Supplementary Materials

Machine learning and artificial intelligence for predicting short and long-term complications following metabolic bariatric surgery - a systematic review

Athanasios G. Pantelis, Panagiota Epiphaniou, Dimitris P. Lapatsanis

Surgical Department of Obesity and Metabolic Disorders, Athens Medical Group, Psychiko Clinic, Athens 115 25, Greece.

Correspondence to: Dr. Athanasios G. Pantelis, Surgical Department of Obesity and Metabolic Disorders, Athens Medical Group, Psychiko Clinic, 1, Andersen str., Athens 115 25, Greece. E-mail: ath.pantelis@gmail.com

First author	Year of publication	DOI number	Reason for exclusion	
Aminian A	2020	10.2337/dc19-2057	Prediction of end-organ	
			complications as a result of	
			MBS on obesity.	
Bioletto F	2021	10.1038/s41598-021-00475-4	Non-AI/ML predictive	
			model.	
Piaggi P	2010	10.1371/journal.pone.0013624	Prediction of the	
			effectiveness of MBS	
			(weight loss), not	
			complications.	
Razzaghi T	2019	10.1007/s10479-019-03156-8	Prediction of the	
			complications of obesity	
			itself (obesity-related	
			health problems) after	
			bariatric surgery	
Schönenberger	2022	10.3389/fnut.2022.855223	Non-AI/ML applications	
KA			(embedded systems) for	
			predicting hypoglycemia	
			post-MBS.	
Zhang Q	2020	10.1016/j.ijsu.2020.01.018	Bayesian network meta-	
			analysis, not Bayesian	
			network as an ML	
			algorithm	
Thomas DM	2017	Bariatric Times.	Prediction of the	
		2017;14(12):14-17.	effectiveness of MBS	
			(weight loss), not	
			complications.	
1	1			

Supplementary Table 1. Studies excluded at the eligibility phase, with justification

Supplementary Table 2. Subset of Included Studies Focusing on Sleeve Gastrectomy (LSG) and Roux-en-Y Gastric Bypass (RYGB)

No	Author	Procedure	Study	Population	Key Outcome(s) Predicted	ML/AI
	(Year)	Focus	Design			Method(s)
						Used
1	Cao et	LSG,	Retrospective	44,061	General	Multiple
	al.	RYGB			complications	(RF, MLP,
	(2019,	(SOReg)				CNN,
	2020)					RNN, etc.)
2	Wise et	LSG	Retrospective	101,721	30-day	ANN, LR
	al.				morbidity/mortality	
	(2020)					
3	Scott et	Revisional	Retrospective	8,895	Morbidity/mortality	ANN, LR
	al.	RYGB				
	(2024)	after LSG				
4	Zucchini	LSG,	Retrospective	424	30-day	XGB, RF,
	et al.	RYGB			complications	KNN,
	(2024)					SVM
5	Butler et	LSG,	Registry-	863,348	Readmissions	XGB, RF,
	al.	RYGB	based			NN, LR
	(2024)					
6	Torquati	LSG,	Registry-	393,833	Readmissions	Super
	et al.	RYGB	based			Learner,
	(2023)					LR
7	Pan et al.	LSG	Retrospective	407	Iron deficiency	SVM
	(2023)				anemia	
8	Hsu et	LSG,	Registry-	159,950	Hemorrhage	RF, XGB,
	al.	RYGB	based			NN, LR
	(2023)					
9	Nudel et	LSG,	Registry-	436,807	Leak, VTE	ANN,
	al.	RYGB	based			XGB, LR

	(2021)					
10	Ali et al.	RYGB,	Retrospective	6,526	VTE	Supervised
	(2024)	LSG				ML
11	Romero-	LSG,	Registry-	755,506	MACE	ANN, LR,
	Velez et	RYGB	based			XGB
	al.					
	(2024)					