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Abstract
Atherosclerosis plays a significant role in the development of cardiovascular diseases, the leading cause of death 
worldwide. Modification of low-density lipoproteins (LDLs) is a critical event in atherogenesis. Native LDL 
undergoes several modifications that can lead to the formation of atherogenic modified LDLs. LDL modifications 
change their physicochemical and biological properties. Possible modifications include changes in the lipoprotein 
particle’s structure, size, charge, and composition. Uptake and utilization of modified LDLs are impaired in cells. 
Macrophages take up modified LDLs that promote forming of foam cells, one of the critical cellular components of 
atherosclerotic lesions. Nevertheless, the direct role of each atherogenic LDL modification in atherogenesis remains 
uncertain. This review highlights LDL's most critical atherogenic modifications, including oxidized, enzyme-
modified, non-oxidative, desialylated, glycated and carbamylated LDLs. Studying the role of each type of LDL 
modification will clarify the unknown elements of atherosclerosis progression and facilitate the development of 
effective methods for its diagnosis, treatment, and prevention.
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INTRODUCTION
According to the World Health Organization, cardiovascular disease (CVD) is the leading cause of 
morbidity and mortality worldwide, representing 32% of all deaths. Atherosclerosis is associated with the 
occurrence and development of CVDs, including coronary heart disease (CHD), myocardial infarction, 
stroke, and peripheral arterial disease. The study of atherosclerosis initiation and early development would 
make it possible to develop practical diagnostic tools for the asymptomatic stages and promising therapeutic 
approaches[1].

Atherosclerosis is a chronic progressive disease of the elastic arteries characterized by the accumulation and 
retention of cholesterol ApoB-containing lipoproteins, primarily low-density lipoproteins (LDLs), in the 
arterial wall[2]. The pathogenic mechanism of atherosclerosis is a cascade of events leading to the formation 
of atherosclerotic lesions. Currently, there are disputes about the processes that initiate atherosclerosis. The 
critical events in the formation of atherosclerotic lesions are changes in endothelial permeability, migration 
of smooth muscle cells, synthesis of extracellular matrix components, retention of lipoproteins in the vessel 
wall, modification of lipoproteins, turbulent blood flow, and inflammation[3-6]. This review is focused on the 
modification of LDL. One of the critical events of atherogenesis is LDL modification[4,7,8]. It has been 
repeatedly demonstrated that modified LDL causes excessive intracellular accumulation of lipids in cell 
cultures, which determines lipoprotein atherogenicity[9-12]. It has been shown that incubating culture of 
human aortic intima cells with native LDL does not lead to intracellular lipid accumulation[12,13]. Modified 
LDLs can be found in atherosclerotic lesions and in the blood of patients with atherosclerosis[14-17]. 
Circulating LDLs in patients with atherosclerosis CHD are modified several times, and modified LDLs may 
differ in terms of the modification from one patient to another[18-20]. Such features of LDL are likely to be 
associated with various combinations of modifications[13,20]. Modified LDLs can be classified as oxidized LDL 
(OxLDL), enzyme-modified non-oxidized LDL (eLDL), desialylated LDL (desLDL), glycated LDL (gLDL), 
and carbamylated LDL (cLDL) [Figure 1].

There is continuing interest in studying LDL modifications and their role in atherogenesis. Over the past 
five years, 13,758 full-text articles with the keywords “modified LDL and atherosclerosis” have been 
registered in the PubMed Central system. These articles account for about half of all publications that 
mention a combination of these terms from 1979 to 2022. However, several LDL modifications in 
atherogenesis remain incompletely elucidated. Therefore, this review highlights the role of various 
mechanisms of LDL modifications in the early stages of atherosclerosis development.

OXIDIZED LDL
The oxidative modification hypothesis
The oxidative modification hypothesis arose from the study of atherosclerosis in patients with homozygous 
hypercholesterolemia. Although this disease is characterized by the absence of expression of the LDL 
receptor (LDLR), foam cell formation is observed in patients with homozygous hypercholesterolemia[21]. It is 
essential to note that LDLR has usually involved in LDL receptor-mediated endocytosis[22]. In 1979, 
Goldstein and Brown suggested that LDL modification occurs before the LDL uptake by macrophages with 
subsequent transformation into foam cells[21]. In addition, it was assumed that an alternative receptor is 
required to uptake modified LDLs. Goldstein and Brown showed that adding chemically acetylated LDL 
(acLDL) to cell culture led to their uptake and more significant intracellular cholesterol levels than native 
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Figure 1. The scheme of LDL modifications. (I) Oxidation of native LDL with reactive oxygen species, reactive nitrogen species, 
cyclooxygenase 2, lipoxygenases, cytochrome P450 monooxygenases, myeloperoxidase, and lipoxygenase 12/15. (II) Enzymatic non-
oxidative modification of native LDL by matrix metalloproteases 2 and 9, plasmin, trypsin, cholesterol esterase, chymases, 
sphingomyelinase, phospholipase A2, and cathepsins (cathepsin H, G, and F). (III) Desialylation of native LDL by endogenous 
sialidases, trans-sialidase, viral neuraminidases, and reactive oxygen species. (IV) Glycation of native LDL by excess glucose and 
nornicotine. (V) Carbamylation of native LDL with urea, cyanate, and thiocyanate with myeloperoxidase and H2O2.

