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Abstract
In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM)
method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic
algorithm, our novel path planning method shows many advantages compared with other popular methods.
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1. INTRODUCTION
1.1. Autonomous navigation in unknown environment
Autonomous navigation (AN) has three jobs [1].

(1) Perception: Mapping from signal to information is the perception of AN [2]. Its algorithms can use human
thought [3], intelligent methods [4], optimization [5], probability methods [6], and genetic algorithms [7].

(2) Motion planning: It has three classes, namely graph methods such as a roadmap [8], random sampling [9],
and grid [10].

(3) Localization and mapping: In unknown environments, sensors, actuators, and maps may have big uncer-
tainties.
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Path planning (PP) can be performed under the following conditions:

(1) The environment is known. PP is an optimization problem [11–13].

(2) The environment is partially known. PP can find new objects during navigation [14,15].

(3) The environment is totally unknown. PP depends on the navigation and has a recursive solution [16–18].

Simultaneous localization and mapping (SLAM) can be used in unknown environments [19] or in partially
unknown environments [20]. SLAM [21] uses the current position to construct a map, and it can be classified
into feature-based [22], pose-based [23], appearance-based [24], and variants [25].

The most popular SLAM uses Kalman filter [21] for Gaussian noise. Nonlinear SLAM uses extended Kalman
filter (EKF) [26], where the noise assumptions are not satisfied [27]. EKF-SLAM applies linearization [28].

1.2. Related work
Few AN uses SLAM. Visual SLAM uses several cameras [29]. AN can use both SLAM and GPS signals [30].
Robots can avoid moving obstacles using neural networks [31]. Swarm optimization helps robots follow an
object [32]. Neural networks help robots construct the navigation path [33]. The optimal path is considered in
the sense of trajectory length, execution time, or energy consumption.

Genetic algorithms (GA) have been developed recently [34,35]. They are easy to use for optimization in non-
deterministic cases [36], uncertaintymodels [37], and robust cases [38]. GA can be in form of ant-based GA [39,40],
cell decomposition GA [41], potential field GA [42], ant colony [43], and particle swarm optimization [44]. Finite
Markov chain is a theory tool for GA [45,46].

1.3. Our work
In this paper, we try to design AN in an unknown environment in real time. The contributions are as follows:

(1) Sliding mode SLAM: The robustness of this SLAM is better than other SLAM models in bounded noise.

(2) GA SLAM: We use roadmap PP and GA to generate the local optimal map.

(3) Comparisons and simulations with other SLAM models were made by using a mobile robot [47].

2. SLIDING MODE SLAM

SLAMgives the robot position and environment map at the same time. At time 𝑘, the state isx𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝜃𝑘 ),
where (𝑥𝑘 , 𝑦𝑘 ) is the position and 𝜃𝑘 is the orientation of the robot. x𝑚𝑘 =

(m1
𝑘 ,m2

𝑘 , ...,m𝐿
𝑘

)𝑇 are landmarks,
with m𝑖

𝑘 = (𝑥𝑖𝑘 , 𝑦
𝑖
𝑘 )
𝑇 the 𝑖th landmark. We assume the true location is time-invariant.

x𝑘 has two parts: the robot x𝑟𝑘 and the landmarks x𝑚𝑘 .The state equation is

x𝑘+1 =

(x𝑟𝑘+1
x𝑚𝑘+1

)
=

(f (x𝑟𝑘 ,u𝑘 ) + w𝑘

x𝑚𝑘

)
= F(x𝑘 ,u𝑘 ) + [w𝑘 , 0]𝑇 (1)

where f () is the robot dynamics, w𝑘 is the noise, and u𝑘 is the robot control. Since x𝑚𝑘 is not influenced by
motion noise, the noise is [w𝑘 , 0]𝑇 .
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z𝑘 is defined as the position between the robot and the landmark, whose model is

z𝑖𝑘 = h(x𝑟𝑘 ,m𝑖
𝑘 ) + v𝑖𝑘 (2)

where h() is the geometry and v𝑖𝑘 is the noise. Here, w𝑘 and v𝑖𝑘 are not Gaussian noises. We assume w𝑘 and
v𝑖𝑘 are bounded.

To estimate x𝑘 in Equations (1) and (2), EKF is needed. We linearize the state model in Equation (1) and the
observation model in Equation (2) as

x𝑘+1 = F(x̂𝑘 ,u𝑘 ) + ∇F𝑘 ·
(
x𝑘 − x̂𝑘

)
+𝑂1

[
(x𝑘 − x̂𝑘 )2] + [w𝑘 , 0]𝑇

z𝑖𝑘 = h(x̂𝑘 ) + ∇h𝑘 ·
(
x𝑘 − x̂𝑘

)
+𝑂2

[
(x𝑘 − x̂𝑘 )2] + v𝑖𝑘

(3)

where ∇F𝑘 = 𝜕F
𝜕x𝑘

|x𝑘=x̂𝑘
, ∇h𝑘 = 𝜕h

𝜕x𝑘
|x𝑘=x̂𝑘

, 𝑂1
[
(x𝑘 − x̂𝑘 )2] , x̂𝑘 is the estimation of x𝑘 .

Prediction. The estimation x̂𝑘+1 is based on past states, control, and landmarks:

x̂𝑘+1 = F(x̂𝑘 ,u𝑘 )
P𝑘+1 = ∇F𝑘P𝑘∇F𝑇

𝑘 + 𝑅1
(4)

where 𝑅1 is the covariance of w𝑘 , 𝑅1 = 𝐸
{
[w𝑘 − 𝐸 (w𝑘 )] [w𝑘 − 𝐸 (w𝑘 )]𝑇

}
.

Correction. The new state is based on predicted states, landmarks, and current observations:

x̂𝑘+2 = x̂𝑘+1 + K𝑘+1
[z𝑖𝑘+1 − h(x̂𝑘+1)

]
K𝑘+1 = P𝑘+1∇h𝑘+1

[
∇h𝑘+1P𝑘+1∇h𝑇

𝑘+1 + 𝑅2
]−1

P𝑘+2 =
[
𝐼 − K𝑘+1∇h𝑘+1

] P𝑘+1

(5)

The motivations of using sliding mode modification to the EKF bases SLAM based are the following:

(1) The noises w𝑘 and v𝑖𝑘 in Equations (1) and (2) are not Gaussian.

