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Abstract
Human milk (HM) is the gold standard for infant nutrition during the first months of life. Beyond its nutritional 
components, its complex bioactive composition includes microorganisms, their metabolites, and oligosaccharides, 
which also contribute to gut colonization and immune system maturation. There is growing evidence of the 
beneficial effects of bacteria present in HM. However, current research presents limited data on the presence and 
functions of other organisms. The potential biological impacts on maternal and infant health outcomes, the factors 
contributing to milk microbes’ variations, and the potential functions in the infant’s gut remain unclear. This review 
provides a global overview of milk microbiota, what the actual knowledge is, and what the gaps and challenges are 
for the next years.
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WHAT IS KNOWN ABOUT HM MICROBIOTA?
Human milk (HM) is the first food ingested by a newborn. It provides optimal nutrition during the first 
months of life, being the gold standard for infant nutrition. In terms of its composition, HM contains a 
unique and optimal combination of nutrients and bioactive components, including immunoglobulins and 
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cytokines, bioactive lipids, oligosaccharides, microRNAs, hormones, and microorganisms, among others. 
The concentrations of these substances vary among individuals, within the lactational stage, within a day, 
and between feeds. The concentrations are also determined by  diet, maternal genotype, gestational age, 
maternal health status, and the environment around the mother[1-6]. Thus, HM has a complex and unique 
composition that fulfills infants’ needs and supports their growth and development.

The complexity of HM and the factors that contribute to shaping its composition are essential aspects that 
need to be considered to expand the knowledge about HM. To date, most of the HM studies have focused 
on nutritional factors and on identifying the bacteria that may play a role in infant gut colonization[7-9]. 
However, there is significant interest in microbiota-related research, aiming to identify specific 
microorganisms, microbial molecules, and metabolites that contribute to various aspects of the host’s 
physiology and health. Technical, methodological, and biological issues need to be further addressed, and 
many fundamental questions about HM microbial ecosystems remain to be answered. Further research is 
required to determine whether specific bacteria, along with lifestyle, contribute to the maintenance of 
microbial equilibrium, as well as the potential functionality of milk microbes for infant health and host-
microbe interactions.

In this review, we aim to summarise the actual knowledge on HM microbiota, as well as provide a global 
perspective on the knowledge gaps and the limitations of milk microbiota studies.

HM MICROBIOTA ANALYSIS: PITFALLS AND LIMITATIONS IN TECHNICAL ASPECTS
There are specific limitations in studying HM microbiota including the higher intra- and inter-variability in 
microbial communities, driven by maternal, neonatal, and environmental factors. We also discuss the lack 
of information on viability and activity of the milk microbes, the problems associated with the management 
of low microbial biomass samples, the limited use of negative and positive controls, the lack of procedure 
standardization (differences in sampling, processing, DNA extraction, amplicon region, sequencing 
platform, etc.) and also, the heterogeneous study designs and lack of functional studies among others.

The viability of the milk microbes has been widely studied as the potential benefits have been associated 
with potential adhesion to the neonatal gut, immune stimulation, production of short-chain fatty acids, and 
other activities that require viable bacteria. Traditional microbiological techniques have provided a diverse 
range of cultivable bacteria in HM, including Staphylococcus, Streptococcus, and related Gram-positive 
genera, such as lactic acid bacteria and bifidobacteria, Rothia, and others. Overall, more than 200 bacterial 
species belonging to approximately 50 different genera have been isolated from HM[10], and the use of 
culturomic approaches is increasing these numbers rapidly[11]. Culture-independent techniques, specifically 
next-generation sequencing techniques, have greatly helped to increase the knowledge about the microbial 
ecosystem of HM, although the viability of those microbes cannot be tested. These analyses allow an 
extraordinary degree of detail in the analysis of microbial diversity; however, this approach has its 
limitations, such as PCR amplification biases[12], which may underestimate the number of Gram-negative 
bacteria. This amplification bias is well known in some groups of bacteria that are not easily amplified by 
universal primers, such as Bifidobacterium (containing high G + C content), which can make a difference in 
the gut microbiota of healthy infants[13]. Bifidobacterium and other bacteria are also difficult to lyse due to 
cell-wall composition; the use of enzymatic treatments and bead-beater increase the DNA efficiency, but 
this is not always performed. We cannot forget that there are several aspects that limit the interpretation of 
16S rRNA-derived results. The most important is the fact that its copy numbers per genome vary from 1 up 
to 15 or more copies[14,15]. Another important factor is the effect of 16S rRNA region choice on bacterial 
community metabarcoding results[16]. Although this all adds imprecision to the analyses, it is necessary to 
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work in an adequate way, as well as to explain that they are not quantitative or exact and work with the 
same hypervariable zone. On the other hand, although there are programs to solve these errors[17], there are 
manuscripts that do not advise the normalization of the number of copies of the 16S rRNA gene since it 
does not provide more reliable conclusions in metataxonomic studies[18]. What is interesting is knowing the 
best way to process the data to minimize these biases[13]. Finally, other limitations are inherent in the 
different or specific hypervariable regions of 16S rRNA targeted by sequencing[19].

High-throughput sequencing provides a powerful window into the structural and functional profiling of 
microbial communities, but it is unable to characterize only the viable (or active cells) portion of microbial 
communities at scale. To profit from the potential advantages of next-generation sequencing and include 
the viability issue, other techniques based on RNA (meta-transcriptomics, active cells), the use of viability 
kits (e.g., LIVE/DEAD) coupled with flow cytometry, and the use of propidium monoazide as a fast way to 
obtain DNA from intact cells (viable cells) have been developed[20,21].