LDL[23]. The acLDL receptor was characterized and named scavenger receptor A (SR-A)[24]. Goldstein and 
Brown demonstrated the participation of modified LDL in atherogenesis; however, acLDL has never been 
found in vivo; therefore, a search is required to establish new modified LDLs involved in atherogenesis[21].

Developing the idea of the participation of modified LDL in atherogenesis, Steinbrecher and Hessler 
suggested that free radical lipids are involved in LDL modification[25,26]. Incubation of native LDL with 
endothelial cells and human dermal fibroblasts results in LDL oxidation by lipid peroxidation (LPO)[25,26]. 
The evidence supports the oxidative modification hypothesis of LDL: (1) there is OxLDL in vivo; (2) OxLDL 
leads to the formation of foam cells compared to native LDL; and (3) high levels of ROS and their products 
present in atherosclerotic lesions[18,27-29]. In addition, the predictive value of serum OxLDL levels in 
determining the progression of subclinical atherosclerosis has recently been demonstrated[30].
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There are several current assumptions regarding the moment when LDL oxidation occurs: before or after 
macrophage uptake. According to the response-to-retention hypothesis, native LDL accumulates in the 
vessel wall[3]. One explanation for the excess accumulation of lipids is a change in the length of chondroitin 
sulfate chains in the tunica intima[31,32]. In addition, changes in the length of macrophage chondroitin sulfate 
proteoglycans have been shown to affect OxLDL binding on the surface of peritoneal macrophages[33,34]. 
According to the oxidative modification hypothesis, atherosclerosis is initiated by LDL oxidation in the 
vascular wall[35]. Moreover, it is essential to note that OxLDL in the blood was excluded due to several facts: 
(1) LDL contains an antioxidant component (coenzyme-Q10, α-tocopherol, and carotenoids); and (2) high 
activity of the antioxidant system in the blood[4,36]. LDL oxidation can be divided into two successive 
stages[4]. In the first stage, the lipid part of LDL is oxidized, while the protein part is almost not modified. In 
the second stage, the formed mildly oxidized LDL undergoes strong oxidation of the LDL protein part, 
leading to the formation of highly oxidized LDL[37]. Modifying ApoB-100 promotes increased uptake of 
OxLDL by macrophages and subsequent formation of foam cells[23,38]. Thus, forming foam cells is a 
pathological characteristic of atherosclerosis in the early stages[39].

The lysosomal pathway is considered the second possible pathway of LDL oxidation[40]. Aggregated LDL can 
be oxidized in macrophage lysosomes in the presence of iron[41]. Acidic pH is required for cholesterol 
esterase (CEase) activity and proteases for LDL degradation in normal conditions. Incubation of THP-1 
macrophages with LDL aggregated by sphingomyelinase (SMase-LDL) leads to an increase in pH and a 
decrease in the degradation of endocytosed LDL[42]. The lysosome-targeted antioxidant cysteamine can 
prevent intracellular LDL accumulation and oxidation. Cysteamine prevents an increase in pH in 
lysosomes, maintaining the proteolytic activity of lysosomes and reducing LDL oxidation[42]. The 
mechanism of lysosomal LDL oxidation likely explains the failure of common antioxidants in clinical trials 
to reduce free radical processes[42,43].

It remains unclear whether oxidative stress is a cause or a consequence of atherosclerosis. However, 
lipoprotein oxidation is thought to be one of the processes present in the early stages of atherosclerosis[4,7]. 
In addition, according to recent data, OxLDL is a risk factor for CVD and dyslipidemia[44].

