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During the systemic inflammatory response to acute infection, and when in a safe 
environment, endothermic mammals typically display reduced activity and food intake, 
increased sleep, and the adoption of a curled-up position. These changes in behavior, in 
concert with fever, are adaptive in that they contribute to host survival. The present review 
addresses the immune-to-brain signaling pathways as well as possible neural substrates 
mediating reduced exploration and food intake during acute systemic inflammation. These 
involve rapid activation of peripheral nerves and glutamatergic brainstem circuits as well 
as slower IL-1β action in the brain activating limbic and possibly ventral hypothalamic 
structures. Although mostly adaptive acutely, behavioral changes during inflammation may 
also reflect brain dysfunction in severe sepsis-associated delirium or become maladaptive 
and result in depression due to medical conditions that involve long-term inflammatory 
episodes with pain or discomfort. The mechanisms underlying these conditions are 
presently ill-understood even though neuroinflammation and neurodegeneration occur 
during and subsequent to sepsis-associated brain dysfunction, respectively.
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INTRODUCTION

Fever and reduced activity and food intake as 
adaptive host responses to infection
The finding in the 1970s that peripheral administration 
of non-steroid anti-inflammatory drug-type antipyretics 
lowered survival of different species of animals after 
their inoculation with bacteria provided a conclusive 
piece evidence in favor of the idea that fever was 
beneficial for survival of infected organisms.[1-3] But 

fever is an energetically costly response often requiring 
an increase in metabolism of 30-50%.[4] Text books of 
human and veterinary medicine often have mentioned 
reduced activity and appetite along with the occurrence 
of fever during infectious disease.[4] From an energy 
balance point of view on endotherms, it makes sense 
to reduce energy expenditure in the form of physical 
activity, such as exploration of one’s environment, 
during fever. But, given the adaptive value as well as 
the high energy costs of increasing body temperature in 
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response to infection, one may wonder how come then 
that the infected organism refrains from taking in more 
energy? In fact, reducing food intake upon infection may 
be an adaptive response as well since force-feeding 
mice during acute bacterial infection, it was indeed 
found to increase mortality.[5]

Sickness behavior as motivated behavior
Benjamin Hart[4] stated that in a “sickness behavior” 
perspective “the sleepy or depressed or inactive animal is 
less motivated to move about using energy that could fuel 
metabolic increases associated with fever”. To consider 
sickness a motivation, like fear, hunger, thirst and other 
motivational states, implies that its expression is flexible 
depending on other motivations. Thus, it is important 
to show that its occurrence does indeed depend on 
environmental conditions. Interestingly, rats that depend 
entirely on hoarded food for their consumption, when 
rendered sick by bacterial lipopolysaccharide (LPS) 
endotoxins, continued to hoard more food, even though 
they did not consume it, than did animals injected with 
LPS that had the possibility to hoard, but also received 
food in their cage.[6] Thus, the expression of sickness 
behavior depends on the external conditions and, in this 
case, likely on the motivation to hoard food. Based on 
these and other observations, sickness behavior is now 
considered as the expression of a motivational system 
that reorganizes the organism’s perception and action.

Sepsis-associated encephalopathy and 
delirium
Septic encephalopathy or brain dysfunction occurs in 
up to 70% of sepsis patients.[7] Encephalopathy was 
replaced by delirium due to a general medical condition 
in Diagnostic and Statistical Manual of Mental Disorders-
IV and described as a disturbance in consciousness 
or perception or change in cognition characterized 
by reduced ability to focus or sustain attention and 
fluctuating changes in mental status, ranging from 
confusion to coma. However, functioning of the entire 
neuraxis and peripheral nerves can be disturbed 
during sepsis. Indeed, abnormal or slowed postural or 
protective reflexes have often been reported to occur 
during sepsis.[8-10] Therefore, and notwithstanding the 
fact that sickness behavior can clearly be adaptive in 
response to an acute infection, it should also be clear 
that during severe sepsis important cerebral dysfunction 
can occur.

Why immune-to-brain signaling?
Fever can be defined as “a state of elevated core 
temperature” that is “due to an elevation of the set-point 
of body temperature, according to which the higher 
temperature is actively established by the operation 
of thermo-effectors”.[11] Since the set-point of body 

temperature is regulated by the preoptic hypothalamus, 
this gave rise to the question how the immune system 
signals the brain to bring about fever when animals are 
infected with bacteria.