Another limitation of the study of HM is the low biomass, which poses some challenges to researchers due 
to the risk of DNA contamination. Careful precautions are essential to avoid contamination and to identify 
microbial DNA signals from the environment or extraction and sequencing kits[22,23]. We found a few studies 
with recommendations to reduce this risk[24-26], such as the improvement in DNA extraction protocols. It is 
necessary to include negative controls, as well as to identify and eliminate contaminating sequences during 
the bioinformatic analysis[27-29], which should be considered in studies of the milk microbiome.

One of the major limitations that we can face when writing a review on HM microbiota involves the high 
variations in the studies dealing with this topic and their heterogeneous designs. These may partially be 
explained by sample collection protocols (aseptic or non-aseptic procedure), sample storage (4 ºC, -20 ºC, 
-80 ºC), and processing (whey milk or whole milk), as well as the DNA extraction procedures (e.g., different 
commercial kits, use of columns, enzymatic or mechanical lysis, etc.). The greatest difference among these 
studies is the collection of samples (some aseptically and others using different procedures). To avoid 
contamination of the sample from skin or milk extraction devices, conservation protocols are 
convenient[30]. All these sources of variability need to be reported, including whether specific procedures 
have been used to avoid skin and environmental microbiota, or this was also considered in the analysis as 
part of the microbial load that the breastfed infant received. Recently, a unified guideline for reporting 
microbiota studies has been proposed, the STORMS checklist[31]. These general recommendations will 
facilitate the results reproducibility, a better interpretation of HM microbiota analysis, and will reduce the 
heterogeneous designs in future studies.

Another limitation depends on the sequencing platform used, length of reads, and/or the specific 
bioinformatic analysis, as well as the multiple software programs, pipelines, and databases used in the 
analysis. These results are often reported at different taxonomic levels (i.e., phylum, family, genus, and 
species), making comparison among studies difficult. Additionally, many of the studies do not report the 
use of antibiotics during pregnancy, during delivery, or while breastfeeding. Microbiota analysis techniques 
also vary considerably among the HM studies. Furthermore, multiple maternal and environmental factors 
affect the milk microbiome, which, together with the small number of samples analyzed in most of the 
available studies, makes it difficult to draw biologically significant and universally valid conclusions. 
Therefore, it is necessary to define the inclusion/exclusion criteria and the collection of adequate metadata 
(e.g., the maternal diet) to ensure that the biological data obtained answer the specific question being 
investigated.
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The majority of the studies about HM microbiota are based on 16S rRNA profiles (i.e., amplicon-based 
sequencing, targeted qPCR). Thus, knowledge at the functional level in this environment that could be 
obtained with metagenomic approaches (e.g., shotgun total DNA sequencing) is still lacking. Considering 
what occurred in other environments, such as the gut, microbial functions could be better biomarkers for 
health status compared to taxonomic composition. In HM, there are hardly any metagenomic studies that 
enable the full characterization of the functional capacity; however, this challenge is real and enormous. 
Shotgun sequencing (metagenomics) in HM would imply great challenges, such as how to manage 
contaminating DNA from the host, low biomass samples, and computational analysis (taxonomic, 
functional, assembly, contigs, etc.). However, if the inconveniences can be overcome, the metagenomic 
analysis would reveal new aspects in the HM research, such as the knowledge about new functions of 
interest from non-culturable bacteria in complex communities[32] and improvement in the resolution of the 
taxonomic assignment. Indeed, metagenomics could be useful in the tracking of the vertical transmission of 
specific strains from the mother to the neonate[33,34], although the full potential of this methodology in the 
HM analysis has not yet been explored. With this methodology, not only is the bacterial community 
observed, but also other types of populations, such as eukaryotic, prokaryotic, and viral, increasing the 
knowledge of HM globally. These populations have already been studied previously with more specific 
approaches (e.g., amplifying a specific gene; metataxonomic), focusing on yeasts, viruses, and fungi[35-39]. It is 
necessary to add that all these DNA-based studies provide information on the composition of the 
community and its metabolic potential, but they do not demonstrate the activities that they carry out in situ 
because it only predicts the functional capacity from the taxonomic composition. To partially overcome 
such limitations, there are other alternatives such as metatranscriptomic[40], metaproteomic[41], or 
metabolomic[42] methods. Each of these methodologies would include several different challenges. However, 
they must be faced in order to acquire more knowledge about the complexity of HM and its relation to 
different variables, such as time, health, delivery, weight, stress[1], allergy[43], and so on, as well as how to 
affect the microbiota with other HM components, such as oligosaccharides and lipids[44].

HM MICROBIAL COMPONENTS: WHAT ARE THE RELATIONS AMONG THEM?
Some decades ago, HM was considered a sterile fluid. The first microbiological studies on HM focused on 
the detection of harmful microbes and their role as sources of breast or infant infections. However, over the 
last two decades, several studies have revealed the existence of a low biomass site-specific microbiota in the 
pre-colostrum, colostrum, and mature milk of healthy women[45-47]. The evidence of the presence of 
potentially beneficial microorganisms in HM, such as Lactobacillus and Bifidobacterium, started to emerge 
during the first decade of this century[46,48]. Since then, it has drawn microbiologists’ attention to the 
microbiological characterization of HM. HM microbiome research has increased since those first studies, 
and the use of next-generation sequencing has expanded our knowledge over the past 20 years. We 
summarise the knowledge in this section.