Mechanism of LDL oxidation
The oxidation process involves transferring electrons from an electron donor to an electron acceptor. LDL 
oxidation can be carried out both with the participation of specialized enzymes (cyclooxygenases, 
lipoxygenases, cytochrome P450 monooxygenases, and myeloperoxidase) and without them (metals with 
variable valences)[45-48]. Moreover, LDL’s protein and lipid parts are prone to oxidation[26] [Figure 2]. LPO 
products can form Schiff bases, and Michael adducts with ApoB-100 residues. Oxidation of the LDL protein 
part leads to impaired recognition of OxLDL by LDLR, increasing the circulating lifetime of LDL. 
Moreover, OxLDL undergoes subsequent alternative binding to scavenger receptors (SR)[15]. The primary 
components of the LDL lipid part, such as cholesterol esters (CE), phospholipids (PL), and triglycerides, 
undergo LPO, followed by the formation of hydroperoxides and aldehyde derivatives (malonic dialdehyde 
and 4-hydroxynonenal[10,49,50]. Furthermore, there is a clear relationship between the degree of LPO and 
polyunsaturated fatty acids of LDL[51]. Well-known polyunsaturated fatty acids such as arachidonic acid 
(AA), eicosapentaenoic acid, and linoleic acid also undergo oxidative modification. The lipoxygenase 12/15 
(12/15-LOX) carries out oxidative modification of LDL direct oxygenation and LRP-mediated 12/15-LOX 
membrane translocation. In the former case, 12/15-LOX oxygenates esterified fatty acids in lipoproteins and 
phospholipids with the formation of biologically active compounds[52,53]; as a result ,  12-
hydroperoxye icosa te t raeno ic  ac id  (12-HPETE)  and  15-HPETE f rom AA and  13-
hydroperoxyoctadecadienoic acid (13-HPETE) from linoleic acid are formed[54,55]. In the latter case, it was 
shown that 12/15-LOX moves from the cytoplasm to the plasma membrane and oxidizes LDL during pre-
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Figure 2. Oxidation of native LDL.

incubation of macrophages with LDL[56]. This process is closely related to the receptor-related protein 
(LRP)[57]. However, the exact mechanism of LRP-mediated 12/15-LOX membrane translocation remains 
unclear[58]. 12/15-LOX has been reported to be directly involved in OxLDL formation[59,60]. 12/15-LOX has 
been shown to have a pro-atherogenic role by affecting the area of atherosclerotic lesions and the sensitivity 
of LDL to oxidation in transgenic mice[46,61]. Importantly, lipoxygenase-15 has been found in atherosclerotic 
lesions where it can colocalize with OxLDL[62,63].

Cyclooxygenases catalyze the oxygenation of AA to prostaglandins (PGs)[64]. PGs, as a consequence, are 
rapidly converted to PGE2, PGD2, PGF2, and PGJ2, which initiate many of the responses associated with 
inflammation and vascular reactivity[65]. In addition, there is evidence of pro-atherogenic and anti-
atherogenic effects of cyclooxygenase 2 (COX-2)[45,66]. The various biological effects of COX-2 products are 
determined by the type of tissue in which they are produced[66]. Cytochrome P450 monooxygenases catalyze 
the conversion of AAs to epoxyeicosatrienoic acids[64,67], which regulate vascular tone and are associated with 
anti-inflammatory effects[68-70].

Another enzyme responsible for LDL oxidation is MPO[71]. It has been reported that there is an association 
between serum MPO levels and acute coronary syndrome[72,73]. MPO forms a range of reactive compounds 
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such as hypochlorous acid (HOCl), chloramines, tyrosyl radicals, and nitrogen dioxide (NO2) that oxidize 
the protein, lipid, and antioxidant components of LDL[47]. In addition, myeloperoxidase-oxidized LDL 
(Mox-LDL) is found in atherosclerotic lesions and in the blood of patients with atherosclerosis[14,15].

Metals with variable valences, such as iron and copper ions, are involved in LDL oxidation by interacting 
with lipid hydroperoxides[48]. Moreover, there is evidence of the participation of ROS in LDL oxidation by 
forming hydroxyl radicals from hydrogen peroxide and interacting with superoxide radicals[74,75]. It is 
essential to note that the primary enzymatic sources of ROS are NADPH oxidase, endothelial nitric oxide 
synthase (eNOS), and xanthine oxidase (XO)[76]. Likely, the generation of reactive nitrogen species such as 
peroxynitrite may contribute to LDL oxidative modification[47].