The view of sickness behavior as being due to a 
motivation also implies immune-to-brain signaling. 
Indeed, even though the brain circuits underlying every 
single postulated motivational system are not known 
in full detail, motivations are mediated by brain circuits 
comprising the hypothalamus and limbic system. 
Thus, the occurrence of sickness behavior in response 
to exposure of animals to bacteria also begged the 
question as to how such events are signaled to the 
brain. In what follows the actions of the pro-inflammatory 
cytokine interleukin-1 (IL-1) on peripheral nerves, brain 
circumventricular organs and the blood-brain barrier 
(BBB), IL-1 transport across the BBB and IL-1 synthesis 
in the brain will be discussed as immune-to-brain 
signaling pathways.

FROM IMMUNE-TO-BRAIN SIGNALING TO 
NEUROINFLAMMATION?

Intereukin-1 as a mediator of immune-to-brain 
signaling that cannot passively cross the BBB
Once bacteria or their components have entered host 
tissues, they activate innate immune cells, including 
monocytes-macrophages and neutrophils, to generate 
an inflammatory response mediated by cytokines, such 
an interleukin-1β (IL-1β).[12,13] Peripheral injection of IL-
1β mimics the symptoms of sickness and the signs of 
disease normally seen after infection.[14] Conversely, 
systemic administration of the naturally occurring 
IL-1 receptor antagonist (IL-1ra) alleviates or blocks 
systemic bacterial LPS-induced fever in rats.[15,16] 
In addition, peripheral IL-1ra also attenuates the 
reduction in locomotor activity and social interactions 
after systemic LPS injection.[17] Thus, IL-1 mediates, at 
least in part, fever and sickness behavior when these 
occur in response to the administration of bacterial 
LPS. However, the fact that IL-1 is a hydrophilic large 
peptide of 17 kDa means that it cannot passively cross 
the BBB separating the brain parenchyma from blood. 
Consequently, proposing and testing IL-1-mediated 
immune-to-brain signaling pathways became a topic of 
intense research activity from the 1990s onwards.

Circulating IL-1 acting in brain circumventricular 
organs lacking a BBB
In the early 1980s, antipyretics were already known to 
inhibit the synthesis of prostaglandins, a family of small 
lipophilic mediators. IL-1 was subsequently found to 
induce the formation of prostaglandin E2 (PGE2) by 
stimulating the synthesis of the rate-limiting enzyme 
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cyclooxygenase in monocytes, fibroblasts, muscular 
and nervous tissue.[18] Around the same time, lesions 
of the anteroventral wall of the third brain ventricle, 
which contains the organum vasculosum of the lamina 
terminalis (OVLT), a brain cirumventriular organ where 
the blood-brain barrier is absent, were shown to 
suppress the fever response to peripheral administration 
of bacterial LPS or IL-1.[19,20] In addition, local injection 
of PGE2 into the OVLT resulted in higher fever than its 
administration in the preoptic area.[21] This led to the first 
hypothesis of IL-1-mediated immune-to-brain signaling 
pathway according to which circulating IL-1 acts in the 
OVLT to induce the production of PGE, which, in turn, 
modulates thermosensitive neurons in the preoptic area 
[Figure 1A-1].[22]

Transport of circulating IL-1 across the BBB
A more general alternative hypothesis of immune-to-
brain signaling was put forward after it was shown that 
intravenously administered radioactive recombinant 
IL-1α or β entered the brain by a saturable transport 
mechanism [Figure 1B-2].[23,24] Subsequent studies 
provided evidence indicating that transport over the 
brain endothelium making up the BBB contributed more 
to the presence of intravenously injected IL-1 in the brain 
than the contained leakage from a circumventricular 
organ.[25] At the same time evidence for the presence of 
IL-1 receptors in the brain accumulated.[26-34] Moreover, 
administration of IL-1ra into the lateral brain ventricle 
was found to attenuate the reduction in social exploration 
and food-motivated behavior, but not the fever response, 
after systemic IL-1β injection.[35,36] These findings thus 

clearly indicate that IL-1 can act in the brain to bring 
about changes in behavior after its peripheral injection.