(2) There are linearization error terms, 𝑂1
[
(x𝑘 − x̂𝑘 )2] and 𝑂2

[
(x𝑘 − x̂𝑘 )2] , in Equation (3), and the tradi-

tional EKF-based methods do not work well for these errors.

We use the sliding mode method to estimate the robot state x𝑟𝑘 and the landmark x𝑚𝑘 .

Sliding modes have a number of attractive features, and thus have long been in use for solving various control
problems. The basic idea behind design of system with sliding mode is the following two steps: (1) a sliding
motion in a certain sense is obtained by an appropriate choice of discontinuity surfaces; and (2) a control is
chosen so that the sliding modes on the intersection of those discontinuity surface would be stable. A general
class of discontinuous control 𝑢 (𝑥, 𝑡) is defined by the following relationships:

𝑢 (𝑥, 𝑡) =
{
𝑢+ (𝑥, 𝑡) with s (x) > 0
𝑢− (𝑥, 𝑡) with s (x) < 0

(6)

where the functions 𝑢+ (𝑥, 𝑡) and 𝑢− (𝑥, 𝑡) are continuous.

The function s (x) is the discontinuity surface (subspace). The objective of the sliding mode control is to
design some switching strategy of the continuous control 𝑢+ (𝑥, 𝑡) and 𝑢− (𝑥, 𝑡) , such that

s (x) = 0 (7)

http://dx.doi.org/10.20517/ir.2021.09
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Figure 1. Sliding mode simultaneous localization and mapping.

In this paper, the sliding surface is defined by the SLAM estimation error as

𝑒 (𝑘) = x𝑘 − x̂𝑘 (8)

Here, the discontinuity surface is 𝑒 (𝑘) = [𝑒1 · · · 𝑒𝑛]. We consider the following positive definite function,

𝑉 =
1
2
𝑒𝑇 (𝑘) 𝑃𝑒 (𝑘) (9)

where 𝑃 is diagonal positive definite matrix, 𝑃 = 𝑃𝑇 > 0. The derivative of 𝑉 is

¤𝑉 = 𝑒𝑇 (𝑘) 𝑃 ¤𝑒 (𝑘) (10)

The motion 𝑒 (𝑘) satisfies
¤𝑒 (𝑘) = −𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)] , 𝜌 > 0 (11)

where 𝑠𝑔𝑛 [𝑒 (𝑘)] = [𝑠𝑔𝑛 (𝑒1) , . . . , 𝑠𝑖𝑔𝑛 (𝑒𝑛)]𝑇 , 𝑠𝑔𝑛 (𝑒𝑖) =
{

1 with 𝑒𝑖 (𝑥) > 0
−1 with 𝑒𝑖 (𝑥) < 0

, 𝑠𝑔𝑛 (0) = 0, then (10) is

¤𝑉 = 𝑒𝑇 (𝑘) 𝑃 {−𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)]} = −𝜌𝑒𝑇 (𝑘) 𝑃𝑠𝑔𝑛 [𝑒 (𝑘)]

because 𝑃 = 𝑑𝑖𝑎𝑔 {𝑝𝑖} , 𝑝𝑖 > 0, and 𝑒𝑖 × 𝑠𝑔𝑛 (𝑒𝑖) = |𝑒𝑖 |

·
𝑉 = −𝜌

𝑛∑
𝑖=1

𝑝𝑖 |𝑒𝑖 | (12)

Thus, ¤𝑉 ≤ 0. By Barbalat’s lemma [48], the estimation error is 𝑒 (𝑘) → 0.

The classical SLAM in Equations (4) and (5) is modified by the sliding surface in Equation (11). The sliding
mode control can be regarded as a compensator for Equation (4):

x̂𝑘+1 = F(x̂𝑘 ,u𝑘 ) − 𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)] (13)

where 𝜌 is a positive constant. The correction step is the same as EKF in Equation (5). The sliding mode
SLAM is shown in Figure 1. Here, the estimation error, 𝑒 (𝑘), is applied to the sliding surface to enhance the
robustness in the prediction step with respect to the noise and disturbances.

It is the discrete-time version of Equation (6). We give the stability analysis of this discrete-time sliding mode
SLAM at the end of this section.

For the mobile robot, the sliding mode SLAM can be specified as follows. We define a critical distance 𝑑min to
limit the maximal landmark density. It can reduce false positives in data association and avoid overload with
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useless landmarks. If the new landmark is far from the other landmarks on the map, then the landmark is
added; otherwise, it is ignored. If the distance between the new landmark x𝑘+1 = [𝑥𝑚+1, 𝑦𝑚+1] and the
others is bigger than 𝑑min, it should be added into x𝑘 , i.𝑒.,

x𝑘+1 = 𝑔(x𝑟𝑘 , z𝑘 ) (14)

It can be transformed into an absolute framework as

x𝑘+1 =

( x𝑘
𝑔(x𝑟𝑘 , z𝑘 )

)
= T(x𝑘 , z𝑘 ) (15)

The nonlinear transformation functionT also applies to the uncertainties. We approximate the transformation
T by the linearization. P𝑘 can be expressed as

P𝑘 =
©­­­«

P𝑟
𝑘 P𝑟𝑚

𝑘 0(
P𝑟𝑚
𝑘

)𝑇
P𝑚
𝑘 0

0 0 V𝑘

ª®®®¬ (16)

where
P𝑘 = ∇TP𝑘∇T𝑇

with ∇T =
©­­«

I𝑟 0 0
0 I𝑚 0

∇g𝑥 0 ∇g𝑧

ª®®¬ , ∇g𝑥 := 𝜕g
𝜕x𝑟

𝑘
(x𝑘 , z𝑘 ),∇g𝑧 := 𝜕g

𝜕z (x𝑘 , z𝑘 ).