Effects of oxidized LDL
The oxidation process of native LDL leads to the appearance of pro-atherogenic properties in modified 
LDLs. Oxidative modification of the protein part impairs LDL recognition by LDLR. Macrophages actively 
take up OxLDL by scavenger receptors (CD36, SR-A, and SR-B1) and lectin-like oxidized low-density 
lipoprotein receptor-1 (LOX-1) to remove excess OxLDL from the arterial wall[77-79]. OxLDL may be 
involved in ROS production, leading to endothelial cell damage[80]. OxLDL stimulates monocyte adhesion 
and triggers the differentiation of intimal monocytes into resident macrophages[81]. Furthermore, OxLDL 
induces the production of pro-inflammatory cytokines and chemokines by monocytes, endothelial cells, and 
smooth muscle cells (SMCs)[82]. In addition, OxLDL inhibits autophagy, a cellular pathway for the 
degradation of organelles and macromolecules. Autophagy leads to excessive accumulation of intracellular 
lipids and endothelial cell apoptosis[11]. Thus, excessive uptake of OxLDL by macrophages leads to lipid 
accumulation followed by foam cell formation, which is the hallmark of the early stages of 
atherosclerosis[83]. Mox-LDL causes endothelial dysfunction through the uptake by LOX-1, contributing to 
the initiation or development of atherosclerosis[14]. The use of substances lowering the uptake of OxLDL, 
such as dioscin and nifedipine, can reduce the development of atherosclerosis[84,85].

As mentioned earlier, these lines of evidence support the involvement of OxLDL in atherosclerosis in the 
early stages. However, most of the experiments were carried out using cell cultures, so further studies in 
animal models are required.

ENZYME-MODIFIED NON-OXIDIZED LDL
Mechanism of enzymatic non-oxidative modification of native LDL
According to the hypothesis of the enzymatic non-oxidative LDL modification, native LDLs infiltrate the 
intima and are enzymatically modified[86]. Some enzymes can modify LDL in vitro without oxidation 
processes. Such modified LDL particles are called enzyme-modified non-oxidized LDL (eLDL) [Figure 3]. 
Enzymatic non-oxidative modification of LDL occurs due to the activity of ubiquitous hydrolytic enzymes 
such as matrix metalloproteases 2 and 9, plasmin, trypsin, CEase, chymases, sphingomyelinase (SMase), 
phospholipase A2 (PLA2) and cathepsins H, G and F[16,42,87-92]. eLDL is prone to aggregation and fusion, 
increasing lipoprotein retention by human aortic proteoglycans due to active ApoB-100 lysine residues[92]; 
eLDL phagocytosed by macrophages is transported to lysosomes, where it can be oxidized[42].

Hydrolytic enzymes affect the protein and lipid parts of LDL. Plasmin can induce fragmentation of LDL 
ApoB-100, while trypsin and cathepsins proteolyze the protein part of LDL, followed by the formation of 
aggregates from its fragments[90,93]. Lipolytic modifications of LDL are carried out by lipases such as SMase 
and PLA2. SMase catalyzes the hydrolysis of sphingomyelins by forming ceramides and 
phosphorylcholines[91]. Moreover, eLDL has a lower density and exhibits less electrophoretic mobility than 
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Figure 3. Enzymatic non-oxidative modification of native LDL.

native LDL, indicating its lower negative charge[93,94]. PLA2 degrades LDL phospholipids to form non-
esterified fatty acids and lysophospholipids[95]. Treatment of native LDL with SMase leads to aggregation 
and fusion of particles, while incubation of LDL with PLA2 leads only to aggregation[92]. Thus, this event 
leads to their increased uptake by macrophages[96]. There is also a lipoprotein-associated PLA2 that 
preferentially hydrolyzes oxidized phospholipids of OxLDL [97]. Human aortic proteoglycans actively retain 
such an eLDL[86,92].

The LDL core lipids, such as cholesteryl esters and triglycerides, may undergo hydrolysis. CEase catalyzes 
the conversion of cholesterol ester to non-esterified cholesterol and fatty acid. CE hydrolysis leads to the 
formation of cholesterol crystals found in early and advanced atherosclerotic lesions[98-100]. Furthermore, 
eLDL induces intracellular lipid accumulation by cells and promotes the formation of lipid droplets[10].

It is most likely that native LDL undergoes lipolytic and proteolytic modifications. It has been shown that 
the combined treatment of native LDL with trypsin, Cease, and neuraminidase leads to the formation of 
eLDL with characteristics similar to the eLDL from atherosclerotic lesions[86,101].

Effects of enzyme-modified non-oxidative LDL
It is essential to note that eLDL has pro-atherogenic properties. It is actively taken up by SMCs of coronary 
arteries and macrophages derived from monocytes[101]. Uptake of eLDL has been shown to occur via 
micropinocytosis and is independent of scavenger receptors[94]. Nevertheless, eLDL activates the major 
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OxLDL scavenger receptor LOX-1 in SMCs[94]. Thus, eLDL aggregation and fusion have been shown to 
promote eLDL uptake by macrophages and foam cell formation[42]. There is evidence of an association 
between the aggregation-susceptibility of LDL particles and future cardiovascular events in patients with 
atherosclerosis[102,103].