Brain production of IL-1
As early as 1984, bioactive IL-1 had been detected in the 
brains of mice that were given systemic bacterial LPS 
endotoxin and showing signs of sickness behavior.[37] 
In 1992, the presence of IL-1β immunoreactive 
mononuclear cells around blood vessels of the central 
nervous system (CNS) was observed several hours 
after an intravenous injection of a high dose of bacterial 
LPS in rats.[38] When using lower doses of bacterial LPS 
injected either intravenously or intraperitoneally, cells in 
the circumventricular organs and choroid plexus were 
found to synthesize IL-1β [Figure 1A-3].[39-43] Soon after 
this, mRNA for the LPS-recognizing receptor Toll-like 
Receptor 4 was found to be expressed in these organs.[44] 
Interestingly, IL-1β was also found to be synthesized by 
cells with microglial morphology in brain parenchyma 
adjacent to circumventricular organs, including in the 
arcuate nucleus of the hypothalamus and in the nucleus 
of the solitary tract, beyond 4 h after peripheral LPS 
injection.[43] Bioactive IL-1 is found in plasma but not in 
the brain 2 h after systemic LPS administration, whereas 
at 6 h IL-1 is bioactive in the brain but not in plasma.[45] 
When IL-1ra was given into the lateral brain ventricle 
at the time that brain IL-1 was bioactive, it was found 
to attenuate reduced social exploration without affecting 
the fever response after peripheral LPS injection.[46] The 
subsequent finding that peripheral administration of a 
neutrophil-neutralizing antiserum attenuates brain IL-1β 
expression as well as the reduction in locomotor activity 

Figure 1: Immune-to-brain signaling pathways involving interleukin-1 in brain circumventricular organs (A), at the blood-brain barrier (B) 
and peripheral nerves (C) and substrates of altered behavior (D) during peripheral inflammation secondary to infection
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24 h after systemic injection of LPS suggests that 
neutrophil infiltration into brain provides an important 
source of IL-1β at later time points.[47] Hence, brain IL-1 
production and action sustains sickness behavior after 
systemic LPS administration, but not necessarily fever.

Circulating IL-1 inducing prostaglandin synthesis at 
the BBB
In the early 1990s, a second form of the rate-limiting 
prostaglandin synthesizing enzyme cyclooxygenase 
(COX) was identified and found to be induced along 
brain blood vessels after peripheral administration of 
bacterial LPS or IL-1β.[48-50] Concurrently, it was shown 
that most IL-1 receptors in the rodent brain were 
expressed along blood vessels making up the BBB 
[Figure 1B-4].[31-34] This led to the hypothesis according 
to which circulating IL-1 acts on its signaling receptor 
expressed by brain endothelial cells to induce COX-
2-mediated prostaglandin production, which, given 
their lipophilic profile, can diffuse across the BBB and 
activate prostaglandin receptors on neurons to bring 
about sickness symptoms.[48,49] Testing of this hypothesis 
using mice in which endothelial cells were deficient in 
COX-2 or PGE synthase showed that although the fever 
response to an intraperitoneal injection of IL-1β was 
abolished in these animals, the reduction in locomotor 
activity was not affected.[51,52] So, in accordance with a 
hypothesis put forward in 2002,[53] BBB prostaglandin 
synthesis underlies IL-1β-induced fever, but not 
necessarily sickness behavior.

IL-1 action on peripheral nerves
At least two of the classical symptoms of local 
inflammation, heat and pain, correspond to sensory 
modalities and thus involve neural activation. 
Interestingly, local IL-1β application under the skin of a 
rat paw was shown in 1994 to increase the sensitivity 
to mechanical and heat stimuli and to augment electric 
activity of sensory nerve fibers.[54] Based on these 
considerations, IL-1 was proposed to act on neural 
sensory afferents to signal the brain and bring about 
symptoms of sickness [Figure 1C-5]. In accordance 
with this hypothesis, subdiaphragmatic vagotomy 
was shown to attenuate the reduction in social 
exploration and food-motivated behavior, conditioned 
taste aversion, increased sleep and hyperalgesia as 
early as 2 h after intraperitoneal administration of IL-
1β or bacterial LPS.[55-59] Reversible inactivation of 
the dorsal vagal complex, which contains the central 
terminals of vagal sensory fibers, by local anesthesia 
also restored social exploration after intraperitoneal 
LPS administration.[60] Moreover, the febrile responses 
to systemic administration of low doses of IL-1β or 
LPS were also attenuated by prior subdiaphragmatic 
vagotomy, whereas fevers after higher doses were 

unaffected by this procedure.[61-68] Furthermore, selective 
chemical lesions of C-fiber afferents after intraperitoneal 
injection of capsaicin in adult rodents were found to 
also attenuate the first phase of the fever response in 
response to systemic administration of LPS.[69] This 
suggests that LPS-induced rapid fever responses may 
involve vagally-mediated immune-to-brain signaling 
with later fever peaks or prolonged fever depending on 
prostaglandin synthesis at blood-brain interfaces.

