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Abstract
Aim: A major problem in the Internet of Things (IoT) and Cyber-Physical System (CPS) devices is the detection of
security threats in an efficient manner. Several recent incidents confirm that despite of the existing security solu-
tions, security threats (e.g., malware and availability attacks) can still find their ways to such devices causing severe
damages.

Methods: In this paper, we propose a methodology that leverages the power consumption of wireless devices and
Restricted Boltzmann Machine (RBM) Autoencoders (AE) to build a model that makes them more robust to the
presence of security threats. The method consists of two stages: (i) Feature Extraction where stacked RBM AE and
Principal Component Analysis (PCA) are used to extract features vector based on AE’s reconstruction errors. (ii)
Classifier where One-Class Support Vector Machine (OC-SVM) is trained to perform the detection task.

Results: The validation of the methodology is performed on real measurement datasets and covers a wide range of
security threats (namely, malware, DDOS, and cryptojacking). The obtained results show good potential throughout
the five datasets and prove that AEs’ reconstruction error can be used as a good discriminating feature. The obtained
detection accuracy surpasses previously reported techniques, where it reaches up to ∼ 98% in most of scenarios.
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Conclusion: The performance of the proposed methodology shows a good generalization for detecting different se-
curity threats, and, hence, confirms the usefulness and applicability of the proposed approach.

Keywords: Malware detection, power consumption Information, RBM autoencoders, IoT devices, deep learning

INTRODUCTION
Theworld is witnessing an enormous technological transformation, thanks to the offered services and applica-
tions via billions of connected devices. Whether it is the Internet of Things (IoT) or Cyber-Physical Systems
(CPS) devices, the provided services (e.g., self-driving cars, smart healthcare, industrial IoT, or any CPS, to
name a few) will have an incredible impact on people’s lives. Given the exponential growth of such devices
(by 2020, ∼50 billion devices are expected to be in operation [1]), and the continuous access to the Internet, un-
fortunately, these devices represent the next frontier for hackers. Despite the global eagerness about the hefty
benefits that IoT and CPS bring, this narrative is two-sided: On the one side, IoT and CPS create immense
market potential; according to McKinsey, by 2025, the expected annual revenue will reach $ 4-11 billion [2].
On the other side, they create huge security vulnerabilities (25% of the identified attacks in enterprises are
expected to be originated by IoT devices in 2020 [3]. Hence, the need for an efficient methodology to detect
security threats is paramount.

To highlight the severity of the problem to be addressed, the following are recentmotivational incidents: (i)The
number of compromised Android devices by bankingmalware has increased by a factor of 3 in 2018, according
to Kaspersky’s reports [4,5]. The total number of impacted users by at least one such attack during the last year
reached 1.8 million; and (ii) In October 2016, there was a massive Distributed Denial of Service (DDOS) attack
that caused widespread disruption of legitimate Internet activity in the US. This denial of service attack from
unknown culprits on a US Internet service provider’s domain name system caused user access to be severely
restricted. The source of the attack was about 100,000malicious IoT devices, according to the authors [6]. These
incidents prove that existing detection techniques very often fail to prevent such threats, and hence the need
for second line of defense is preeminent.

Earlier research efforts are implemented at different levels: network level [7,8] and devices level [9–14]. Network
level approaches (e.g., [7,8,15]) aim at identifying potential abnormal or malicious user behaviors by exploiting
the idea of resource management (bandwidth and power) and prospect theory. In critical applications such as
Unmanned Aerial Vehicles (UAVs), such solutions add another layer of protection, making these applications
more resistent to different types of attacks. In a parallel research direction, and according to Cvitic et al. [16],
the device layer (also called the physical layer) creates the highest risk due to the limitations of devices. For
that reason, the scope of our paper is the device level anomalous behavior detection.

In this context, we formulate the problem of detecting security threats in devices as an anomalous behavior
detection problem, where the anomaly that is causing the device to behave anomalously could be due to mal-
ware, ransomware, or DDOS attack, to name a few. As shown in Figure 1, the general process starts with data
acquisition (also called monitoring), followed by data analysis and decision making. An anomaly, as per the
IEEE standard, is defined as any condition that deviates from expectations [17]. Anomaly detection refers to
the process of using models to identify behavior that is different from the normal behavior of a systemm [18].