There is evidence of the association of eLDL with inflammatory responses in atherosclerosis. Thus, eLDL 
activates the complement system in a C-reactive protein-dependent fashion[104,105]. Other potential triggers 
for the complement system activation in the arterial wall include modified lipoproteins and cholesterol 
crystals[106,107]. Modified and aggregated eLDL activate macrophages and induce the secretion of pro-
inflammatory cytokines and chemokines. Incubation of THP-1-derived macrophages with SMase-LDL 
induces secretion of TNF, IL-1β, IL-6, and MCP-1[42,98]. Treatment of native LDL with PLA2 or SMase leads 
to the generation of pro-inflammatory lipid mediators from AA[108].

eLDL triggers migration and osteogenic differentiation of SMCs and OxLDL[16,109,110]. The development of the 
advanced atherosclerotic lesion is characterized by plaque calcification and SMC migration from the media 
to the intima of the arterial wall. SMCs play an essential role in forming the protective fibrous cap; 
therefore, their dysfunction usually leads to plaque rupture[111]. eLDL has been found in atherosclerotic 
lesions and aortic valve sclerosis[16,112,113].

In general, eLDL is involved in the pathological processes that characterize early and advanced 
atherosclerotic lesions. Pharmacological reduction of SMase and PLA2 activity would decrease eLDL 
formation[114,115]. Moreover, using substances inhibiting macropinocytosis and eLDL aggregation is a 
promising approach for atherosclerosis treatment[16,116]. However, further research is needed on the many 
mechanisms of eLDL formation and their effects due to the ubiquitous presence of various hydrolytic 
enzymes in atherosclerotic lesions.

DESIALYLATED LDL
The desialylation modification hypothesis
Chazov et al. first reported serum atherogenicity in patients with CHD in 1986[117]. The addition of serum 
from patients with CHD to a primary culture of human aortic intima subendothelial cells increased 
intracellular lipid accumulation, in contrast to serum from healthy patients. The separation of lipoproteins 
into classes made it possible to identify LDL as an atherogenic serum component of CHD patients[118,119]. 
Further study of lipoproteins showed that atherogenic LDL is desialylated. This atherogenic LDL had 
decreased sialic acid level (by 2-5 times) compared to LDL isolated from non-atherogenic plasma. 
Furthermore, native LDL from healthy donors became atherogenic after incubation with neuraminidase 
from Clostridium perfringens[9]. Subsequently, a subfraction of desialylated LDL was isolated from the 
atherogenic serum of CHD patients using lectin blotting with Ricinus communis[120,121]. Moreover, multi-
modified LDL is significantly different from native LDL; the densest subfractions of desialylated LDL caused 
intracellular lipid accumulation in cell culture[122]. Finally, the trans-sialidase, which transfers sialic acids 
from protein donors to other acceptors, has been isolated from human atherogenic serum[123]. The discovery 
of this enzyme and the results of subsequent studies led to conclusions about the possible effect of trans-
sialidase on the initiation and development of atherosclerosis[124].

Despite these facts, there is a limited understanding of the nature of the desialylation process and its role in 
atherosclerosis. Further research on enzymatic and non-enzymatic desialylation mechanisms is required.



Page 9 of Kashirskikh et al. Vessel Plus 2023;7:3 https://dx.doi.org/10.20517/2574-1209.2022.35 22

Sialylation
Sialylation is the glycosylation process of biological molecules such as glycolipids and glycoproteins. 
Sialylation plays a significant role in many biological processes, including embryonic development, 
reprogramming of somatic cells, immune responses, and oncogenesis[125-127]. It is essential to note that 
sialylation is carried out by sialyltransferase, which attaches activated cytidine-5'-monophosphate-sialic acid 
to the end of the O-glycan of serine or threonine or the terminal N-glycan of asparagine. Sialic acids are 
usually attached either to galactose or N-acetylgalactosamine residues of glycans at the α-2,3- or α-2,6-bond 
position or to other sialic acid moieties via α-2,8- or α-2,9 bonds.

Mechanism of LDL desialylation
Sialic acids can be cleaved from gangliosides by specific enzymes such as sialidases and without them. This 
process is called desialylation [Figure 4]. Desialylation and sialylation are essential parts of sialic acid 
metabolism[128]. However, desialylation is often associated with pathological processes such as sporadic prion 
disease, infectious diseases, and atherosclerosis[123,129,130]. Desialylation affects endothelial permeability in 
atherosclerosis. A recent study reported visualization of changes in the vascular endothelium after exposure 
to neuraminidase[131]. The enzyme cleaved the sialic acid residues, which reduced the depth of the 
endothelial glycocalyx and increased vascular permeability.

