Supporting Information

Control of exposed crystal planes of CeO₂ enhances electrocatalytic nitrate reduction

Fei Wang^{1,2,#}, Dan Li^{1,#}, Jian Mao¹

¹College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.

²Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.

[#]Authors contributed equally to this work.

Correspondence to: Prof. Jian Mao, College of Materials Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, Sichuan, China. E-mail: maojian@scu.edu.cn; Prof. Fei Wang, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650093, Yunnan, China. E-mail: echo1994wf@foxmail.com

1. Determination of ammonia-N

The determination of ammonia-N was performed using a modified indophenol blue spectrophotometry method.¹ Initially, a specific volume of electrolyte solution was extracted from the cathodic electrolytic cell and diluted to 2 mL. Subsequently, 2 mL of a 1 M NaOH solution containing 5 wt% salicylic acid and 5 wt% sodium citrate was added to the diluted solution. Additionally, 50 μ L of a 5.5 wt% NaClO solution and 0.2 mL of a 1.0 wt% C₅FeN₆Na₂O solution were introduced. The mixture was thoroughly shaken and allowed to stand at room temperature for 2 hours to undergo the necessary reactions. Following the reaction period, the absorption spectrum of the resulting mixture was measured using a UV-visible spectrophotometer within the wavelength range of 550-750 nm. The concentration of ammonia-N was determined by analyzing the absorbance at 655 nm. To establish the calibration curve, a series of standard NH₄Cl solutions (0, 0.25, 0.5, 1.0, 1.5 and 2 mg L⁻¹) were prepared (NH₄Cl crystals were pre-dried at 105 °C for 2 hours to ensure the accuracy of the standard solutions), By plotting the concentration of the NH₄Cl solutions against their corresponding absorbance values at 655 nm, a calibration curve was generated. This curve could then be used to determine the concentration of ammonia-N in the tested samples based on their absorbance readings at 655 nm.

The ammonia yield rate was calculated by the Equation 1:2

$$Yield_{NH_3} = (c_{NH_4^+} \times V) / (M_{NH_4^+} \times t \times m)$$
(1)

The FE of NRA was calculated by the Equation 2:

$$FE_{NH_3} = (8F \times c_{NH_4^+} \times V) / (M_{NH_4^+} \times Q)$$
(2)

Where $c_{NH_4^+}$ is the concentration of NH_4^+ calculated via UV-vis, in mg L⁻¹; V is the volume of the electrolyte, t is the reaction time, in h; m is the load mass of the sample on the working electrode, mg; F is Faraday's constant, 96485 C mol⁻¹; Q is the total charge passing through the working electrode.

2. Calculation details

The DFT calculations were carried out utilizing the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) function within the CASTEP code of Materials Studio 2020 (Accelrys Software Inc., U.S.A.), and the plane-wave expansion was employed with a kinetic energy cutoff set to 500 eV, a k-point mesh of $3\times3\times1$ was used.³⁻⁵ The CeO₂ surface model was constructed using a 2×2 supercell, with a vacuum layer thickness set to 15Å.⁶ The total energy, force and displacement convergence was set to 1×10^{-5} eV/atom, 0.03 eV Å⁻¹, and 0.001 Å⁻¹ respectively.⁷ And the chemical

reaction considered can be summarized with the reaction equations below.⁸⁻¹⁰

$$* + \mathrm{NO}_3^- \to * \mathrm{NO}_3^- + e^- \tag{3}$$

$$*NO_3^- + 2H^+ + 2e^- \rightarrow *NO_2 + H_2O$$
 (4)

$$*NO_2 + 2H^+ + 2e^- \rightarrow *NO + H_2O$$
 (5)

$$*NO + 2H^+ + 2e^- \rightarrow N + H_2O \tag{6}$$

$$*N + H^+ + e^- \to *NH \tag{7}$$

$$* NO + 2H + 2e^{-} \rightarrow * NH + H_{2}O$$

$$* N + H^{+} + e^{-} \rightarrow * NH$$

$$* NH + H^{+} + e^{-} \rightarrow * NH_{2}$$

$$* NH_{2} + H^{+} + e^{-} \rightarrow * NH_{3}$$

$$(9)$$

$$*NH_2 + H^+ + e^- \rightarrow *NH_3 \tag{9}$$

$$* NH_3 \to NH_3 + * \tag{10}$$

Where * represents the active site, and the change in free energy of the reaction can be obtained from the following equation:

$$E_{ad} = E_t - E_s - E_m \tag{11}$$

$$\Delta G = E_{ad} + \Delta E_{ZPE} - T\Delta S \tag{12}$$

where E_{ad} is the adsorption energy, E_t is the total energy of the adsorbate-slab system, and E_s is the energy of the clean slab, and E_m is the energy of the isolated adsorbate. ΔE_{ZPE} and $T\Delta S$ represent zeropoint energy and entropy, respectively. The zero-point energy and entropy of the free molecule and adsorbate are calculated using vibrational frequencies.

Figure S1. (a) LSV curves of three catalysts in a 0.5 M Na₂SO₄ electrolyte, and (b) the corresponding Tafel slope.