For the motion part, we use the Ackerman vehicle model [49]

©­­«
𝑥𝑟𝑘
𝑦𝑟𝑘
𝜃𝑟𝑘

ª®®¬ =
©­­«
𝑥𝑟𝑘−1 + 𝑇𝑘−1𝑣𝑘−1 cos 𝜃𝑟𝑘−1
𝑦𝑟𝑘−1 + 𝑇𝑘−1𝑣𝑘−1 sin 𝜃𝑟𝑘−1
𝜃𝑟𝑘−1 + 𝑇𝑘−1

𝑣𝑘−1
𝑏𝑎

tan𝛼𝑘−1

ª®®¬ + w𝑘 (17)

where w𝑘 is the process noise, 𝑣𝑘 is the linear velocity, 𝛼𝑘 is the steering angle, 𝑇𝑘 is the sample time, and 𝑏𝑎
is the distance between the front and the rear wheels.

At the beginning of map building, the vector x̂𝑘 only contains the robot states without landmarks. As explo-
ration increases, the robot detects landmarks and decides if it should add these new landmarks to the state.

x𝑘+1 = T(x𝑘 , z𝑘 )
(

x𝑟𝑘,𝑥
x𝑟𝑘,𝑦

)
+ 𝑟 𝑗𝑘

(
cos(𝜃𝑖𝑘 + x𝑟𝑘,𝜙)
sin(𝜃𝑖𝑘 + x𝑟𝑘,𝜙)

)

z𝑘 =
©­­­«

√
(𝑚𝑖𝑥 − 𝑥𝑘 )2 + (𝑚𝑖𝑦 − 𝑦𝑘 )2

arctan

(
𝑚𝑖𝑦 − 𝑦𝑘
𝑚𝑖𝑥 − 𝑥𝑘 )

)
− 𝜙𝑘

ª®®®¬𝑖
+ V𝑘

(18)

where x, 𝑦, z, and 𝑚 are defined in Equations (1) and (2),

We exploit the same property in the sliding SLAM. The landmarks with fewer corrections are removed from
the state vector.

x̂𝑘+1 = x̂𝑘 + 𝐺𝑇𝑥

𝑢𝑘,𝑣𝛿𝑡 cos(x𝑟𝑘,𝜙)
𝑢𝑘,𝑣𝛿𝑡 sin(x𝑟𝑘,𝜙)

𝑢𝑘,𝛾𝛿𝑡

 + 𝜎𝑘 (19)
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where 𝐺𝑥 =

©­­­­­«
1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

2𝑁

ª®®®®®¬
, 𝜎𝑘 is the compensator, and

𝜎𝑘 = −𝜌 × 𝑠𝑔𝑛
(
x𝑘 − x̂𝑘

)
(20)

This sliding SLAM algorithm is given in the following algorithm.

Sliding mode SLAM. 𝑥1 = 0, 𝑃1|1 = 𝛼𝐼, 𝑘 = 1, 𝛼 � 1 𝑢1 =get_controls, 𝑧1 =get_observations; 𝑘𝑧 =

1
[x̂1,P1

]
=add_features

(
x̂1,P1, z1

)
(1) While not_stop if controls_are_available[x̂𝑘+1,P𝑘+1

]
=prediction

(
x̂𝑘 ,P𝑘 ,u𝑘

)
(2) 𝑢𝑘 =get_controls end if if observations_are_available

get_observations 𝑧𝑘 data_association
(
z𝑘 , x̂𝑘+1,P𝑘+1

) [x̂𝑘+2,P𝑘+2, c𝑘
]

=
(
x̂𝑘+1,P𝑘+1, z𝑘

)
(5)

[x̂𝑘+2,P𝑘+2
]

=
(
x̂𝑘+2,P𝑘+2, z𝑘

)
(1) 𝑘𝑧 = 𝑘𝑧 + 1 end if if mod(𝑘𝑧, 𝐾𝑧) = 0[x̂𝑘+2,P𝑘+2

]
=pruning

(
x̂𝑘+2,P𝑘+2, c𝑘 ,a𝑘

)
end if 𝑘 = 𝑘 + 1 end While

The discrete-time sliding mode SLAM in Equation (19) can be written as

x̂𝑘+1 = x̂𝑘 + 𝐹̂ (x̂𝑘 ,u𝑘 ) + 𝜎𝑘

where 𝐹̂ = 𝐺𝑇𝑥


𝑢𝑘,𝑣𝛿𝑡 cos(x𝑟𝑘,𝜙)
𝑢𝑘,𝑣𝛿𝑡 sin(x𝑟𝑘,𝜙)

𝑢𝑘,𝛾𝛿𝑡

 , 𝑒 (𝑘) = x𝑘 − x̂𝑘 , 𝜎𝑘 = 𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)]

The correction step for x̂𝑘+2 is the same as EKF:

x̂𝑘+2 = x̂𝑘+1 + K𝑘+1
[z𝑖𝑘+1 − h(x̂𝑘+1)

]
K𝑘+1 = P𝑘+2𝐶𝑘+1

[
𝐶𝑘+1P𝑘+2𝐶

𝑇
𝑘+1 + 𝑅2

]−1

P𝑘+2 =
[
𝐼 − K𝑘+1𝐶𝑘+1

] P𝑘+2

(21)

where 𝐶𝑘 = ∇h𝑘 = 𝜕h
𝜕x𝑘

|x𝑘=x̂𝑘
.

The error dynamic of this discrete-time sliding mode observer is

𝑒 (𝑘 + 1) = 𝐴𝑘𝑒(𝑘) − 𝐴𝑘K𝑘𝐶𝑘𝑒(𝑘) + 𝜎𝑘 + 𝑑𝑘 (22)

where 𝑑𝑘 = 𝐹̂ (x̂𝑘 ,u𝑘 ) + 𝜉𝑘 is bounded uncertainty, ‖𝑑𝑘 ‖2 ≤ 𝑑, 𝐴𝑘 = ∇F𝑘 = 𝜕F
𝜕x𝑘

|x𝑘=x̂𝑘
, and K𝑘 is the gain of

EKF in Equation (21).

The next theorem gives the stability of the discrete-time sliding mode SLAM.