Bacteria
A systematic review summarised the results presented in publications focusing on HM microbiota until 
2019; the results showed that 590 genera and 1300 species were identified in HM[49], with the median 
bacterial load between 105 and 106 cells/mL[39]. HM microbiota was generally composed of Firmicutes and 
Proteobacteria phylum, while Actinobacteria is present in lower relative abundance. The most abundant 
genera found in the HM were Staphylococcus and Streptococcus, whose presence seemed to be present in 
almost all samples[49], followed by Pseudomonas, Lactobacillus, Bifidobacterium, and Corynebacterium 
genera. However, there is still a high variability in the results reported by Zimmerman and Curtis, probably 
due to the variability in the experimental design. Other systematic analyses revealed that the most detected 
species were facultative anaerobic or strictly aerobic such as Staphylococcus aureus, Staphylococcus 
epidermidis, or Streptococcus agalactiae[50]. The same authors found in their literature review that highly 
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oxygen-sensitive species have also been reported in HM analysis, but only by culture-independent analysis. 
However, the confidence about the presence of anaerobic bacteria in the HM is still uncertain since several 
issues are faced in the analysis of these taxa including the intrinsic limitations of culture-independent 
techniques regarding the viability of the detected species and the usual collection methods. Further studies 
with new experimental procedures are needed to decipher the potential presence of these taxa in the HM as 
well as their potential function in the infant’s gut.

Yeast and fungi
A fungal fraction, usually neglected, is gaining interest in determining the mycobiota fraction in HM[38,51-54]. 
The presence of viable fungi in HM has been confirmed by culture-dependent and independent methods[39], 
with Malassezia, Candida, and Saccharomyces[51] identified as the most prevalent taxa. Indeed, HM 
mycobiota showed a specific, different composition, as well as higher fungal diversity and richness 
compared to the surfaces of the hospital neonatal units[54]. Although the fungal component has been known 
for a few years, the bacteria-fungi interaction is usually neglected in microbiome studies, with just two of 
them exploring this relation, to our knowledge[55,56]. It has been identified milk bacterial taxonomic clusters 
with differences in their levels of HM fungi. For example, enrichment in the Proteobacteria phylum was 
observed in those samples with no presence of fungi[55], suggesting a negative relationship between this 
phylum and fungi prevalence. A correlation between bacterial and fungal richness and a co-exclusion 
association between the Candida genus and some bacterial genera were also found. Another study likewise 
showed a complex network of intradomain and interdomain interactions between bacterial and fungal taxa, 
which would be influenced by geographical location, delivery mode, and some maternal features[56]. Among 
others, the geographical location would influence the presence, quantification, and composition of HM 
mycobiota[55,56]. Further studies are needed to clarify the interactions between HM bacterial and fungal 
populations and their roles in infant development.

Virus and phages
Human virome, defined as comprising all viruses found in the human body, has been even less 
characterized. Although just a few studies are available[57-59], HM virome shows a specific composition that 
differs from other body sites[58]. Bacteriophages, specifically the Myoviridae, Siphoviridae, and Podoviridae 
families, are the most abundant viruses in HM[58,60]. As these families have mainly lytic natures, these 
bacteriophages could affect and regulate the composition of bacterial microbiota[61], establishing a relation 
between the phages and the bacterial population in HM and, consequently, in the infant’s gut. 
Maqsood et al. confirmed the dominance of the mentioned bacteriophages but found Herpesviridae as the 
most relatively abundant virus in HM[57]. Other studies did not confirm the association between HM 
bacteriophages and bacterial communities[58]. It has been reported that HM is a transmission source of 
viruses, which could modulate the infant colonization process[58]. Specific vertical transmission of 
bifidobacterial phages has also been reported[62,63]. However, the HM virome’s potential role in infant 
development is totally unexplored to date. From previous studies unrelated to HM, the association between 
the virome and health status is well-known. A relative resilience of the HM virome composition in HIV-
infected women has been described[57]; however, gut virome was altered in malnourished infants[64] and also 
in adults with irritable bowel syndrome[65]. In this regard, eukaryotic viruses could have a direct impact on 
infants’ innate and adaptive immune system maturation[66]. These, along with the bacteriophages’ capacity 
to modulate the microbiome composition, highlight the virome as an essential determinant of infant 
development that needs to be assessed to a greater extent in microbiome studies. Since only a few studies 
have focused on HM, further research is needed to decipher its virome diversity and the factors that could 
influence it, as well as the impacts of these changes on maternal and infant health.
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Archaea
Despite the few available studies, the presence of archaea has also been identified in HM[67,68]. Even though 
its contribution to milk microbiota is low, seven archaeal genera and species have been identified in raw 
bovine milk samples, with Methanobrevibacter and Methanosarcina being the most abundant genera[67]. 
Archaea have also been identified in HM microbiota by metagenomics sequencing and have been associated 
with the control groups in the context of mastitis studies[38]. However, only one study has explored the 
viability of archaeal components in HM, to our knowledge[68]. In this cited study, the authors were able to 
isolate viable methanogenic archaea, mainly M. smithii, in almost half of the analyzed samples from both 
colostrum and later milk. The authors also described the detection of M. smithii by qPCR in approximately 
one-third of the mothers included in the analysis (n = 127). Indeed, the frequency of this detection was 
higher in overweight compared with normal-weight mothers, suggesting a potential link between the 
archaea in HM and maternal metabolic condition.