Soon after the first vagotomy studies, intravenous IL-1β 
administration was found to increase afferent discharge 
activity of the hepatic and gastric branches of the 
vagus nerve in a prostaglandin-dependent way.[70-72] 

Subsequently, vagal paraganglia and the nodose 
ganglion containing the neuronal cell bodies of the vagus 
nerve were observed to bind IL-1ra and to express the 
signaling IL-1 receptor.[72,73] In addition, spinal sensory 
afferent cell bodies in dorsal root ganglia also express 
mRNA coding the signaling IL-1 receptor and their 
peripheral fibers respond to local administration of IL-
1β by increasing their activity as well as their sensitivity 
to heat in vitro.[74,75] Interestingly, ganglia of both vagal 
and spinal sensory nerves express TLRs and some 
bacteria have been shown to directly activate sensory 
neurons.[76-78] Taken together, these findings suggest 
that low doses of IL-1β or bacterial fragments may act 
on sensory nerve fibers to signal the central nervous 
system to give rise to early fever, hyperalgesia and 
sickness behavior [Figure 1C-6].

ACTIVATION OF NEURAL SUBSTRATES 
OR INITIATION OF NEURODEGENERATION 
DURING SYSTEMIC INFLAMMATION?

Neural substrates of acute sickness behavior
Possible neural substrates of bacterial LPS-induced 
hypophagia
The basomedial hypothalamus plays an important 
role in the long-term regulation of food intake. 
Interestingly, lesions of the arcuate nucleus of the 
hypothalamus [Figure 1D] exacerbated the anorectic 
effect of peripheral IL-1β administration.[79] However; 
antagonizing the action of α-melanocyte stimulating 
hormone, which is produced by neurons of the arcuate 
nucleus of the hypothalamus, on central melanocortin 
receptors has been found to alleviate hypophagia after 
the peripheral administration of either IL-1β or LPS 
from 8 h onwards.[80,81] These findings indicate that the 
overall role of the arcuate hypothalamus is to counter 
reduced food intake, even though activation of some 
of its composing neurons does seem to play a role in 
sustained inflammation-associated hypophagia.

The brainstem mediates short-term regulation of food 
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intake and glutamatergic projections from the nucleus 
of the solitary tract [Figure 1D] to the parabrachial 
nuclei reduce food intake.[82] Interestingly, brainstem 
metabotropic glutamate receptor antagonism was found 
to attenuate hypophagia and to increase food intake 
during the first 6 h after peripheral LPS to a greater 
extent than in vehicle-treated animal.[83] In parallel, 
intra fourth ventricle administration of this metabotropic 
glutamate receptor antagonist also reduced expression 
of the cellular transcription activation marker c-Fos in 
the nucleus of the solitary tract and lateral parabrachial 
nuclei.[83] These findings suggest that brainstem 
glutamatergic circuits are part of the neuronal substrates 
that rapidly reduce food intake under inflammatory 
conditions.

Potential neural substrates of bacterial LPS-induced 
reduced exploration
Interestingly, all intervention strategies restoring social 
exploration after intraperitoneal LPS injection also 
reduce induction of the cellular transcription activation 
marker c-Fos in the central nucleus of the amygdala 
(CEA) and the oval bed nucleus of the stria terminalis 
(ovBNST).[46,60,66] The amygdala and the bed nucleus 
of the stria terminalis project to the ventrolateral 
periaqueductal gray (vlPAG) [Figure 1D] in the pons,[84] 
the stimulation of which induces immobility and reduced 
social interactions.[85] Thus, c-Fos expressing neurons in 
the CEA and ovBNST may inhibit GABAergic neurons 
projection to the vlPAG resulting in immobility and 
reduced social interactions.[53] In addition, reduced 
exploration of different environments and devices has 
been shown to be associated with c-Fos expression 
in the ventral tuberomammillary nucleus [Figure 1D] 
after peripheral bacterial LPS injection.[86,87] Reduced 
activation of the ventral tuberomammillary nucleus may 
therefore be part of the neural substrates underlying 
reduced environmental exploration during sickness.