Theorem 1 If the gain of the sliding mode SLAM is positive, then the estimation error is stable, and the estimation
error converges to

‖𝑒 (𝑘)‖2 ≤
𝜆max

[P−1
𝑘+1

]
( 𝜌̄ + 𝑠) + 𝜌̄

𝛼𝜆min
[P−1

𝑘+2
] (23)

where ‖𝜎𝑘 ‖2 ≤ 𝜌̄, 𝜎𝑘 ‖𝑑𝑘 ‖2 ≤ 𝑠, P𝑘+2 is the gain of EKF in Equation (21), 0 < 𝛼 = 1
(1+𝑝𝑎̄2/𝑞)(1+𝑘̄𝑐+𝜆) < 1,

𝑝𝐼 ≤ P𝑘+2 ≤ 𝑝𝐼, and 𝑞𝐼 ≤ 𝑅1.
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Proof 1 Consider the Lyapunov function as

𝑉𝑘 = 𝑒 (𝑘) P−1
𝑘 𝑒 (𝑘) (24)

where P𝑘+2 is the prior covariance matrix in Equation (21), and P𝑘+2 > 0. From Equation (22),

𝑉𝑘+1 = 𝑒 (𝑘 + 1) P−1
𝑘+1𝑒 (𝑘 + 1)

= 𝑒 (𝑘) (𝐼 − K𝑘𝐶𝑘 )𝑇 𝐴𝑇𝑘
(P𝑘+1

)−1
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

+2(𝑑𝑘 + 𝜎𝑇𝑘 )P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
+(𝑑𝑘 + 𝜎𝑇𝑘 )P−1

𝑘+1(𝑑𝑘 + 𝜎𝑘 )

(25)

Because ‖𝜎𝑘 ‖2 ≤ 𝜌̄, ‖𝑑𝑘 ‖2 ≤ 𝑠, the last term on the right side of Equation (25) is

(𝑑𝑘 + 𝜎𝑇𝑘 )P−1
𝑘+1(𝑑𝑘 + 𝜎𝑘 ) ≤ 𝜆max

[P−1
𝑘+1

]
( 𝜌̄ + 𝑠) (26)

where 𝜆max
[P−1

𝑘+1
]
is the maximum eigenvalue of P−1

𝑘+1.

The second term of Equation (25) is

2(𝑑𝑘 + 𝜎𝑇𝑘 )P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
= 2(𝑑𝑘+)P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
+𝜎𝑇𝑘 P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

] (27)

where K𝑘 is the gain of EKF in Equation (5). In view of the matrix inequality

𝑋𝑇𝑌 +
(
𝑋𝑇𝑌

)𝑇
≤ 𝑋𝑇Λ−1𝑋 + 𝑌𝑇Λ𝑌 (28)

which is valid for any 𝑋,𝑌 ∈ <𝑛×𝑘 and for any positive definite matrix 0 < Λ = Λ𝑇 ∈ <𝑛×𝑛, the first term of
Equation (27) is

2𝑑𝑘P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
≤ 𝑑𝑘Λ(𝑑𝑘+) + 𝑒 (𝑘) P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
Λ−1𝑒 (𝑘)

≤ 𝑠𝜆max [Λ] +



(P𝑘+1

)−1 [
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
Λ−1




 ‖𝑒 (𝑘)‖2

≤ 𝑠𝜆max [Λ] + 𝑒 (𝑘)
[P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
Λ−1] 𝑒 (𝑘)

(29)

We apply the sliding mode compensation in Equation (20) to the second term of Equation (27):

𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)]𝑇𝑘 Υ𝑘𝑒 (𝑘)

= −𝜌
𝑚∑
𝑘=1

|𝑒 (𝑘) |
(
𝑙𝑘𝑘 +

𝑚∑
𝑖=1,𝑖≠𝑘

𝑙𝑘𝑖𝑠𝑖𝑔𝑛 ( [𝑒 (𝑘)] 𝑒𝑖 (𝑘))
)

(30)

where 𝑙𝑖 𝑗 are the elements of the matrix Υ, Υ𝑘 = P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
.When the the orientation 𝜃𝑘 is not big,

sin 𝜃𝑘 ≈ 0, cos 𝜃𝑘 ≈ 0,

𝑙𝑘𝑘 �
𝑚∑

𝑖=1,𝑖≠𝑘
|𝑙𝑘𝑖 | , 𝑙𝑘𝑘 > 0, 𝑘 = 1, . . . 𝑚, (31)

Thus, the second term of Equation (27) is negative.

The first term on the right side of Equation (25) has the following properties:

P𝑘+2 ≥ (𝐼 − K𝑘𝐶𝑘 )P𝑘+2(𝐼 − K𝑘𝐶𝑘 )𝑇
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(𝐼 − K𝑘𝐶𝑘 ) is invertible, and we have(P𝑘+2
)−1 ≤ (𝐼 − K𝑘𝐶𝑘 )−𝑇𝑘

(P𝑘+2
)−1 (𝐼 − K𝑘𝐶𝑘 )−1 (32)

According to EKF,
P𝑘+1 = 𝐴𝑘P𝑘+2𝐴

𝑇
𝑘 + 𝑅1 = 𝐴𝑘 (P𝑘+2 + 𝐴−1

𝑘 𝑅1𝐴
−𝑇
𝑘 )𝐴𝑇𝑘

Thus, (P𝑘+1
)−1

= 𝐴−𝑇
𝑘 (P𝑘+2 + 𝐴−1

𝑘 𝑅1𝐴
−𝑇
𝑘 )−1𝐴−1

𝑘

By the following matrix inversion lemma,

(Γ−1 +Ω)−1 = Γ − Γ(Γ +Ω−1)−1Γ

where Γ and Ω are two non-singular. matrices,

P−1
𝑘+1 = 𝐴−𝑇

𝑘 [P−1
𝑘+2 − P−1

𝑘+2(P−1
𝑘+2 + 𝐴𝑇𝑘𝑄−1𝐴𝑘 )−1P−1

𝑘+2]𝐴−1
𝑘

Using Equation (32) and defining 𝐿 = (𝐼 − K𝑘𝐶𝑘 ),

P−1
𝑘+1 ≤ 𝐴−𝑇

𝑘 𝐿−𝑇 [P−1
𝑘+2

−
(P𝑘+2

)−1
𝐿−1(P−1

𝑘+2 + 𝐴𝑇𝑘 𝑅−1
1 𝐴𝑘 )−1𝐿−𝑇P−1

𝑘+2]𝐿−1𝐴−1
𝑘

(33)