As shown in Figure 1, device level anomalous behavior detection studies can be grouped based on the follow-
ing: (i) the monitoring methodology (i.e., off-device, using external tools [9–11] and on-device: using internal
logging software [19,20]); (ii) the data being monitored/analyzed (e.g., source code and OS of the device [21], the
power consumption of the device [9,19,22], CPU andmemory utilization [23], the network traffic of the device [24],
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Figure 1. Steps for anomaly detection techniques

or even the electromagnetic radiation of the CPU [10,11]); (iii) the analysis location (i.e., in-the-device, analysis
performed in the device itself, and in-the-cloud, analysis carried out on a remote server); and (iv) the employed
detection technique (i.e., supervised, semi-supervised, or unsupervised techniques). It can be noted that the
literature is quite rich; however, each of these approaches has its pros and cons. For example, on-device-based
solutions can cause computation and resource overhead to the system [25]. They further raise a data integrity
flag, whereas, if a device is compromised, then so could be themonitoringmeans and the collected information
themselves [25,26]. API and OS based techniques that use static analysis have some limitations, namely access-
ing the source code. Even if such an access were granted, if malware developers learned about the hypotheses
in analysis, they could adapt their code to look benign and hence go undetected.

Our paper proposes an off-device monitoring and analysis approach that aims to detect security threats in
IoT and CPS devices. In applications that require a total decoupling (isolation) between the monitoring tool
and the target device (the monitored device), off-device-based approaches are preferable. The reason is that
they preserve the integrity of the monitoring tool/data even when the monitored device itself is completely
compromised or under an attack. Therefore, the proposed methodology is based on monitoring the power
consumption of a device and treating it as a signal carrying information about the health of the device. Unlike
other studies that use the power consumption of devices to detect malware [9,19,20,27–29], our proposed approach
requires only the normal behavior of a device in the training phase. In other words, the current approach is a
semi-supervised detection technique; however, those in [9,19,20,27–29] are all supervised techniques that require
the label of both classes, healthy and malicious. Therefore, this methodology aims at detecting new/unseen
anomalous behaviors (e.g., DDOS and zero-day attacks).

The proposed detection methodology is based on: (i) applying a sliding window to the signals to increase the
number of observations of our dataset; (ii) utilizing stacked RBM Autoencoders (AE) to process the collected
information and unsupervisedly extract/learn features based on the reconstruction errors of AE; (iii) applying
PCA to the reconstruction errors of AE, thereby isolating noise and outliers from the training of the recon-
struction; and (iv) training an OC-SVM on the extracted/selected features to detect possible security threats.
The solution strategy makes use of two hypotheses: (i) Every piece of software, whether malware or legitimate,
would have a fingerprint in the power consumption of the wireless device that makes it inevitable for malware
to go undetected; (ii) The power consumption signals obtained from the wireless device that is “malware free”
should have similar patterns (normal/expected behaviors). Such behaviors can be characterized by training
Autoencoders (AE). On the other hand, if the device starts to behave anomalously due to certain causes (se-
curity threats in our case), its power consumption signals should reflect that as a form of deviation from the
norm. Consequently, the resultant AE output—reconstruction error—should beminimal if the wireless device
is still behaving normally and maximal once the device starts to behave anomalously (maliciously).

To evaluate the effectiveness of the proposed solution, we applied our methodology to a large class of datasets
that covers the three main aspects of the device’s security: confidentiality, integrity, and availability. Such
validation coverage was not addressed in previous studies [9,27,28]. We developed an emulated malware that
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can be tuned to represent different malware behaviors. By considering a tunable emulated malware, the idea
is to cover a wide range of malware behaviors so that our methodology can perform well against real mal-
ware as well. Moreover, we tested this argument using five real malware (taken from the well-known Drebin
dataset [30]) and found that our approach generalizes well on them too. We even evaluated our system on a
malware that performs cryptomining, which is a malware that takes over a device’s resources and uses them for
cryptocurrency mining without the user’s explicit permission [31].We also implemented security attacks that
are widely encountered in IoT and CPS devices, namely Distributed Denial of Service (DDoS), where we used
the device as a victim of DDOS and as an attacker (a source of a DDOS attack). We used a smartphone and a
generic IoT device to conduct the experiments and validate the framework; however, the idea can be ported
to a number of application scenarios with additional external hardware to measure the power signal: drones
andmobile robots, to give some examples. In addition, it can be extended/applied to other computing devices:
medical devices or CPS devices. In all of the evaluation scenarios, we achieved a high detection accuracy,
where, in some cases, the accuracy of our work outperformed previously reported detection approaches with
9%-20% detection performance gain.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first work to leverage a combination of stacked RBMAutoencoders,
data augmentation, and principal component analysis (PCA) to capture discriminative information (fea-
tures), in an unsupervised fashion, from the power consumption signals of wireless devices for security
threats detection;

