Supplementary Materials # A deep learning-based system for accurate detection of anatomical landmarks in colon environment Chengwei Ye¹, Kaiwei Che^{2,3}, Yibing Yao⁴, Nachuan Ma⁵, Ruo Zhang⁶, Yangxin Xu¹, Jiankun Wang⁶, Max Q.-H. Meng^{1,6,7} **Correspondence to:** Prof. Jiankun Wang, Prof. Max Q.-H. Meng, Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong, China. E-mail: wangjk@sustech.edu.cn; max.meng@ieee.org The post-processing algorithm is shown in Algorithms 1, 2, and 3. Algorithm 2 is designed to determine whether the first and last four frames are positive or negative based on the ten neighboring frames. Algorithm 3 is utilized to count the number of changes from positive to negative or from negative to positive. Algorithm 1 combines Algorithms 2 and 3 to update the final detection results until the number of changes is equal to 1. In the algorithms, input y_{pred} denotes the intermediate detection result; output y_{final} denotes the final detection result; variable $input_list$ denotes a temporary variable containing a segment of y_{pred} . ¹Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China. ²School of Electronic and Computer Engineering, Peking University, Beijing 100871, China. ³Peng Cheng Laboratory, Shenzhen 518000, Guangdong, China. ⁴Department of Oncology, Air Force Medical Center, PLA, Beijing 100142, China. ⁵College of Electronic & Information Engineering, Tongji University, Shanghai 201804, China. ⁶Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guang dong, China. ⁷Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen 518057, Guangdong, China. #### Algorithm 1: Result_cleaning ``` Input: Intermediate detection result: y_{pred} Output: Final detection result: y_{final} 1 Function Result_cleaning(y_{pred}): while True do 2 3 y_{final} \leftarrow empty list; Check_ends(y_{pred}[: 10]); 4 for i = 4 \rightarrow \text{len}(y_{pred}) - 4 \text{ do} 5 check_list \longleftarrow y_{pred}[i-4:i+4+1]; 6 if Sum(check_list[0:4,5:8] > 3) then 7 y_{final}.append(1); 8 else 9 y_{final}.append(0); 10 Check_ends(y_{pred}[-10:]); 11 if Check_step(y_{pred}) = 1 then 12 break: 13 else 14 15 y_{pred} \leftarrow y_{final}; 16 return y final; ``` #### Algorithm 2: Check_ends ``` Input: input_list 1 Function Check_ends(input_list): 2 | if Sum(input_list) > 5) then 3 | y_{final}.extend([1,1,1,1]); 4 | else 5 | y_{final}.extend([0,0,0,0]); ``` ## Algorithm 3: Check_step ``` Input: input_list Output: Number of step: step Function Check_step(input_list): step \leftarrow 0; for i = 0 \rightarrow len(input_list) - 1 do step \leftarrow linput_list[i] - input_list[i + 1]|; return step; ```