Now,
P−1
𝑘+2 = P−1

𝑘+2(𝐼 − K𝑘𝐶𝑘 )−1 = P−1
𝑘+2𝐿

−1

Hence,
𝐿𝑇 𝐴𝑇𝑘P−1

𝑘+1𝐴𝑘𝐿 ≤ (𝐼 − (𝐼 + P−1
𝑘+2𝐴

𝑇
𝑘𝑄

−1𝐴𝑘 )−1𝐿−𝑇 )P−1
𝑘+2

Combining the last term of Equation (29) with the first term on the right side of Equation (25),

𝑒 (𝑘) (𝐼 − K𝑘𝐶𝑘 )𝑇 𝐴𝑇𝑘P−1
𝑘+1𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

≤ 𝑒 (𝑘) (1 − (1 + 𝑝𝑎̄2/𝑞)−1(1 + 𝑘̄𝑐 + 𝜆)−1)P−1
𝑘+2𝑒 (𝑘)

≤ (1 − 𝛼)


P−1

𝑘+2



 ‖𝑒 (𝑘)‖2
(34)

where ‖𝐴𝑘 ‖ =
√
𝑡𝑟 (𝐴𝑘𝐴𝑘 ) ≤ 𝑎̄, ‖𝐶𝑘 ‖ =

√
𝑡𝑟 (𝐶𝑘𝐶𝑘 ) ≤ 𝑐, ‖K𝑘 ‖ =

√
𝑡𝑟 (K𝑘K𝑘 ) ≤ 𝑘̄ , 𝜆 =



Λ−1


, 𝑝𝐼 ≤ P𝑘+2 ≤

𝑝𝐼, 𝑞𝐼 ≤ 𝑅1, and

𝛼 =
1

(1 + 𝑝𝑎̄2/𝑞) (1 + 𝑘̄𝑐 + 𝜆)
< 1

Combining Equation (26), the first term of Equation (29), and Equation (34),

𝑉𝑘+1 = (1 − 𝛼)


P−1

𝑘+2



 ‖𝑒 (𝑘)‖2

+𝜆max [Λ] 𝜌̄ + 𝜆max
[P−1

𝑘+1
]
( 𝜌̄ + 𝑠)

≤ (1 − 𝛼)𝑒 (𝑘) P−1
𝑘+2𝑒 (𝑘)

+𝜆max [Λ] 𝜌̄ + 𝜆max
[P−1

𝑘+1
]
( 𝜌̄ + 𝑠)

(35)
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Thus,
𝑉𝑘+1 −𝑉𝑘 ≤ −𝛼𝑉𝑘 + 𝜅

where 𝜅 = 𝜆max
[P−1

𝑘+1
]
( 𝜌̄ + 𝑠) + 𝜆max [Λ] 𝜌̄. If

𝛼𝜆min
[P−1

𝑘+2
]
‖𝑒 (𝑘)‖2 ≥ 𝜅

then 𝑉𝑘+1 −𝑉𝑘 ≤ 0, ‖𝑒 (𝑘)‖ decreases. Thus, ‖𝑒 (𝑘)‖ converges to Equation (23).

3. GENETIC ALGORITHM AND SLAM FOR PATH PLANNING

Path planning is one key problem of autonomous robots. Here, the map is built by the sliding mode SLAM:

• The obstacle set is defined by 𝐵𝑜𝑏𝑠 (𝑡).
• The position is 𝑥𝑟 (𝑡), 𝐵 𝑓 𝑟𝑒𝑒 (𝑡) = 𝐵\𝐵𝑜𝑏𝑠 (𝑡).
• The path planning is 𝑓 (𝑥(𝑡), 𝑥𝑆, 𝑥𝑇 ), 𝑥𝑆 = 𝑥𝑟 (𝑡).

The previous map is 𝐵 𝑓 𝑟𝑒𝑒 (𝑡), which requires the path 𝑓 (𝑥(𝑡), 𝑥𝑆, 𝑥𝑇 ).

We assume the previous map is obstacle-free, the initial point is 𝑥𝑆 , the target point is 𝑥𝑇 ∈ 𝐵,

𝐵 𝑓 𝑟𝑒𝑒 = {𝑧𝑟 ∈ 𝐵 | 𝐴(𝑧𝑟 ) ∩ 𝐵𝑜𝑏𝑠 = ∅}

the obstacle is 𝐵𝑜𝑏𝑠 = 𝐵 𝑓

𝐵
𝑒
, 𝑧𝑟 is the shape of the robot, and 𝐴(𝑧𝑟 ) is the area of the robot. The objective of the

path planning is to find a path 𝑓 (𝑥, 𝑥𝑆, 𝑥𝑇 ) ∈ 𝐵 𝑓 𝑟𝑒𝑒 that allows the robot to navigate.

𝐷 is defined as the search space. We use the GA to find an optimal trajectory 𝑓 (𝑥, 𝑥𝑆, 𝑥𝑇 ), such that

min
𝑥∈𝐷

𝑓 (𝑥, 𝑥𝑆, 𝑥𝑇 ), where 𝑓 : 𝐷 → 𝑅 (36)

Here, we use stochastic search for GA, and each iteration includes: reproduction or selection, crossing or
combination, and mutation. The population is 𝑃(𝑘) = {𝑆𝑘1 , 𝑆

𝑘
2 , .., 𝑆

𝑘
𝑚} with 𝑚 being the size of the population

that represents the possible solutions:

(1) Every chromosome 𝑆𝑡𝑖 has a solution in 𝐷

𝑆𝑘𝑖 = [𝜍𝑙 , 𝜍𝑙−1, . . . , 𝜍2, 𝜍1] with 𝜍𝑖 ∈ 𝐷 ∀𝑖 = 1, 2, . . . , 𝑙

(2) Crossing the chromosomes. An intersection in 𝑆𝑘𝑎 = [𝜍𝑎𝑙 , 𝜍
𝑎
𝑙−1, . . . , 𝜍

𝑎
2 , 𝜍

𝑎
1 ] and 𝑆

𝑘
𝑏 = [𝜍𝑏𝑙 , 𝜍

𝑏
𝑙−1, . . . , 𝜍

𝑏
2 , 𝜍

𝑏
1 ]

belongs to 𝐷, such that 𝑆𝑡𝑎 ∩ 𝑆𝑡𝑏 ≠ ∅; then,

𝑆𝑘𝑎′ = [𝜍𝑎𝑙 , 𝜍
𝑎
𝑙−1, . . . 𝜍

𝑎𝑏
𝑖 , . . . , 𝜍

𝑏
2 , 𝜍

𝑏
1 ]

𝑆𝑘𝑏′ = [𝜍𝑏𝑙 , 𝜍
𝑏
𝑙−1, . . . 𝜍

𝑎𝑏
𝑗 , . . . , 𝜍

𝑎
2 , 𝜍

𝑎
1 ]

where 𝑆𝑡𝑎′ and 𝑆
𝑡
𝑏′ are the next generation from two compatible chromosomes by crossing.

(3) Mutation. It replace a number of chromosomes by chromosomes in 𝐷.

The mutation operation is calculated by the fitness of each chromosome,
𝑃(𝑀𝑢𝑡) = [ 𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡1 ), 𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡2 ), . . . , 𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡𝑛 )], where 𝑛 is the number of mutations and 𝑓 𝑖𝑡 uses the
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Figure 2. Roadmap genetic algorithm model as a finite Markov chain.

Euclidean distance. The total fitness is 𝐹𝑖𝑡 =
𝑛∑
𝑖=1
𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡𝑖 ). Therefore, the probability of selection 𝑝𝑖 of a

chromosome 𝑆𝑖 for 𝑖 = 1, 2, . . . , 𝑛 is

𝑝𝑖 =
𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡𝑖 )
𝐹𝑖𝑡

(37)

An optimal solution 𝑝𝑀 in 𝐷 is mutated by

𝑝𝑀 = lim
𝑛→∞

(1 − 𝑝𝑖) = lim
𝑛→∞

©­­­«1 −
𝑓 𝑖𝑡 (𝑆𝑀𝑖 )
𝑛∑
𝑖=1
𝑓 𝑖𝑡 (𝑆𝑀𝑖 )

ª®®®¬ = 1 (38)

In the mutation operation, an optimal solution with 𝑝𝑀 = 1 is a global solution if 𝑛 → ∞. To prove the
convergence, we use a Markov chain, as shown in Figure 2. Each chromosome can move from 𝑄𝑖 𝑗 to the state
𝑄𝑖( 𝑗+1) . The moving probability is 𝜌 𝑗𝑖,𝑖𝑘 > 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑘, 𝑗 = 1, 2, . . . , 𝑚.

The operators, selection, crossing, and mutation create 𝑃(𝑘) with 𝑝𝑘 . It preserves the best chromosomes of
𝑃(𝑘 − 1). 𝑃(𝑘 + 1) in the population 𝑃(𝑘) can be regarded as the Markov transition:

𝐻{𝑄𝑘+1 = 𝑝𝑘+1 |𝑄𝑘 = 𝑝
𝑘 } = 𝐻 (𝑝𝑘+1, 𝑝𝑘 ) (39)

Theorem 2 If GA for the roadmap is an elitist process, then the probability of 𝑝∗in 𝐷 is exponential.

Proof 2 The iteration 𝑄1 is changed with the chromosomes when genetic process is elitist,

𝐻 (𝑄1 = 𝑝∗∀0 < 𝜏 ≤ 𝑛) =
𝑛∑
𝑖=2
𝜌𝑖1,11 =

𝑛 − 1
𝑛

(40)

where 𝑛 is the size of the population. If for all 𝛼, 𝛽 ∈ 𝐷, there is 0 < 𝜏 ≤ 𝑚 such that 𝐻𝜏 (𝛼, 𝛽) ≥ 𝜖 > 0, then

𝜖 = min {𝐻𝜏 (𝛼, 𝛽)∀0 < 𝜏 ≤ 𝑛} ≤ 1 (41)

This implies that, given certain state 𝑄𝑡 , the probability of transition in time 𝑡 between 𝑡 and 𝑡 + 𝑚 is at least 𝜖 ,

𝐻 (𝑄𝑡 ≠ 𝑝∗∀𝑡 < 𝜏 ≤ 𝑡 + 𝑛) ≥ 1 − 𝜖 (42)

Without loss of generality, the transition in the iteration 𝑘 + 1 is

𝐻 (𝑄𝑘+1) = 𝐻 (𝑄𝑡 ≠ 𝑝∗∀0 < 𝑡 ≤ (𝑘 + 1)𝑛)
𝐻 (𝑄𝑡 ≠ 𝑝∗∀0 < 𝑡 ≤ 𝑘𝑚𝑛)𝐻 (𝑄𝑡 ≠ 𝑝∗∀𝑘𝑛 < 𝑡 ≤ (𝑘 + 1)𝑛)
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Using Equation (42), we have

𝐻 (𝑄𝑘+1) ≤ 𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ 𝑘𝑚)(1 − 𝜖)
≤ 𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ (𝑘 − 1)𝑚)(1 − 𝜖)2

≤ 𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ 0)𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ 𝑚)(1 − 𝜖)𝑘
= 1

𝑚 (1 − 𝜖)𝑘

where 𝐻 (𝑃𝑡 ≠ 𝑝∗∀0 < 𝑡 ≤ 0) = 1, then

lim
𝑘→∞

𝐻 (𝑄𝑘+1) ≤ lim
𝑘→∞

1
𝑛 (1 − 𝜖)𝑘

= 1
𝑛 lim
𝑘→∞

(1 − 𝜖)𝑘 = 0

Since 0 < 𝜖 ≤ 1, the algorithm converges exponentially to 𝑝∗ in: population size 𝑛 and iteration number 𝑘 .

