Supplementary Materials

Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogendoped carbon hollow nanoflowers for supercapacitor

Qiao Luo, Congcong Lu, Lingran Liu, Maiyong Zhu

Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.

Correspondence to: Dr. Maiyong Zhu, Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China. E-mail: maiyongzhu@ujs.edu.cn

Figure S1. XRD patterns of N_0C_3 -TEOA, N_1C_2 -TEOA, N_1C_1 -TEOA, N_2C_1 -TEOA, N_3C_0 -TEOA.

Figure S2. SEM images of (A, B) N_0C_3 -TEOA, (C, D) N_1C_2 -TEOA, (E, F) N_1C_1 -TEOA, (G, H) N_2C_1 -TEOA, (I, J) N_3C_0 -TEOA.

Figure S3. N₂ adsorption-desorption isotherms of (A) N₀C₃-TEOA, (B) N₁C₁-TEOA,
(C) N₂C₁-TEOA, (D) N₃C₀-TEOA (Inset: Corresponding pore diameter distribution patterns).

Figure S4. FTIR spectrum of Ni₃N-Co₂N_{0.67}/NC, N₀C₃-TEOA, N₁C₂-TEOA, N₁C₁-TEOA, N₂C₁-TEOA and N₃C₀-TEOA.

Figure S5. XPS full spectrum of Ni₃N-Co₂N_{0.67}/NC.

Figure S6. Capacitive- and diffusive-controlled contributions of the Ni_3N -Co₂N_{0.67}/NC electrode by CV curves at (A) 10 mv s⁻¹, (B) 20 mV s⁻¹, (C) 30 mV s⁻¹ (D) 40 mV s⁻¹, (E) 50 mV s⁻¹.

Figure S7. (A) CV curves of active carbon at different sweep rates. (B) GCD profiles of active carbon at different current densities.

Table S1. Comparison of specific capacitance of Ni_3N -Co₂ $N_{0.67}/NC$ with other similar materials reported earlier.

Materials	Electrolyte	Potential window (V)	Current Density	Specific capacitance (F g ⁻¹)	Refs.
Ni ₃ N-Co ₂ N _{0.67} /NC	1 M KOH	0.5	1 A g ⁻¹	1582	This work
Ni-Co-N/GP	3 М КОН	0.5	4 A g ⁻¹	960	[1]
Ni-CoN@NC	1 M KOH	0.6	1 A g ⁻¹	993	[2]
Ni-doped Co-Co ₂ N	1 M KOH	0.5	2 mA/cm^2	181	[3]
B-Co ₄ N-20/NF	ЗМ КОН	0.5	1 A g ⁻¹	489	[4]
Co ₄ N@LOC/CC	1 M KOH	0.45	1 mA/cm^2	613.4	[5]
Co ₃ N	6 M KOH	0.43	$0.5 \mathrm{A g^{-1}}$	112.3	[6]
Co ₃ O ₄ @Ni-Co LDH	2 M KOH	0.55	$0.5 \mathrm{A g^{-1}}$	1318	[7]
NCH/EMCTs-36	6 M KOH	0.4	$0.5 \mathrm{A g^{-1}}$	801	[8]
Co(OH) ₂ /Ni	2 M KOH	0.4	1 A g ⁻¹	1310	[9]
Ni-Co LDH	1 M KOH	0.5	1 A g ⁻¹	1530	[10]
Ni/Co-MOF/rGO	1 M KOH	0.4	1 A g ⁻¹	1162	[11]
3D Ni–Co LDH/NiNw	6 M KOH	0.55	0.125 A g ⁻¹	466.6	[12]

References

 Liu F, Zeng L, Chen Y, Zhang R, Yang R, et al. Ni-Co-N hybrid porous nanosheets on graphene paper for flexible and editable asymmetric all-solid-state supercapacitors. *Nano Energy* 2019;61:18-26. DOI: 10.1016/j.nanoen.2019.04.003
 Zhang J, Chen J, Luo Y, Chen Y, Li Z, et al. MOFs-Assisted Synthesis of Hierarchical Porous Nickel–Cobalt Nitride Heterostructure for Oxygen Reduction

Reaction and Supercapacitor. *ACS Sustainable Chem. Eng.* 2020;8:382-92. DOI: 10.1021/acssuschemeng.9b05655

 Liu X, Zang W, Guan C, Zhang L, Qian Y, et al. Ni-Doped Cobalt–Cobalt Nitride Heterostructure Arrays for High-Power Supercapacitors. *ACS Energy Lett*.
 2018;3:2462-9. DOI: 10.1021/acsenergylett.8b01393

 Wang Z, Qu G, Wang C, Zhang X, Xiang G, et al. Modified Co₄N by B-doping for high-performance hybrid supercapacitors. *Nanoscale* 2020;12:18400-8. DOI: 10.1039/d0nr04043f

5. Cao B, Liu B, Xi Z, Cheng Y, Xu X, et al. Rational Design of Porous Nanowall Arrays of Ultrafine Co₄N Nanoparticles Confined in a La₂O₂CN₂ Matrix on Carbon Cloth for a High-Performing Supercapacitor Electrode. *ACS Appl. Mater. Interfaces* 2022;14:47517–47528. DOI: 202210.1021/acsami.2c09377

6. Gao J-F, Zhang W-B, Zhao Z-Y, Kong L-B. Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co₃N. *Sustainable Energy Fuels* 2018;2:1178-88. DOI: 10.1039/c8se00009c

7. Han D, Zhao Y, Shen Y, Wei Y, Mao L, et al. Co₃O₄ nanowire@ultrathin Ni-Co layered double hydroxide core-shell arrays with vertical transfer channel for highperformance supercapacitor. *J. Electroanal. Chem.* 2020;859:113887. DOI:

10.1016/j.jelechem.2020.113887

8. Hu X, Chen R, Wu Q, Li J. Flower-like Ni-Co hydroxides combined with mascroporous carbon tubes derived from eggplant as electrodes for supercapacitor application. *Ionics* 2021;27:429-36. DOI: 10.1007/s11581-020-03806-z

9. Pan GX, Xia X, Cao F, Tang PS, Chen HF. Porous Co(OH)₂/Ni composite

nanoflake array for high performance supercapacitors. *Electrochim. Acta* 2012;63:335-40. DOI: 10.1016/j.electacta.2011.12.117

 Wang P, Li Y, Li S, Liao X, Sun S. Water-promoted zeolitic imidazolate framework-67 transformation to Ni–Co layered double hydroxide hollow microsphere for supercapacitor electrode material. *J. Mater. Sci.: Mater. Electron.* 2017;28:9221-7. DOI: 10.1007/s10854-017-6656-5

11. Kumaraguru S, Yesuraj J, Mohan S. Reduced graphene oxide-wrapped micro-rod like Ni/Co organic-inorganic hybrid nanocomposite as an electrode material for high-performance supercapacitor. *Composites, Part B* 2020;185:107767. DOI:

10.1016/j.compositesb.2020.107767

12. Wan HZ, Li L, Xu Y, Tan QY, Liu X, et al. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor. *Nanotechnology* 2018;29. DOI: 10.1088/1361-6528/aab129