The realization that endogenous IL-1β can act in the brain 
to bring about sickness behavior raised the question 
as to where in the brain it binds to the signaling IL-1 
receptor to reduce social and environmental exploration. 
Although the hippocampus is one of the most prominent 
sites of neuronal IL-1 receptor expression (see transport 
of circulating IL-1 across the BBB), no published 
study to date seems to have critically addressed the 
involvement of hippocampal IL-1 receptors in mediating 
sickness behavior. It is important to point out that this 
is not because such approaches are not available. 
Indeed, several groups have employed hippocampal 
overexpression of the IL-1ra. These studies addressed 
the role of hippocampal IL-1 in mediating responses to 
psychological stressors, such as electrical shocks and 
chronic isolation, and not those occurring upon exposure 

to infectious microorganisms or their components.[88,89] 
However, the findings of Chaskiel et al.[83] show that 
selective lesioning of IL-1 receptor-expressing cells in 
the hippocampus does not alter the reduction in social 
exploration after intracerebroventricular administration 
of IL-1β in mice. Thus, IL-1 receptors in the hippocampus 
do not seem to mediate the component of sickness 
behavior that involves reduced exploration.

Severe sepsis may lead to neurodegeneration
Magnetic resonance imaging of septic patients with brain 
dysfunction has indicated the presence of vasospasms 
in the medial cerebral arteries and ischemic strokes in 
brain gray matter as well as white matter edema.[90-92] 
(see for review[93]) Post mortem examination of brains 
of patients who died from sepsis revealed intracerebral 
hemorrhage, necrotic vessels with infiltrating leukocytes, 
increased perivascular spaces, microglial activation, 
cerebral IL-1β and TNF-α expression, neuronal apoptosis 
as well as perivascular dissociation of myelinated fibers 
and demyelination.[91,94,95] Clinical research thus clearly 
indicates the occurrence of neuroinflammation that may, 
in turn, lead to neurodegeneration.

Recently, several groups have employed cecal ligature 
and puncture (CLP) in rodents to study CNS dysfunction 
associated with sepsis. In these models, food intake 
and social interactions were found to be reduced during 
the first days, while activity and body temperature were 
altered and some conditioning learning tasks impaired 
for several weeks after sepsis induction.[96-99] Increased 
cerebral pro-inflammatory cytokine expression, impaired 
BBB function, cortical perivascular edema, glial cell 
activation, brain leukocyte adhesion and infiltration as 
well as neuronal death and degeneration in cortical 
and subcortical areas have all been observed from the 
first day of CLP onwards.[96-105] Thus, relevant animal 
models of sepsis have been shown to result both in 
transient sickness behavior and in long-term learning 
deficits that are accompanied by neuroinflammation 
and neurodegeneration.

CONCLUSION

During the systemic inflammatory response to acute 
infection, and when in a safe environment, endothermic 
mammals typically display reduced activity and food 
intake, increased sleep, and the adoption of a curled-
up position. These changes in behavior, in concert 
with fever, are adaptive in that they contribute to 
host survival. Although the precise neurobiological 
substrates still need to be worked out, they are 
brought about by immune-to-brain signaling pathways 
that involve rapid activation of peripheral nerves and 
glutamatergic brainstem circuits as well as slower IL-



                                         Neuroimmunology and Neuroinflammation ¦ Volume 3 ¦ September 26, 2016 

Konsman                                                                                                                                                                              Immune-brain circuits and behavior

212

1β action in the brain activating limbic and possibly 
ventral hypothalamic structures. Notwithstanding the 
fact that they are mostly adaptive acutely, behavioral 
changes during inflammation may also reflect brain 
dysfunction in severe sepsis-associated delirium or 
become maladaptive and result in depression due to 
medical conditions that involve long-term inflammatory 
episodes with pain or discomfort. The mechanisms 
underlying these conditions are presently ill-understood 
even though neuroinflammation and neurodegeneration 
occur during and subsequent to sepsis-associated brain 
dysfunction, respectively.
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