Interactions between HM microorganisms and HM bioactive compounds
As mentioned, it has been hypothesized that milk components are possibly interacting in the HM ecosystem 
and thus, influencing one another. In fact, some perinatal factors that have been reported to affect HM 
microbiota such as lactation stage, geographical location, delivery mode, maternal body mass index (BMI), 
and diet[69,70] also influence mycobiota composition[55,56], HM virome[60], macronutrients content[71,72], human 
milk oligosaccharide (HMO) profile[73,74], and immune components[75-77]. However, studies addressing these 
links are scarce. Specific associations between lipid content and HMO profile with microbiota composition 
and diversity have been reported[44]. Other associations among HM microbiota (both compositional and 
bacterial load), macronutrients, and human somatic cell counts have been reported[39].

Although the available data are still limited, more studies using a multiapproach design that target more 
than one HM component would be essential for a more compressive analysis that provide more practical 
conclusions. Thus, a better understanding of the microbial interactions with the other HM components and 
how maternal factors could affect this network would increase the knowledge about HM dynamics, with the 
translational potential in the field of infant nutrition.

HM MICROBIOTA: WHAT OCCURS DURING GASTROINTESTINAL DIGESTION?
The field of food science has traditionally focused on characterizing the proximal composition of foods and 
the effects of industrial manufacturing or processing. However, this approach has failed to consider an 
unavoidable step that eventually transforms foods and defines the extent to which food components are 
available for biological functions, the digestion process. Research in recent years has established that the 
physical structure of the food matrices and the gastrointestinal environment of the individuals entail an 
interaction that conditions the bioaccessibility of nutrients contained in foods[78-80]. Therefore, currently, the 
concept of a food’s nutritional value cannot be established without considering the transformations 
imparted by the digestion process.

In this sense, HM, as a food matrix is one of the most complex; it is a source of not only nutrients but also 
immunoglobulins and microorganisms, among other components. Thus, establishing the biological value of 
HM should address not only the bioaccessibility of its nutrients, but also the persistence of 
immunoglobulins and the survival of microbes after the different stages of the digestion process in which 
these components are relevant. Hence, we bring into the concept that changes in the amount and type of 
HM microbes could result from the process of digestion, and this could be studied using similar research 
approaches to those applied to follow bioaccessibility of HM nutrients during digestion. Posing this research 
question from the perspective of “what occurs during digestion” could shed light on relevant aspects of the 
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newborn’s growth, including the establishment of the immune system, or the first colonization and 
establishment of the colonic microbiota. However, the current scientific literature contains few reports on 
the transformation of HM after the digestion process. The scarce evidence could be related to the difficult 
access to gastrointestinal contents, in which the digestion phenomenon takes place. Although taking fecal 
samples as substrates to perform the pertinent digestibility analyses is a valid approach, the in vitro 
simulation of the digestion process is also widely implemented and accepted[81]. In fact, there are specific 
protocols in the laboratory to reproduce the digestion process in different physiological contexts. In 
particular, digestion in lactating infants has been parametrized in different protocols, having in common its 
shorter duration, less acidic gastric pH, and lower concentration of enzymes compared with the protocols 
established for adults[82]. In the following paragraphs, we compile and summarise the available in vivo and in 
vitro studies.

Addressing the bioaccessibility of nutrients and bioactive compounds in milk is probably the most studied 
topic in this sense. Among the nutrients in HM, oligosaccharides and lipids have attracted the most 
attention because of their implications for growth. However, most of the available studies are designed with 
the goal of improving the quality of infant formulas rather than providing scientific evidence of HM 
digestion. For example, using the infant TIM-1 in vitro digestion model, Fondaco et al. studied the different 
lipolysis patterns in infant formulas compared with HM, showing the higher bioaccessibility of lipids in 
HM[83]. A number of authors reached the same conclusions[84,85], reporting the bioaccessibility of lipids in 
HM at around 85%, and others focused on following the bioaccessibility of specific fatty acids, such as 
docosahexaenoic acid[86]. A relevant remark in this sense is that apart from lingual and pancreatic lipase, 
lipolysis in lactating infants includes the bile salts-stimulated lipase. This lipase is secreted at the mammary 
gland and remains inactive during gastric digestion, and resumes its activity at the intestinal stage when in 
the presence of bile salts[87]. Besides, HM fat globules present different structure and composition than that 
in infant formulas[83], so both are relevant aspects to consider when following lipid digestion with in vitro 
digestion models. In terms of protein, another in vitro digestion study explained that proteolysis did not 
differ among the goat-based infant formula, the cow-based infant formula, and HM, but the kinetics of 
protein digestion of the goat-based formula was more comparable to that of HM[88].

Regarding carbohydrates, HM oligosaccharides are the most interesting species because of their potential 
role as prebiotics. In this sense, their inalterability through oral, gastric, and small intestine digestion has 
been confirmed for two decades, verifying their availability as substrates for the microbiota at the colonic 
stage[89]. In this case, the in vivo confirmation of this finding is available, as their presence in fecal samples 
has been identified[90]. However, no study has specifically focused on the presence of undigested 
macronutrients in fecal samples of breastfed infants.

