## **Supplementary Materials**

Axial chlorine-induced asymmetric cobalt single-atom coordination fields for boosting oxygen reduction reaction

## Xi-Rong Jiang<sup>1</sup>, Guo-Dong Xie<sup>1</sup>, Jun-Hao Li<sup>1</sup>, Wen-Jie Huang<sup>1</sup>, Jun-Da Lu<sup>1</sup>, Pan Xie<sup>1</sup>, Yan Dong<sup>1</sup>, Wen-Da Ma<sup>1</sup>, Yi-Da Deng<sup>1,2</sup>, Xue-Rong Zheng<sup>1,2</sup>

<sup>1</sup>State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China. <sup>2</sup>School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.

**Correspondence to:** Prof. Wen-Jie Huang, Prof. Xue-Rong Zheng, and Jun-Da Lu, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, Hainan, China. E-mail: wj\_huang@hainanu.edu.cn; xrzh@hainanu.edu.cn; lujundaacc@163.com

## Supplementary figures



Supplementary Figure 1. SEM image of Co-ZIF-8 precursor.



**Supplementary Figure 2.** The fitting curves of the energy dispersive spectroscopy spectrum of Co-N<sub>4</sub>Cl-C catalyst.



Supplementary Figure 3. XRD patterns of Co-N<sub>4</sub>-C, Co-N<sub>4</sub>Cl-C and NC catalysts.



Supplementary Figure 4. Raman spectra of Co-N<sub>4</sub>-C and Co-N<sub>4</sub>Cl-C catalysts.



Supplementary Figure 5. Co 2*p* XPS spectra of Co-N<sub>4</sub>-C and Co-N<sub>4</sub>Cl-C catalysts.



**Supplementary Figure 6.** Extended X-ray absorption fine structure (EXAFS) fitting curves of the K-edge of Co-N<sub>4</sub>-C and Co-N<sub>4</sub>Cl-C catalysts at the *k*-space.



Supplementary Figure 7. Oxygen reduction reaction polarization curves of Co-N<sub>4</sub>-C, Co-N<sub>4</sub>Cl-C, Pt/C, and NC at a scan rate of 5 mV $\cdot$ s<sup>-1</sup> under a rotation speed of 1,600 rpm in N<sub>2</sub>-saturated 0.5 M NaCl electrolyte containing 1 M KOH.



**Supplementary Figure 8.** Photographic images of the open circuit voltage for (A) Co-N<sub>4</sub>Cl-C-, (B) Co-N<sub>4</sub>-C-, and (C) Pt/C-based SWZABs.

The Co-N<sub>4</sub>Cl-C-based seawater-based zinc-air battery (SWZAB) exhibits an opencircuit voltage of 1.460 V, surpassing that of SWZABs driven by Co-N<sub>4</sub>-C (1.345 V) and Pt/C (1.354 V). These values are in good agreement with the results measured using a workstation.



**Supplementary Figure 9.** Cycling performance of Co-N<sub>4</sub>Cl-C-, Co-N<sub>4</sub>-C- and Pt/C- based SWZABs at 10 mA·cm<sup>-2</sup>.

## Supplementary tables

| Characterization       | ICD MS (wt %) for 7n      | ICP-MS (wt.%)for |  |
|------------------------|---------------------------|------------------|--|
|                        | ICI -1415 (wt. 70)101 ZII | Со               |  |
| Co-N4-C                | 0.002                     | 1.27             |  |
| Co-N <sub>4</sub> Cl-C | 0.002                     | 1.44             |  |

**Supplementary Table 1.** Comparison of inductively coupled plasma OES spectrometer (ICP-MS) analysis for Co and Zn element in Co-N<sub>4</sub>-C and Co-N<sub>4</sub>Cl-C

Trace amounts of Zn in the ICP-MS analysis indicate that Zn is effectively removed in Co-N<sub>4</sub>-C and Co-N<sub>4</sub>Cl-C.

**Supplementary Table 2.** Structural parameters extracted from quantitative EXAFS curve-fitting of samples using the ARTEMIS module of IFEFFIT

| Sample                              | Path  | N       | <b>R</b> (Å)    | $\sigma^2 (10^{-3} \text{\AA}^2)$ | <b>ΔE</b> <sub>0</sub> (eV) | <b>R-factor</b> |
|-------------------------------------|-------|---------|-----------------|-----------------------------------|-----------------------------|-----------------|
| Co-N <sub>4</sub> Cl-C Co-N<br>Co-C | Co-N  | 3.6±0.5 | 2.03±0.01       | $1.58 \pm 0.04$                   | -2.552±0.7                  | 0.008           |
|                                     | Co-Cl | 0.9±0.2 | 2.26±0.01       | $5.40 \pm 0.06$                   |                             |                 |
| Co-N <sub>4</sub> -C                | Co-N  | 4.1±0.3 | $1.88 \pm 0.01$ | 9.84±0.04                         | -1.31±0.2                   | 0.008           |

[a] *N*, coordination number; [b] **R**, distance between absorber and backscatter atoms; [c]  $\sigma^2$ , Debye-Waller factor to account for both thermal and structural disorders; [d]  $\Delta E_0$ , inner potential correction; [e] **R-factor** (%) indicates the goodness of the fit.