The algorithm of the SLAM-based roadmap GA for the path planning is as follows.

SLAM based roadmap GA. (1) Initiate population randomly 𝑃(𝑘) of size 𝑛 that belong in set 𝐷. (2) The
fitness value is 𝑓 𝑖𝑡 with Euclidean distance for each chromosome 𝑆𝑖 . (3) The population is from lower to
higher fitness: 𝑓 𝑖𝑡 (𝑆1) ≥ 𝑓 𝑖𝑡 (𝑆2) ≥ · · · ≥ 𝑓 𝑖𝑡 (𝑆𝑀 ). (4) Crossing set in the chromosomes, 𝑆𝑖 ∩ 𝑆 𝑗 → 𝑆𝑖 𝑗 , 𝑆 𝑗𝑖 .
(5) Next population 𝑃(𝑘 + 1) is replaced by the chromosomes with poor skills. (6) Random mutation with
poor skills. (7) Go to Step (2)

4. AUTONOMOUS NAVIGATION

Our AN uses both sliding mode SLAM (Algorithm 1) and the roadmap GA method (Algorithm 2). The
autonomous navigation algorithm is:

Autonomous navigation. The initial state 𝑆𝐼 , the target 𝑆𝑇 𝑃− = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅1), 𝑃+ = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅2) 𝜌 =
gain sliding mode, 𝑟𝑂 = search radius 𝑀𝑎𝑝 =search_obstacles(𝑆𝐼 , 𝑟𝑂) 𝑆𝑛 = Path_Planning(𝑀𝑎𝑝, 𝑆𝐼 , 𝑆𝑇 ) 𝑈0 =
Controller(𝑆𝐼 , 𝑆𝑛) while 𝑆𝑛 ≠ 𝑆𝑇[

𝑀𝑎𝑝𝑘 , 𝑋̂𝑘
]
= 𝑆𝑀_𝑆𝐿𝐴𝑀

(
𝑆𝑘 , 𝑆𝑛,𝑈𝑘 , 𝑃

−
𝑘 , 𝑃

+
𝑘 , 𝜌, 𝑧𝑘

)
𝑆𝑖 = 𝑋̂𝑘 (end state) 𝑀𝑎𝑝 (𝑒𝑛𝑑 : 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀𝑎𝑝𝑘 )) = 𝑀𝑎𝑝𝑘 [𝑆𝑛

𝜃𝑖] =Path_Planning(𝑀𝑎𝑝, 𝑆𝑖 , 𝑆𝑇 ) if 𝜃𝑖 > 𝜋 𝑆𝑛 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝐿𝑜𝑐𝑎𝑙 (𝑀𝑎𝑝, 𝑆𝑖 , 𝑆𝑇 , 𝜃𝑖)
end if; 𝑈𝑘+1 = Controller(𝑆𝑖 , 𝑆𝑛) end while return 𝑆𝑛, 𝑋̂𝑘

The PP needs the map, robot position, and target. This information is given by the sliding mode SLAM algo-
rithm. When the algorithm falls into a local solution, we use the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝐿𝑜𝑐𝑎𝑙 function to provide
another 𝑆𝑛 which is outside the local zone.

5. COMPARISONS

In this section, we use several examples to compare ourmethod with the three other recent methods: the polar
histogram method for path planning [50], the grid method for path planning [51], and SLAM with extended
Kalman filter [52].
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Figure 3. Sliding mode simultaneous localization and mapping.
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Figure 4. Autonomous navigation using sliding mode simultaneous localization and mapping and genetic algorithm method.

5.1. Simulations
The following simulations were implemented in partially unknown and completely unknown environments.
The size of the environments was 100 m × 100 m, in which a solution was sought to find a trajectory from the
initial point 𝑥𝑆 to the target point 𝑥𝑇 . The sliding mode gains were selected as 𝜌 = 𝑑𝑖𝑎𝑔([0.1, · · · , 0.1]).

In the partially unknown environments, 𝐵𝑜𝑏𝑠 (0) ≠ ∅. The path planning solution 𝑝∗ was partial because
the environment 𝐵𝑜𝑏𝑠 (𝑡) was variant in time. Figure 3 shows a partial solution 𝑝∗ from an initial point 𝑥𝑆 to
the objective point 𝑥𝑇 for the partially unknown environment. Figure 4 shows the overall result of the robot
navigation from point 𝑥𝑆 to point 𝑥𝑇 with the robust SLAM algorithm combined with the GA.

Here, the SLAM algorithm was used to construct the environment and find the position of the robot. At the
beginning of navigation in the partially unknown environment, there was a planned trajectory of navigation
through the GA algorithm; however, if an obstacle was found in the planned trajectory, the GA algorithm
needed to be used to search for a new trajectory within the built environment by the SLAM, 𝐵𝑆𝐿𝐴𝑀 . The
planned trajectory belonged to the set of obstacles that prevent reaching the goal, 𝑝∗ ⊂ 𝐵𝑜𝑏𝑠 (𝑡); therefore, it
was necessary to look for a new trajectory using RGA that allowed reaching the goal.

For the completely unknown environments, 𝐵𝑜𝑏𝑠 (0) = ∅. In these environments, the SLAM algorithm was
required to know the environment 𝐵𝑆𝐿𝐴𝑀 and the position of the robot; in this way, when an obstacle was
found that contained the planned trajectory, a new trajectory with the GA algorithm was searched on the map
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Figure 5. Sliding mode simultaneous localization and mapping and genetic algorithm in complete unknown environment.
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Figure 6. Polar histogram method in complete unknown environments.

𝐵𝑆𝐿𝐴𝑀 until the target point was reached the results obtained are shown in Figure 5. When we used the polar
histogram method for path planning [50], only the local solutions could be found [Figure 6].

