51 Supplementary Scheme 2. The main reaction and possible side-reactions of AAL
- 52 epoxidation catalyzed by titanosilicate/ H_2O_2 system.

53	Supplementary	Table 1. Ph	ysicochemical	properties of	'various ti	itanosilicate
			•	1 1		

54 catalysts

Sample	Si/Tiª	Surface area (m ² ·g ⁻¹)			Pore volume (cm ³ ·g ⁻¹)		
Sampie		S total ^b	Smicro	Sext ^c	V _{total} ^b	Vmicro ^c	V _{meso}
Ti-MWW	39	524	417	106	0.46	0.16	0.3
Re-Ti-MWW	39	149	70	79	0.38	0.03	0.35
TS-1	35	437	324	113	0.29	0.16	0.13
Ti-MOR	38	414	371	43	0.22	0.14	0.08

⁵⁵ ^aDetermined by ICP analysis;

⁵⁶ ^bCalculated by the BET method;

57 °Calculated by the *t*-plot method.