Focusing on the immunogenetic role of HM, immunoglobulins are some of the main responsible agents. 
However, these molecules are also susceptible to being degraded throughout gastrointestinal digestion. 
Immunoglobulins A (IgA) and G (IgG) are known to have a local effect at the intestinal epithelium level, as 
established for intestine-secreted IgA[91]. However, when the immunoglobulin origin is HM, some IgG and 
IgM could be partially degraded in the gastric or intestinal digestion step. While immunoglobulins could 
play a relevant role in the oral cavity, their potential effect on the small intestine has been shown to decrease 
in the contexts of the respiratory syncytial virus[92] and the SARS-CoV-2[93] infections. This information 
could explain the HM components’ contribution to the infant’s immune system, especially regarding the 
role of agents other than immunoglobulins, if these are certainly degraded through digestion. Current 
evidence, however, indicates that at least maternal IgA, which is mostly bound to secretory components, is 
protected from digestion and binds bacteria in the infants’ intestine. Indeed, according to Brandtzaeg et al., 
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maternal IgA is the only immunoglobulin present in the infants’ intestine[94]. Currently, no other studies 
related to immunoglobulins degradation during digestion have been identified in the literature.

Finally, HM microorganisms could suffer a reduction of viability, as reported in experiments on the 
degradation of microorganisms after digestion in other food sources related to fermented dairy products[95]. 
While an extended research line in the follow-up on probiotic strains’ survival is well-established[96-98], very 
few studies address the viability of the microbiome in HM as a whole. This is precisely the aspect that could 
have the most impact in the study on the primary gut colonization, as there is a current gap in this regard. 
In fact, an immense number of studies characterizing the microbiota profile in HM (at different lactation 
times, ethnicities, geographical locations, maternal diets, etc.) are increasingly available[2,69,99,100], but none of 
them have included research on the viability of the microorganisms after digestion.

Therefore, we have identified the need to conduct studies on the survival of HM microbiota after the 
digestion process in order to establish or quantify the extent to which HM microbiota remains available for 
setting up infants’ colonic microbiota and thus, apply a better approach to determining the real role of HM 
microbiota in developing infants’ microbiota. However, we acknowledge some limitations in assessing the 
viability of bacterial cells after simulated digestion, especially in the design of experimental protocols, 
including the determination of the optimal milk sample dilution and the potential issues of the toxicity of 
the digesta in intestinal cells, which make it difficult to analyze the epithelial adherence.

HM MICROBIOTA-HOST INTERACTIONS
What is the main origin or source of milk microbes?
For years, researchers have tried to explain the potential origin of HM microbiota, and the debate is still 
open. Different routes and hypotheses have been suggested: (1) the environment, including the mother’s 
skin; (2) breast tissue, which harbors bacteria as other human epithelia[101]; (3) maternal gut and oral 
microbiota through an endogenous route[102-105]; or (4) retrograde translocation[106]. Finally, other microbial 
sources include the skin as well as the oral cavity of newborns that have been exposed to the mother's 
vaginal and intestinal microbiota during delivery[34,107]. This hypothesis has been less considered since pre-
colostrum produced by women during their first pregnancies contains bacterial strains that can be isolated 
from the mouths of their neonates after being breastfed[47]. In fact, these observations also suggested a 
potential role of HM in oral colonization. However, the available evidence revealed that this reverse flow of 
bacteria could occur during breastfeeding and their implication in HM seeding could not be discarded[106].

The most studied route of transmission is the transfer of the bacteria present in the human intestine and/or 
oral cavity to the mammary gland through an endogenous route and several mechanisms supporting this 
route have been proposed. One of them would involve the lymphoid system associated with the mucosa; 
however, the components implicated in this translocation and how the processes occur have not been 
deciphered[103,108] and many questions remain with no answer[106]. Another mechanism behind the 
endogenous route would be related to the endocytosis of bacterial cells, which could be supported by some 
physiological responses observed in late pregnancy. These include the altered tight junction regulation in 
the gut during this period and the effect of birth-associated stress on intestinal permeability[109,110]. Bacterial 
interactions with the host’s immune system appear to differ among various sites in the body, and 
understanding how the maternal immune system interacts with milk bacteria can help elucidate the 
mechanisms that allow a potential bacterial translocation from the gut[111] and/or the oral cavity. Although 
several routes have been described, the available literature does not enable to clarify the contribution of each 
of those mechanisms in the HM microbiota seeding, and even a combination of all of them in a multi-origin 
of the HM microbiota could not be discarded.
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Therefore, more questions than answers remain in the field, and specific research addressing these 
questions would expand our knowledge of the HM microbiota origin and, more relevantly, how we could 
affect the process of its bacterial seeding.

Microbial vertical transmission
The composition of the infant gut microbiota is dependent on many factors, being those together with other 
bioactive factors present in the HM (e.g., HMOs and immune components), important for the modulation 
of the infant gut microbiota composition and functionality in early life[112-116]. Gut microbiota plays an 
important role in immune system development, protecting against pathogens and facilitating the digestion 
and absorption of nutrients, with breastfeeding as the most influential factor affecting infant gut microbiota 
development[113]. Thus, milk microbiota may be responsible for many of the short-/long-term health-
promoting effects associated with exclusive breastfeeding in early life[115,117,118], as it would correlate with 
reduced incidence of chronic inflammatory and metabolic conditions in infancy and adulthood[119].

In recent years, the HM microbiota composition has been extensively studied in an attempt to unravel its 
role in infant and maternal health. However, the mechanisms that facilitate the establishment and stability 
of the gut microbiota in early life, as well as its association with favorable health outcomes, remain poorly 
understood[120]. In fact, as was mentioned, most of the available studies in the field have been performed 
using a 16S rRNA sequencing approach, which does not enable the strain-level tracking needed to unravel 
the specific role of HM bacteria in infant colonization. All these raise new pivotal research questions about 
the function of milk bacteria in the establishment and functionality of infant gut microbiota[106], in which 
studies based on a metagenomic approach would be key.

