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1. Determination of ammonia-N 

The determination of ammonia-N was performed using a modified indophenol blue spectrophotometry 

method.1 Initially, a specific volume of electrolyte solution was extracted from the cathodic electrolytic 

cell and diluted to 2 mL. Subsequently, 2 mL of a 1 M NaOH solution containing 5 wt% salicylic acid 

and 5 wt% sodium citrate was added to the diluted solution. Additionally, 50 μL of a 5.5 wt% NaClO 

solution and 0.2 mL of a 1.0 wt% C5FeN6Na2O solution were introduced. The mixture was thoroughly 

shaken and allowed to stand at room temperature for 2 hours to undergo the necessary reactions. 

Following the reaction period, the absorption spectrum of the resulting mixture was measured using a 

UV-visible spectrophotometer within the wavelength range of 550-750 nm. The concentration of 

ammonia-N was determined by analyzing the absorbance at 655 nm. To establish the calibration curve, 

a series of standard NH4Cl solutions (0, 0.25, 0.5, 1.0, 1.5 and 2 mg L-1) were prepared (NH4Cl crystals 

were pre-dried at 105 °C for 2 hours to ensure the accuracy of the standard solutions), By plotting the 

concentration of the NH4Cl solutions against their corresponding absorbance values at 655 nm, a 

calibration curve was generated. This curve could then be used to determine the concentration of 

ammonia-N in the tested samples based on their absorbance readings at 655 nm. 

The ammonia yield rate was calculated by the Equation 1:2 

 YieldNH3
 =  (cNH4

+  ×  V) / (MNH4
+  × t ×  m) (1) 

The FE of NRA was calculated by the Equation 2: 

 FENH3
 =  (8F × cNH4

+  ×  V) / (MNH4
+  × Q) (2) 

Where cNH4
+  is the concentration of NH4

+
  calculated via UV-vis, in mg L-1; V is the volume of the 

electrolyte, t is the reaction time, in h; m is the load mass of the sample on the working electrode, mg; 

F is Faraday’s constant, 96485 C mol-1; Q is the total charge passing through the working electrode. 

2. Calculation details 

The DFT calculations were carried out utilizing the Perdew-Burke-Ernzerhof (PBE) generalized 

gradient approximation (GGA) function within the CASTEP code of Materials Studio 2020 (Accelrys 

Software Inc., U.S.A.), and the plane-wave expansion was employed with a kinetic energy cutoff set to 

500 eV, a k-point mesh of 3×3×1 was used.3-5 The CeO2 surface model was constructed using a 2×2 

supercell, with a vacuum layer thickness set to 15Å.6 The total energy, force and displacement 

convergence was set to 1×10-5 eV/atom, 0.03 eV Å-1, and 0.001 Å-1 respectively.7 And the chemical 



reaction considered can be summarized with the reaction equations below.8-10  

 ∗ + NO3
− →∗ NO3

−+e- (3) 

 ∗ 𝑁𝑂3
− + 2𝐻+ + 2𝑒− →∗ 𝑁𝑂2+𝐻2𝑂 (4) 

 ∗ 𝑁𝑂2 + 2𝐻+ + 2𝑒− →∗ 𝑁𝑂+𝐻2𝑂 (5) 

 ∗ 𝑁𝑂 + 2𝐻+ + 2𝑒− →∗ 𝑁+𝐻2𝑂 (6) 

 ∗ 𝑁 + 𝐻+ + 𝑒− →∗ 𝑁𝐻 (7) 

 ∗ 𝑁𝐻 + 𝐻+ + 𝑒− →∗ 𝑁𝐻2 (8) 

 ∗ 𝑁𝐻2 + 𝐻+ + 𝑒− →∗ 𝑁𝐻3 (9) 

 ∗ 𝑁𝐻3 → 𝑁𝐻3 +∗ (10) 

Where * represents the active site, and the change in free energy of the reaction can be obtained from 

the following equation: 

 Ead = Et - Es – Em (11) 

 G = Ead +EZPE – TS (12) 

where Ead is the adsorption energy, Et is the total energy of the adsorbate-slab system, and Es is the 

energy of the clean slab, and Em is the energy of the isolated adsorbate. EZPE and TS represent zero-

point energy and entropy, respectively. The zero-point energy and entropy of the free molecule and 

adsorbate are calculated using vibrational frequencies. 

 

 

  



 

Figure S1. (a) LSV curves of three catalysts in a 0.5 M Na2SO4 electrolyte, and (b) the 

corresponding Tafel slope. 

 

 

 

Figure S2. UV-Vis absorption spectra of various NH4
+ concentrations. 

 



 

Figure S3. Chronoamperometry curves of CeO2-CTAB0.5 in a 0.5 M Na2SO4 electrolyte 

with 0.01 M NO3
−. 

 

 

Figure S4. Chronoamperometry curves of CeO2-CTAB1.0 in a 0.5 M Na2SO4 electrolyte 

with 0.01 M NO3
−. 

 



 

Figure S5. Chronoamperometry curves of CeO2-CTAB1.0 in a 0.5 M Na2SO4 electrolyte 

with 0.01 M NO3
−. 

 

 

Figure S6. (a) Chronoamperometry curves and (b) YieldNH3 of various catalysts in 

electrolytes with and without NO3
−. 

 



 
Figure S7. CV curves of (a) CeO2-CTAB0.5, (b) CeO2-CTAB1.0 and (c) CeO2-CTAB2.0 

at various scanning rate, and (d) corresponding fitting curves. 

 

Note: The specific capacitance of CeO2-CTAB0.5, CeO2-CTAB1.0 and CeO2-CTAB2.0 are 

fitted to be 0.07, 0.13 and 0.09 mF cm-2 respectively. The specific capacitance for a flat 

surface is generally found to be in the range of 20-60 µF cm-2. In the following calculations 

of electrochemical active surface area we assume 40 µF cm-2. Therefore, we calculated the 

electrochemical active area (ECSA) of each catalyst as follows: 

𝐴𝐸𝐶𝑆𝐴
CeO2−CTAB0.5=

0.07 𝑚𝐹−2

40 𝑢𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 =1.75 𝑐𝑚𝐸𝐶𝑆𝐴

2  

𝐴𝐸𝐶𝑆𝐴
CeO2−CTAB1.0=

0.13 𝑚𝐹−2

40 𝑢𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 =3.25 𝑐𝑚𝐸𝐶𝑆𝐴

2  

𝐴𝐸𝐶𝑆𝐴
CeO2−CTAB2.0=

0.09 𝑚𝐹−2

40 𝑢𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 =2.25 𝑐𝑚𝐸𝐶𝑆𝐴

2  

 

 

 

 



 
Figure S8. Long-term stability test of CeO2-CTAB2.0. 

 

 

 
Figure S9. (a) XPS Ce 3d, (b) O 1s and (c) EPR spectra of CeO2-CTAB2.0 at before and 

after testing. 

 



 

Figure S10. Atomic structure of CeO2. 

 

Figure S11. Atomic structure of CeO2 (111), CeO2 (200) and CeO2 (220) slab models. 

 



 

Figure S12. The optimized configurations of intermediates and corresponding free energy 

change involved in NO3
− reduction on CeO2 (200) surface. 

 



 

Figure S13. The optimized configurations of intermediates and corresponding free energy 

change involved in NO3
− reduction on CeO2 (220) surface. 
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