Desialylation may occur non-enzymatically. The formation of ROS can likely promote the cleavage of 
terminal sialic acids of glycans[132]. Previously, it was assumed that free radical processes are involved in LDL 
desialylation. Oxidation of LDL with copper ions led to a dose-dependent decrease in sialic acid content 
in vitro[133]. In another study, the sialic acid content on the cell surface decreased during the addition of 
hypoxanthine and xanthine oxidase (HX/XO) to HL60 cell culture[132]. This finding was explained by 
HX/XO causing the generation of a superoxide anion in the presence of metal ions of variable valence and 
hydrogen peroxide leading to the elimination of terminal sialic acid from glycosides. The cleavage of sialic 
acid from 4MU-Neu5Ac led to induced fluorescence. It is also essential to note that Neu5Ac exhibits 
antioxidant activity by neutralizing H2O2 with the formation of its oxidation product, 4-(acetylamino)-2,
4-dideoxy-D-glycero-D-galacto-octonic acid[134].

Another example of the involvement of ROS in desialylation is a study on Long-Evans Cinnamon (LEC) 
rats, which are used to model hepatitis[135]. The inbred mutant strain serum samples were characterized by 
an increased level of hydrogen peroxide, copper, and LPO. In addition, serum glycolipids from LEC rats 
were desialylated compared to wild-type rats. During the exposure of healthy rats to copper ions and 
hydrogen peroxide, a decrease in trisialic acid chains and an increase in bi- and asialic acid chains of 
transferrin glycans were noted, indicating desialylation[135]. Another study using rabbits demonstrated 
increased levels of thiobarbituric acid reactive substances as atherosclerosis progressed, suggesting an 
increase in LPO[136]. Increased serum sialidase activity of serum and decreased sialic acid levels in the LDL 
fraction were also revealed in rabbits. Despite the evidence mentioned above about the mechanism of ROS-
induced desialylation, further study is required.

Enzymatic desialylation is the most studied process of the cleavage of sialic acids from glycolipids and 
glycoproteins[137]. Sialidases (also known as neuraminidases) are a large group of enzymes. Hydrolytic 
sialidases and trans-sialidases belong to the same class of exo-alpha-sialidases (EC 3.2.1.18). Mammals have 
four neuraminidases: lysosomal (NEU1), cytosolic (NEU2), plasmatic (NEU3), and mitochondrial 
(NEU4)[138-141]. Hydrolytic sialidases can cleave α2-3-, α2-6-, and α2-8 terminal sialic acids from a wide range 
of biomolecules. Several studies demonstrated the role of endogenous neuraminidase in atherogenesis. 
Hypomorphic gene expression of Neu1 was shown to reduce inflammatory cell infiltration into vascular 
intima and decrease serum LDL cholesterol levels and atherosclerotic lesions size[142]. In another study, 
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Figure 4. Desialylation of native LDL.

Neu1-deficient and Neu4-knockout Apoe-/- mice markedly slowed the development of atherosclerotic 
lesions compared to control Apoe-/- mice[143]. The use of endogenous sialidase inhibitors contributed to a 
decrease in the size of the atherosclerotic lesions in Apoe-/- mice[143]. These findings suggest that sialidase 
inhibition is a promising approach for atherosclerosis treatment[144].

The trans-sialidases may be responsible for LDL desialylation. Trans-sialidase, including protozoan trans-
sialidase, is found in the blood of CHD patients, where it interacts with α2-3-terminal sialic acids, cleaving 
and transferring them to other glycolipids and glycoproteins[145,146]. As a sialic acid donor, this enzyme can 
use plasma lipoproteins, gangliosides, plasma protein glycoconjugates, and erythrocyte glycoconjugates. 
Erythrocyte glycoconjugates, plasma lipoproteins, and plasma proteins can be used as sialic acid acceptors. 
Sialic acid can be attached to terminal galactose, acetylgalactosamine, or other sialic acids at the α-2.3 or 
α-2.6 position and less commonly at α-2.8 position[145]. Native LDL incubated with trans-sialidase acquires 
atherogenic properties, subsequently causing intracellular cholesterol accumulation in human aortic intima 
SMCs[123].

The possible causes of atherogenic LDL modification could be viral and bacterial sialidases. A significant 
association has been found between influenza virus infection and an increased risk of acute myocardial 
infarction[147]. Furthermore, the influenza virus has been shown to aggravate OxLDL-induced endothelial 
cell apoptosis[148]. A seasonal pattern of the viral sialidase activity in the blood was also found, which might 
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be an additional atherogenic factor[149]. Modeling of high sialidase activity in the blood by injection of Vibrio 
cholerae neuraminidase contributed to a reduced LDL sialic acid content in wild-type mice[8].