Besides this, the study of host-milk microbes is crucial[121]. The main limitation in deciphering the 
interactions between milk microbiome and human intestinal cells is the scarcity of bacterial isolates of milk 
origin[122]. Therefore, more advances in culture-dependent approaches and bacterial cell viability analysis 
will be of key importance in identifying and isolating the viable part of the milk microbiota for functional 
analysis. Another important limitation is that the few studies about shared taxa vertically transferred from 
mothers to babies through breastfeeding have been performed using molecular approaches[33,46,115,123-129,130]. 
The interest in this topic has increased considerably in recent years; a recent large cohort study (CHILD) 
highlights the low co-occurrence of bacterial species in mothers’ milk and their infants’ stools[115]. These 
studies suggest that the milk could provide pioneering species to the infant’s gut, but the mentioned studies 
mainly focus on the sharing of individual taxa without exploring the global impact of milk bacteria on the 
overall infant gut microbiota[115]. Additionally, the studies employed the 16S rRNA sequencing, which is not 
reliable in characterizing microbial taxa at the species/strain level and even less in identifying their function. 
These limitations are more evidenced by the limited number of bacterial species isolated from maternal 
milk and infant feces, belonging to Bifidobacterium, Staphylococcus, Lactobacillus, and Escherichia/Shigella.

Thus, the available data highlights that the composition of HM microbiota differs from infant gut 
microbiota. Although the dominated bacterial taxa present in HM don’t colonize the infant’s gut efficiently, 
they would be able to optimize and modulate the proliferation of pioneer bacteria which uniquely 
participate in host interactions[116].

In this context, more and larger longitudinal cohorts analyzing the vertical transfer of microbiota via 
breastfeeding, coupled with the application of high throughput sequencing technologies and metabolomics 
with a wide range of microbial culturing conditions, will significantly improve the knowledge about HM 
microbiota colonizing the infant gut[131].
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What is the relevance for infant gut health?
The complex interplay among milk microbiota, immune constituents, and infant gut colonization is of great 
importance. However, the question of whether the bacteria present in milk are established in the gut, 
interact with host cells, and influence the offspring’s physiology remains poorly understood. The gut 
microbiota can affect the host in multiple ways, such as the production of antimicrobial compounds and 
metabolites (i.e., vitamins, aromatic acids, and short-chain fatty acids)[132-134], or with the presence of 
extracellular components (e.g., exopolysaccharides, pili, etc.), which add more complexity in carrying out 
mechanistic approaches.

To date, only a few HM-related microbial components involving host-microbiota interactions are currently 
known. It is well-established that breastfeeding provides prebiotic HMOs to support the developing infant 
gut microbiota[135,136]. In this regard, most of the research has focused on Bifidobacterium, since some strains 
efficiently utilize the HMOs present in milk[137]; thus,it is assumed that Bifidobacterium spp. are 
evolutionarily selected to be transferred to the infant and have co-evolved with their infant host[62,127].

The protections against pathogens by the production of acetate or aromatic lactic acids are some 
mechanisms exerted by milk bacterial components. In fact, several of the bacteria shared between HM and 
the infant’s gut are involved in lactate production (Bifidobacterium, Streptococcus, and Staphylococcus). 
Bifidobacterium spp. also produce the short-chain fatty acid acetate through saccharolytic fermentation of 
oligosaccharides[138]. Collectively, acetate and lactate promote the low pH in the gut, which protects against 
infections and facilitates the transport of acetate into the gut epithelium to be used by the host[138]. 
Furthermore, specific milk isolates (Lactobacillus ssp. and Staphylococcus epidermidis) have been shown to 
produce bacteriocins[10,139]; for this, milk commensals were postulated as a strategy against the growth of gut 
pathogens[10].

A few studies have shown that some milk bacteria may participate in the maturation of the infant immune 
system through the modulation of both natural and acquired immune responses in mice models and 
humans. For example, Lactobacillus salivarius CECT 5713 and Lactobacillus fermentum CECT 5716 have a 
broad array of effects on the immune system, enhancing the production of pro- and anti-inflammatory 
cytokines and chemokines, activated NK cells, CD4+ and CD8+ cells, and regulatory cells[10,140,141]. In line 
with this, HM Lactobacillus strains produce butyrate, which is an important regulator in the infant’s gut as 
well as an energy source for colonocytes[142,143]. More studies using bacteria of milk origin will increase the 
knowledge of the cross-talk between other milk microbiota strains, the gut epithelium[144], and immune 
components. For example, the analysis of the interaction between IgA and milk bacteria, as studied in 
Bacteroides fragilis (and other gut commensals), showed a mediated stable gut colonization through the 
exclusion of pathogen competitors[145]. Another limitation of these studies, which is common in gut 
microbiota analysis, is that the effects are generally analyzed in stool samples instead of in situ in the gut 
epithelium.