Figure S2. UV-Vis absorption spectra of various NH₄⁺ concentrations.

Figure S3. Chronoamperometry curves of CeO₂-CTAB0.5 in a 0.5 M Na₂SO₄ electrolyte with 0.01 M NO_3^- .

Figure S4. Chronoamperometry curves of CeO₂-CTAB1.0 in a 0.5 M Na₂SO₄ electrolyte with 0.01 M NO_3^- .

Figure S5. Chronoamperometry curves of CeO₂-CTAB1.0 in a 0.5 M Na₂SO₄ electrolyte with 0.01 M NO $_{3}^{-}$.

Figure S6. (a) Chronoamperometry curves and (b) Yield_{NH3} of various catalysts in electrolytes with and without NO_3^- .

Figure S7. CV curves of (a) CeO₂-CTAB0.5, (b) CeO₂-CTAB1.0 and (c) CeO₂-CTAB2.0 at various scanning rate, and (d) corresponding fitting curves.

Note: The specific capacitance of CeO₂-CTAB0.5, CeO₂-CTAB1.0 and CeO₂-CTAB2.0 are fitted to be 0.07, 0.13 and 0.09 mF cm⁻² respectively. The specific capacitance for a flat surface is generally found to be in the range of 20-60 μ F cm⁻². In the following calculations of electrochemical active surface area we assume 40 μ F cm⁻². Therefore, we calculated the electrochemical active area (ECSA) of each catalyst as follows:

$$A_{ECSA}^{\text{CeO2}-\text{CTAB0.5}} = \frac{0.07 \ mF^{-2}}{40 \ uF \ cm^{-2} \ per \ cm_{ECSA}^{2}} = 1.75 \ cm_{ECSA}^{2}$$
$$A_{ECSA}^{\text{CeO2}-\text{CTAB1.0}} = \frac{0.13 \ mF^{-2}}{40 \ uF \ cm^{-2} \ per \ cm_{ECSA}^{2}} = 3.25 \ cm_{ECSA}^{2}$$
$$A_{ECSA}^{\text{CeO2}-\text{CTAB2.0}} = \frac{0.09 \ mF^{-2}}{40 \ uF \ cm^{-2} \ per \ cm_{ECSA}^{2}} = 2.25 \ cm_{ECSA}^{2}$$

Figure S8. Long-term stability test of CeO2-CTAB2.0.

Figure S9. (a) XPS Ce 3d, (b) O 1s and (c) EPR spectra of CeO2-CTAB2.0 at before and after testing.

Figure S10. Atomic structure of CeO₂.

Figure S11. Atomic structure of CeO₂ (111), CeO₂ (200) and CeO₂ (220) slab models.

Figure S12. The optimized configurations of intermediates and corresponding free energy change involved in NO_3^- reduction on CeO₂ (200) surface.

Figure S13. The optimized configurations of intermediates and corresponding free energy change involved in NO_3^- reduction on CeO₂ (220) surface.

References

[1] Wang Y, Zhang L, Niu Y, et al. Boosting NH₃ production from nitrate electroreduction via electronic structure engineering of Fe₃C nanoflakes. Green Chemistry 2021,23:7594-608.

[2] Xie H, Geng Q, Li X, et al. Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N_2 conversion to NH_3 under ambient conditions. Chemical Communications 2019,55:10717-20.

[3] Gao E, Feng W, Jin Q, Han L, He Y. Exploring the effects of potassium-doping on the reactive oxygen species of CeO₂ (110) for formaldehyde catalytic oxidation: A DFT study. Surface Science 2024,740:122415.
[4] Vanpoucke D, Bultinck P, Cottenier S, Van Speybroeck V, Van Driessche I. Aliovalent doping of CeO₂: DFT study of oxidation state and vacancy effects. Journal of Materials Chemistry A 2014,2:13723-37.

[5] Castleton CW, Lee A, Kullgren J. Benchmarking density functional theory functionals for polarons in

oxides: properties of CeO₂. The Journal of Physical Chemistry C 2019,123:5164-75.

[6] Shi S, Tang Y, Ouyang C, et al. O-vacancy and surface on CeO₂: a first-principles study. Journal of Physics Chemistry of Solids 2010,71:788-96.

[7] Chen H, Huang H, Li H, et al. Self-Supporting Co/CeO₂ heterostructures for ampere-level current density alkaline water electrolysis. Inorganic Chemistry 2023,62:3297-304.

[8] Zhang Y, Chen X, Wang W, Yin L, Crittenden J. Electrocatalytic nitrate reduction to ammonia on defective Au₁Cu (111) single-atom alloys. Applied Catalysis B-Environmental 2022,310:121346.

[9] Shen Z, Yan J, Wang M, et al. Cu/Cu^+ synergetic effect in $Cu_2O/Cu/CF$ electrocatalysts for efficient nitrate reduction to ammonia. ACS Sustainable Chemistry & Engineering 2023,11:9433-41.

[10] Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angewandte Chemie-International Edition 2020,59:5350-4.