There are other enzymes with sialidase activity. The soluble form of the Klotho protein acts as a sialidase, 
removing terminal α-2,6-sialic acids from the N-glycans of the TRPV5 and ROMK1 ion channel protein 
chain[150,151]. This enzyme regulates cell surface glycoproteins’activity, affecting the balance of Ca2+ and K+ 
ions. It is essential to note that the Klotho protein has anti-atherogenic effects. This enzyme attenuates 
OxLDL-induced oxidative stress by activating the PI3K/Akt/eNOS pathway and downregulating LOX-1 
expression[152]. There is also evidence of catalytic sialidase activity of abzymes. Abzymes desialylate 
molecules such as glycoproteins, gangliosides, and erythrocyte membranes, likely facilitating the clearance 
of apoptotic cells[153].

Effects of desialylated LDL
Desialylation is a critical atherogenic modification of LDL in the early stages of atherosclerosis[8]. An inverse 
correlation was found between LDL sialic acid content and lipoprotein atherogenicity[20]. Moreover, there is 
evidence that CHD patients have increased levels of asialylated LDLs characterized by the absence of 
terminal sialic acids on the glycans of protein chains[154]. LDL changes its density, particle size, lipid 
composition, and charge after desialylation[20]. DesLDL is subjected to another atherogenic modification of 
LDL, such as oxidation[20]. Consequently, LDL is considered multi-modified LDL, characterized by reduced 
sialic acid content, changes in lipid composition, reduced particle size, and acquisition of a negative 
charge[13,20,155]. There is an assumption that the desLDL subfraction may be electronegative LDL[121].

Furthermore, desLDL tends to aggregate, increasing its atherogenicity[12,156]. Active uptake of multi-modified 
LDL by arterial cells has been demonstrated by the addition of desLDL to aortic intima SMCs[157]. This 
phenomenon has been confirmed in experiments on mouse models. Injection of fluorescence-labeled 
desLDL to Apoe-/- mice resulted in active lipoprotein uptake by arterial cells[143]. In addition, desLDL can 
cause intracellular lipid accumulation[158]. This finding was confirmed in a study using cultured human 
aortic intima cells due to the increased uptake and low rate of intracellular degradation of desLDL. It has 
also been shown that uptake of desLDL by macrophages can be mediated by a lectin receptor such as 
asialoglycoprotein receptor 1[143,159]. Increased proliferative activity and the synthesis of fibrous extracellular 
matrix components were found during intracellular lipid accumulation induced by desLDL[160]. These events 
are the first evidence of cellular aspects of atherosclerosis.

The role of LDL desialylation in atherogenesis is undeniable; nevertheless, further study of the nature of 
sialidase activity in humans is required. Further studies will allow the modeling of LDL desialylation in 
animals.

GLYCATED LDL
Mechanism of glycation and effects of gLDL
Glycation is an atherogenic LDL modification. The cause of gLDL production is glycation, i.e., non-
enzymatic glycosylation in hyperglycemia[161]. Non-enzymatic glycosylation increases the total negative 
charge of modified LDL[162]. The carbonyl groups of glucose interact with the free amino groups of ApoB-
100, resulting in the formation of a Schiff base, which is converted to Amadori products via rearrangement, 
which in turn are converted to advanced glycation end products (AGEs) [Figure 5]. The glycation process is 
revealed in patients with diabetes mellitus and metabolic syndrome[163]. Incubation of native LDL with 
glucose resulted in dose-dependent glycation of LDL and increased LPO in vitro[164]. Glycation of the free 
amino groups of ApoB-100 lysine occurs in the LDLR binding domain. This event leads to the decreased 
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Figure 5. Glycation of native LDL.

affinity of LDL to their receptor and an increased average plasma lifetime[165,166]; gLDL binds to human 
macrophage scavenger receptors, which are hypothesized to promote the intracellular accumulation of CE 
and foam cell formation in atherosclerotic lesions[17].

The high degree of LDL glycation contributes to LDL oxidation, leading to the formation of highly oxidized 
LDL and increasing LDL atherogenicity[19,167]. Particles such as small dense LDL are most susceptible to 
glycation, even in non-diabetic patients[164,168,169]. A subfraction of in vivo modified atherogenic LDL was 
found in the blood of patients with diabetes mellitus[17]; this was a subfraction of small dense electronegative 
desialylated and glycated LDL that induced intracellular lipid accumulation in cell culture. It is critical to 
note that the synergistic effect of several LDL modifications (particularly glycation and desialylation) on the 
enhancement of intracellular lipid accumulation has been demonstrated in an experiment with cultured 
aortic SMCs obtained from healthy donors[170,171].