A better understanding of the dynamics and function of milk microbiota requires a comprehensive multi-
pronged approach that assesses the viability and activity of milk bacteria, evaluates the interactions between 
milk microbiota and maternal and infant immune systems, and experimentally establishes the functional 
significance of milk microbiota. Emerging in vivo animal and human studies offer novel opportunities to 
address the gaps in this field, contributing to identifying the mechanisms governing the milk microbiota 
assembly and its impacts on maternal and infant health.
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How are host-microbes interactions analyzed?
Alternatives to human observational or epidemiologic studies and animal models in gut microbiota research 
are certainly in vitro/ex vivo models using human cells in order to replace, reduce, and refine animals. 
Cancer cell lines have been widely used due to their robust, often indefinite growth and cost-effectiveness; 
however, their origin limits the research questions that can be addressed. One of the most popular cell lines 
is Caco-2, which exhibits characteristics of small intestinal epithelial cells despite being derived from a colon 
carcinoma[146]. In an attempt to use cell lines that have a greater resemblance to the immature infant 
intestine, foetal epithelial intestinal cell lines such as FHs74Int and H4 emerged[147,148]. Particularly, H4 cells 
served as a model for necrotizing enterocolitis to study probiotics or HM-derived components after an 
inflammatory insult[149-151]. Human intestinal organoids that were derived from either adult stem cells or 
pluripotent stem cells emerged in the last decade as useful model systems. This technique requires 
microinjection of microbiota into the organoids’ lumen in order to maintain the 3D structure. Furthermore, 
the availability of nutrients in the lumen is limited, which only allows a short exposure time to living 
bacteria[152,153]. To overcome these drawbacks, confluent 2D intestinal cell monolayers can be generated from 
single-cell suspensions of enzymatically dissociated organoids[154]. To date, intestinal organoids have been 
used more for studying HM components, such as short-chain fatty acids and indole-3-lactic acid[150,155], than 
for studying HM-derived bacteria. Noel et al. applied colostrum whey milk to paediatric enteroid 
monolayers and found enhanced tight junction function, increased production of the antimicrobial peptide 
a-defensin 5 by goblet and Paneth cells, and increased levels of polymeric immunoglobulin receptor and 
maternal IgA translocation[156]. However, to study the effects of HM or derived components or bacteria, 
more sophisticated in vitro model systems should be used, such as gut chips[157,158] or gut organ culture 
systems[159] combining several cell types present in the intestine (i.e., epithelial, endothelial, and immune 
cells and bacteria) and considering oxygen concentrations gradient and peristaltic movement, thus 
resembling more physiological conditions.

Due to the lack of studies analyzing the interactions between milk microbiota (and other bioactive 
compounds) and the mammary gland, it would be interesting to use 3D cell culture models of mammary 
glands, such as organoids or mammary glands on a chip, that provide complex interactions and mimic 
physiological conditions of in vivo experiments more faithfully[160-162].

In order to advance in mechanistic insights into milk microbiota host-interactions, researchers should 
combine animal in vitro and in vivo ( mice, piglets, etc.) methods that will deliver information to establish 
accurate in vitro/in vivo extrapolation to humans[163]. In line with this, translational research is needed and 
essential.

WHAT IS THE SCIENTIFIC EVIDENCE OF THE HM’S IMPACT ON MATERNAL-INFANT 
HEALTH OUTCOMES?
HM confers both nutritional and immunological benefits to neonates, which are significant due to the 
macronutrients and bioactive components discussed above. Most importantly, breastfeeding reduces 
morbidity and mortality in infants, such as a two-fold lower risk of death observed in exclusively breastfed 
infants compared with non-breastfed infants[164]. Several studies have documented lower incidences of 
diarrhea and respiratory infections, as well as protection against ear, throat, and sinus infections[165,166]. 
Among HM’s components, the microbiota has received special attention among researchers who aim to 
discover its potential role in the mentioned protective effects of breastfeeding. Studies comparing breastfed 
versus formula-fed infants suggest a vertical mother-to-infant microbial transmission through 
breastfeeding[112,167,168]. The contribution to infant microbial seeding could be one of the pathways through 
which HM microbiota impacts infant health[169].
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Other indirect mechanisms have also been suggested, including the facilitation of gut epithelium maturation 
through mucus production and the decrease in intestinal permeability[155] or the immunomodulatory 
properties of some HM strains[170]. Despite the observational studies reporting the protective effects of 
breastfeeding, it is still difficult to find a direct link between HM microbiota and some of these benefits. 
Other milk components, such as antimicrobial peptides, immune active compounds, growth factors, or 
microRNA, could also be partially responsible for these associations[171,172]. Therefore, further studies are 
needed to ascertain the impacts of HM microbiota on maternal and infant health and to understand their 
interactions with the other bioactive components of milk. Thus, in this section, the generally beneficial 
effects of breastfeeding on both maternal and infant health are presented.

In this context, attention must be paid to preterm infants; necrotizing enterocolitis is the most devastating 
disease among the most premature infants. HM diet has been shown to decrease the relative risk of 
necrotizing enterocolitis and is considered one of the strategies for its prevention[173]. Preterm infants have 
commonly shown a dysbiotic microbiota pattern loaded with pathogenic bacteria that could be implicated 
in the necrotizing enterocolitis development[174,175]. Besides the potential impacts of HM’s nutritional and 
anti-inflammatory functions that could decrease the necrotizing enterocolitis risk, the positive implications 
of some beneficial bacteria and related metabolites present in HM have also been suggested[150,176,177]. Thus, 
some clinical studies have reported reductions in necrotizing enterocolitis incidence and severity[178] after 
probiotics administration. However, the evidence is still considered inconclusive due to the lack of trials 
with large sample sizes[179]. Prolonged and exclusive breastfeeding has also been suggested to improve 
infants’ cognitive development[180,181]. It has been associated with fewer autistic traits[182] and increased verbal 
than non-verbal skills[183]. However, the results are still contradictory, and potential confounding factors 
could not be discarded[184,185].