Now, we compare the path lengths with the polar histogram method. The following density of the obstacles
give the navigation complexity. The environment is free of obstacles when 𝑑𝑜𝑏𝑠 = 0.The whole environment
is occupied by the obstacles when 𝑑𝑜𝑏𝑠 = 1. The index for the trajectory error is

𝐸𝑃𝑃 =
𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ

100
(43)

We use the averages of the path length. The obstacles density is defined as

𝑑𝑜𝑏𝑠 =

∑
𝑛∈𝐺𝑂

𝑆𝑜𝑏𝑠 (𝑛)
‖𝐺𝐸 ‖

(44)

The path length is defined as

𝑙𝑠𝑢𝑏 =
𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ
(45)

The averages of the path lengths of our RA and the polar histogram are shown in Figure 7. When the density
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Figure 8. Sliding mode simultaneous localization and mapping (gray) and grid method (black)

of obstacles was bigger, the path length of the polar histogram grew more quickly than that of ours. When the
obstacle density 𝑑𝑜𝑏𝑠 was 0.3, 𝐸 [𝑙𝑠𝑢𝑏 , 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛1] = 1.053, 𝐸 [𝑙𝑠𝑢𝑏 , 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛2] = 1.152.

Next, we compare our method with the grid method [51]. The comparison results are shown in Figure 8. For
the task of navigating the robot or system in partially unknown or completely unknown environments, the
SLAM algorithm was used to construct the environment and know the position of the robot. At the beginning
of navigation in the partially unknown environment, there was a planned trajectory of navigation through the
GA algorithm; however, if an obstacle were found in the planned trajectory, the GA algorithm needed to be
used to search for a new trajectory within the built environment by the SLAM, 𝐵𝑆𝐿𝐴𝑀 .

The size of the environments was 100 m × 100 m, in which a solution was sought to find a trajectory from the
initial point 𝑥𝑆 to the target point 𝑥𝑇 . Figure 9 shows a path planning based on the proposed methods to find
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Figure 9. Sliding mode simultaneous localization and mapping based path planning (bold) and grid method (gray).
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Figure 10. Performance of the genetic algorithm.

a solution 𝑓 ∗. Here, 60 local targets were generated 𝑥𝑖 with the search space 𝐷 generated by the trajectories of
the local targets that do not intersect with the set of obstacles; thus, it became an optimization problem to find
an optimal path.

In an environment with previously generated obstacles of 100 m × 100 m, 120 possible targets were randomly
generated 𝑥𝑖 ; therefore, the search space D would be all trajectories 𝑔(𝑥𝑖 ,𝑋 𝑗 ) that do not intersect with the set
of obstacles, where the roadmap genetic algorithm solved the problem of optimization to find a solution to the
problem of path planning. For the problem presented above, we found that the proposed algorithm converged
in 40 iterations. For these results, 100 tests were performed for each number of iterations and, as shown in
Figure 10, the roadmap genetic algorithm converged with greater probability within 40 iterations.

5.2. Application
TheKoalamobile robot byK-teamCorporation 2013 was used to validate our slidingmode SLAM.Thismobile
robot has encoders and one laser range finder. The position precision is less than 0.1 m.
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Figure 11. The environment of the autonomous navigation.
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Figure 12. Results of extended Kalman filter simultaneous localization and mapping and sliding mode simultaneous localization and map-
ping with small noises.

The objective of this autonomous navigation is to force the robot to return to the starting point. The sliding
mode SLAM was compared with SLAM with extended Kalman filter (EKF-SLAM) [52].

The initial covariance matrices are zero. The parameters of the algorithm are

𝜌 = 𝑑𝑖𝑎𝑔( [1𝑒−3, 1𝑒−3, 4𝑒−3, 2𝑒−4, · · · , 2𝑒−4])
𝑅1 = 𝑑𝑖𝑎𝑔([0.05, 0.05, 0.005]), 𝑅2 = 𝑑𝑖𝑎𝑔([6𝑒−4, 1𝑒−5])

Since the robot moves in the environment with bounded noise (see Figure 11), the noises are not Gaussian.
Two different conditions are considered: (1) Koala robot pre-processes off-line the sensors data to reduce 90%
noises; and (2) the computer uses sliding mode SLAM on-line.

For the first case, Figure 12 shows that sliding mode SLAM and EKF-SLAM are similar. Both sliding mode
SLAM and EKF-SLAM work well for the case with less noise. The robot can return to the starting point, and
the map is constructed correctly.

For the second case, Figure 13 gives the results of EKF-SLAM. As can be seen, the robot cannot return to the
starting point and the map is not exactly the same as the real one with EKF-SLAM because EKF-SLAM is
sensitive to non-Gaussian noises.
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Figure 13. Results of extended Kalman filter simultaneous localization and mapping with noises.
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Figure 14. Results of sliding mode simultaneous localization and mapping with noise.

Figure 14 shows the results with SM-SLAM. Under the same bounded noises, SM-SLAM works very well,
because of the sliding mode technique.

To compare the errors, we define the average of the Euclidean errors as

𝐸𝑑 =
1
𝑁𝑇

𝑁𝑇∑
𝑘=1

√
(𝑥𝑘 − 𝑥∗𝑘 )2 + (𝑦𝑘 − 𝑦∗𝑘 )2, 𝐸𝑎 =

1
𝑁𝑇

𝑁𝑇∑
𝑘=1

��𝜙𝑘 − 𝜙∗𝑘 �� (46)

where 𝑁𝑇 is the data number; 𝑥∗𝑘 , 𝑦
∗
𝑘 , and 𝜙

∗
𝑘 are real values for robot position and orientation; and 𝑥𝑘 , 𝑦𝑘 , and

𝜙𝑘 are estimations of them. Figure 15 shows the errors of EKF-SLAM and sliding mode SLAM. Obviously,
the errors of EKF-SLAM increase quickly. Robots have better estimation in long distances with sliding mode
SLAM.
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Figure 15. Direction estimation errors of sliding mode simultaneous localization and mapping (SLAM) and EKF-SLAM. EKF: Extended
Kalman filter.

6. CONCLUSION

Navigation in unknown environments is a big challenge. In this paper, we propose sliding mode SLAM with
genetic algorithm for path planning. Both slidingmode andGA can work in unknown environments. Conver-
gence analysis is given. Two examples were applied to compare our model with other models, and the results
show that our algorithm is much better in unknown environments.
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