Non-enzymatic glycation also produces AGEs from the interaction of aldehyde groups of the reducing 
sugars that interact with proteins, lipids, and nucleic acids[172]. In addition to diabetes, another risk factor for 
CVD and myocardial infarction is smoking[173-175]. Elevated levels of ApoB-100 and albumin AGEs have been 
found in the blood of smokers[176]. The nicotine metabolite nornicotine explains this in the blood, which 
causes aberrant protein glycation[177]. The process of formation of AGE-protein adducts is irreversible. AGE-
protein adducts are characterized by high stability[178]. In addition, the interaction of AGE with its receptor 
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leads to increased expression, oxidative stress, and the release of pro-inflammatory agents[179]. AGE 
formation induces atherosclerosis through the proliferation of vascular SMCs, increased expression of pro-
atherogenic mediators, and vascular remodeling[180].

These findings suggest the critical role of classical risk factors for atherosclerosis, such as smoking and 
diabetes mellitus[181-183].

CARBAMYLATED LDL
Mechanism of LDL carbamylation
The final post-translational modification of LDL is carbamylation. The carbamoyl moiety of cyanate or 
thiocyanate non-enzymatically binds to the free functional amino groups of ApoB-100 LDL to form 
carbamylated LDL (cLDL) [Figure 6][184]. This modification changes proteins’ structural and functional 
properties, causing partial or complete loss of functionality, disruption of protein-protein interactions, and 
binding to receptors[185]. Carbamylation of LDL increases the particle's electrophoretic mobility because the 
modified lysine’s positive charge is neutralized[186].

Patients with chronic kidney disease (CKD) and smokers were found to have an increased risk of 
developing atherosclerosis[187,188]. The enhanced process of carbamylation explains these patterns in patients 
due to increased concentrations of urea and thiocyanate. Active urea breakdown results in elevated blood 
cyanate levels, followed by carbamylation of proteins in CKD patients[189]. This finding was confirmed in a 
study using oral administration of urea to Apoe-/-mice leading to an eight-fold increase in blood cLDL levels 
and more severe progression of atherosclerosis than in control mice[190]. Due to myeloperoxidase, there is an 
alternative mechanism in which thiocyanate is oxidized in the presence of H2O2 to cyanate in smokers[191,192].

Effects of carbamylated LDL
The atherogenic properties of cLDL are well-known; cLDL is prone to oxidation and has high cytotoxicity 
for endothelial cells in vitro[18]. Elevated levels of the soluble form of the lectin-like oxidized low-density 
lipoprotein receptor-1 and cLDL significantly increase the risk of CHD in patients with metabolic 
syndrome[193]. Moreover, cLDL activates the LOX-1 receptor, promoting a prothrombotic effect in vascular 
cells and platelets in mice[194]. Endothelial cell injury occurs due to the induction of autophagy proteins such 
as LC3-I, beclin-1, and Atg5 in response to cLDL[195]. In another study, cLDL promoted monocyte 
recruitment, adhesion to endothelial cells, and the proliferation of SMCs in coronary arteries[196,197]. The 
atherogenic effect of cLDL has been demonstrated in Apoe-/-mice with surgically-induced CKD. Uremic 
mice with high cLDL levels had more atherosclerotic lesions than control animals[190]. In addition, cLDL has 
reduced clearance from the blood, which may also lead to atherosclerosis progression[198].

There is robust evidence linking elevated cLDL levels to progressive atherosclerosis in humans and animal 
models. Nevertheless, the direct role of carbamylated LDL in the mechanism of atherogenesis remains to be 
established.

CONCLUSION
Native LDL is subjected to many modifications in pathological processes that increase lipoprotein 
atherogenicity. It is most likely that several types of LDL modifications are involved in atherogenesis. 
Further studies of atherogenesis in animal models will allow the use of modified LDL as a biomarker for 
diagnosing the subclinical form of atherosclerosis in humans. Likely, promising therapeutic strategies 
affecting atherogenesis will effectively treat atherosclerosis. Inhibitors of sialidases, sphingomyelinase, 
phospholipase A2, specific antioxidants, and substances that prevent the aggregation and uptake of 
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Figure 6. Carbamylation of native LDL.

modified LDL by cells can be used as probable therapeutic approaches.

It is also critical to focus on the study of risk factors for atherosclerosis, including hypertension, diabetes 
mellitus, smoking, and obesity, which contribute to atherogenic modifications of native LDL. Studies of the 
association of risk factors with atherogenesis will reveal reliable biomarkers and improve the prevention of 
CVDs.
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