Associations between infant gut microbiota composition and diversity and lower scores on the visual 
reception scale and in expressive language at the age of 2 years[186]; communication, personal, and social 
skills at the age 3 years[187]; and general neurodevelopment[188] have been described. Despite the potential 
influence of HM microbiota on infant colonization, specific links between these observations and HM are 
still unknown. Although several mechanisms have been proposed[189], further studies are needed to 
understand the pathways behind the effect of HMO on infant neurodevelopment.

There is still conflicting evidence on the protective role of breastfeeding in relation to the development of 
allergic disease and asthma later in life. However, different meta-analyses have concluded that a longer 
duration of breastfeeding is associated with reduced risks of wheezing and asthma, allergic rhinitis in 
children up to 5 years old, and eczema in children up to 2 years old[190,191]. HM microbiota plays a key role in 
shaping early immune development and response; therefore, it has been suggested as a tool for allergy 
prevention[192]. Most of the proposed mechanisms to explain the latter effect are based on the impact of 
breastfeeding on infant gut microbiota, but the specific effect of the HM microbial population is not well-
known yet[193]. In this sense, children developing allergic manifestations at 7 years of age consumed HM with 
a reduced microbial richness in the first month[194]. As HM and infant microbiota are modifiable factors, the 
administration of probiotics and prebiotics is under study in pregnant and lactating mothers, as well as in 
neonates, with promising results for risk reduction in allergic complications later in life. Nevertheless, the 
evidence is still scarce, and larger, well-standardized studies are needed[195-197].

There is also evidence that breastfeeding protects against obesity in childhood[198-200] and is reported to be 
influenced by the child’s sex, maternal education, maternal BMI, excessive gestational weight gain, maternal 
smoking, and maternal alcohol consumption[198,199,201]. Similar to the potential link between milk microbiota 
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and allergy, the potential of HM microbiota to drive gut colonization is suggested as the mechanism behind 
the mentioned association between breastfeeding and lower obesity incidence. Indeed, several studies have 
shown the shifts in infant microbial community as related to an overweight condition, and some molecular 
mechanisms have been proposed, such as enhanced energy intake, fat storage and low-grade systemic 
inflammation, which could be all microbially induced[202]. The latter hypothesis is supported by studies 
showing that antibiotic use in infants during breastfeeding increase the obesity risk[168,203], highlighting the 
potential microbial component as one pathway through which it exerts its beneficial effects on infant health.

FUTURE PERSPECTIVES AND CHALLENGES
It is assumed that HM plays an important role in seeding the infant gut microbiome pioneers. However, 
many of the bacteria detected in milk samples have been reported as absent in the infant’s gut; in contrast, 
the most abundant bacteria in the infant’s gut, Bifidobacterium, have been found only in < 40% of HM 
samples, suggesting that HM may act as an additional source of colonization[106,204]. In this regard, more 
metagenomic and bacterial isolations could help determine the role of milk microbiota in infant gut 
microbial colonization, since some bacterial groups could be underestimated with the current analysis. 
Indeed, these studies could also help unravel the potential connections between and among different 
components of HM microbiota, such as the fungi-bacteria interaction, and how they could affect the milk 
composition.

To date, research on milk-microbiota interactions has been mainly conducted with mono-colonized models 
using vertically transferred bacteria or those of non-milk origin. It would be interesting to study the 
mechanisms of action of a consortium of milk-related bacteria. Therefore, the development of novel in vitro 
(e.g., co-culture of microorganism consortia with living epithelial cells using conventional culture 
techniques, organs on chip models, and organoids), ex vivo, and in vivo models of mammary glands and 
intestines is essential to shedding new light on the field of milk microbiota. Moreover, most of the studies 
have not considered the effect of the host in order to draw a complete map of host-microbe interactions. 
Thus, the proposed approaches will reveal the bacteria present in infant microbiota whose origin is maternal 
milk, their potential biological functions, and bacteria-produced bioactive compounds of relevance to infant 
health. These approaches will additionally decipher the molecular mechanisms underlying host-microbe 
interactions in infants, not only in the gut but also in other niches, such as the oral and nasopharyngeal 
microbiota, which could have implications for infants’ systemic health and development.

Challenges for the next years
- To conduct studies that include interactions among microorganisms from HM beyond the bacterial 
component. Explore their relations with other milk bioactive constituents (nutrients, hormones, cytokines, 
etc.) and how the variation could affect the HM populations.

- How do milk bacteria alter milk composition before reaching the infant’s gut? Study the HM as a whole 
ecosystem with interactions among its components. Conduct multiapproach and analytical studies.

- To improve and standardize HM collection protocols, use more aseptic HM collection methods.

- To detect and reduce sequencing artifacts.

- To analyze the translocation of gut bacteria to HM via the enteromammary pathway, which would provide 
opportunities for improving infant health through maternal interventions.
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- To decipher the contribution of infant oral bacteria to milk microbiota.

- To develop more advances in shotgun sequencing, metabolomics, and metatranscriptomics, which are 
needed to establish exactly if shared bacteria are functionally significant to the infant.

- To study the relevance of milk microbiota to the development of the microbiota in other body locations.

- To apply 3D cell models and novel animal models (piglets) to the analysis of milk microbiota-host 
interactions.

- To conduct mechanistic studies to analyze the association of milk/gut microbiota with infant health.

- To explore the role played by non-viable bacteria in HM.

- To establish the effect of the HM digestion process on viable microorganisms reaching the colon.

- To promote the translational research and global system integration
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