• We utilize the extracted features to build a classifier based on the One-Class SVM that detects when a device
is compromised;

• We empirically validated the methodology on a wide range of security threats to demonstrate its effective-
ness using real measurement datasets

RELATED WORKS
In this section, we discuss the research efforts about detecting a device’s anomalous behavior due to security
threats. We limit our review in this paper to studies thatmainly consider the side-channel information and adopt
dynamic analysis to detect malware. More specifically, we review only the studies that investigated various
techniques to detect malware in embedded and wireless devices based on analyzing their power consumption
information.

Detection of anomalies using devices’ power consumption information was firstly introduced by Kim et al. [29].
They highlighted the fact that the power consumed by devices can be used to detect anomalies which were
difficult to detect by only analyzing the static characteristics of an application. The prototype that they built
is for Windows phones and was used to detect a number of malwares with detection accuracy reaching 80%.
Similar to Kim’s work, Jacoby and Davis [22] showed how to analyze the power consumption and CPU uti-
lization to reveal network attacks by using a battery-based Intrusion Detection System (IDS). In the work [12],
Hoffmann et al. showed that the additional consumed power due to malware is not significant and is similar to
the noise introduced by unpredictable user and environment interactions. Their conclusion stated that battery
life information was not very discriminative to be used to detect malware on smartphones. While their claims
might be correct given the fact that their conclusion is based on the on-device PowerTutor application [32], our
measurement approach is very different, and our measurement’s sampling frequency is much higher, which,
in turn, facilitate higher chances of detecting events that PowerTutor fails to detect. While the PowerTutor
supports 4 samples per second, the Monsoon power monitor used by us supports 5000 samples per second
of power measurement. As a common note about most of the reported techniques, the time required for the
analysis is significantly long, which makes them impractical
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In 2014, Zefferer et al. [19] proposed a different methodology, in which they extracted the power consumption
of an emulated malware running on a smartphone also using the PowerTutor app. Mel Frequency Cepstral
Coefficients (MFCC) was utilized to extract features from each power trace, and then they fit GMM (Gaus-
sian Mixture Model) to classify the power traces. This methodology performs well for recognizing emulated
malware with an accuracy of 92%, but one drawback is that the power consumption was taken with a low sam-
pling rate. Consequently, such a technique may fail to detect malware that is rarely active. This disadvantage
is tackled in the present paper by using an external tool with a much higher measurement sampling rate (5000
samples/s) and changing the way the features are extracted and the way the classification is performed. Fol-
lowing a very similar approach, Yang et al. [20] monitored the power consumption of Samsung Galaxy S5 and
LG G2 smartphones using an on-device tool (PowerTutor [32]). They collected the CPU power consumption
signals and used them to extract a feature vector; the extracted features are MFCC coefficients. They then per-
formed a waveform feature matching using a GMM model. They claimed that the learned model can detect
malware with 79% accuracy; moreover, the model can classify the category of an app (game, browser, or music)
with an accuracy of more than 65%. This disadvantage has been tackled in our work by using an external tool
that has a much higher measurement sampling rate and changing the way the features are extracted and the
way the classification is performed.

Azmoodeh et al. [14] presented a machine learning based approach to detect ransom attacks using the power
consumption of Android services. Similar to most smartphone malware detection papers, they used PowerTu-
tor to collect the power traces. They used k-Nearest Neighbors, Neural Networks, SVM, and RF as detection
techniques. Bridges et al. [13] analyzed CPU power consumption of a general-purpose computer to detect ma-
licious software. They monitored an uninfected device performing a fixed task for a certain period of time to
learn its normal behavior. Then, the collected signals are processed to extract three features: statistical mo-
ments, L2-Norm Error, and permutation entropy. Finally, a classifier is trained on the extracted features. The
reported results show high detection performance, ∼ 100% TPR (true positive rate) when using an anomaly
detection ensemble.

The usage of Electromagnetic (EM) radiation for malware detection was also investigated in several stud-
ies [10,11,25]. The main idea in these studies is to analyze EM signals emitted from embedded devices to de-
tect anomalies. Their framework externally monitors a device in order to collect its emitted EM signals while
it is performing its regular tasks. The approaches to analyze the collected signals vary among these studies.
Nazari et al. [25], for instance, have extracted features by converting EM signals into a sequence of sample spec-
tra (the power spectral density using Short-time Fourier transform (STFT)). Then by applying thresholding
and comparing the statistical distribution of the extracted features, a decision is made (anomaly or not). Fol-
lowing the same concept, Khan et al. [10,11] explored the idea of using a multi-layer neural network to model
the behavior of a device using its EM emissions. Once the device encounters any deviation in its activity, the
model flags it as an anomaly. Although EM based approaches are based on off-device monitoring, they require
physical proximity to the device’s CPU, along with proper alignment and setup. Such invasive approaches have
questionable usability and practicality. These studies are invasive in the sense that internal access of a device
component is required, where the EM receiver has to be placed close to the CPU (according to their experimen-
tal setup). Now, if the targeted device were in a package that suppresses the EM radiation or even weakens
the radiated signal, then the applicability of these approaches would be problematic. Our approach, on the
other hand, takes the overall power consumption of a device, which does not require any instrumentation of
the internal components of a device such as CPU or network card to collect the signal.

To this end, although there are several studies about malware detection using the power consumption data
of devices, to the best of our knowledge, none of the studies in this domain have attempted to leverage a
combination of stacked RBMAutoencoders to extract features from the power consumption signals of wireless
devices in an unsupervised manner, nor have they covered the threats that we do in this paper.
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Figure 2. System model

DETECTION SYSTEM MODEL
This section describes the system model of the proposed detection methodology as well as the threat model.
Figure 2 introduces a high-level view of our proposed solution strategy’s system model. In this model, we use
the term Cyber-Physical Space to refer to any cyber system or cyber application that is built on top of or based
on a technology to allow autonomous/semi-autonomous operation of the physical system. The core layers of
establishing a cyber space are sensing/actuating, communicating, and application. Sensing and actuating are
performed through devices that we describe in our model as a reference device. Reference Device is a hard-
ware device (e.g., embedded device) that contains a special-purpose computing element and network module
(wireless and/or wired) designed for one or very few specific task(s). Such a device works as a main block in
a larger system for monitoring and controlling purposes (ex., interacting with the external environment phys-
ically or logically through sensors and actuators). Examples that can be covered by the reference model can
be found in a large range of applications; however, in the context of this paper, we target IoT, CPS, and MCPS
(Medical-CPS) applications. The focus is on devices that have limited direct human interactions.

Power Monitoring Unit is a device that can be connected to the power source of the monitored device. The
assumption is that the power monitor unit causes no overhead to the actual operation of the device itself (i.e.,
off-device monitoring approach). Moreover, it has a reasonably high sampling rate to capture the activities
with small durations. Its mode of operation is completely decoupled from the monitored device/system to
ensure that the integrity of measurements is preserved. Lastly, it is connected to a reporting system, called
observer that sends the collected power signals to the cloud for analysis (i.e., to the Detection Engine). In our
experimental system model, our Observer is a lap-top computer used to store the collected power measure-
ments in a database in CSV format and then upload these data to the cloud for analysis. Detection Engine is
the main block of the proposed framework. The engine resides in the cloud to perform data analytics. The
details of the employed detection approach are explained in detail in the following subsection. Once the en-
gine receives a new power signal, the function of this component is to give informative insights to the device’s
operator or owner as to whether the device is compromised or not. Finally, Compromised Device is a device
that exhibits anomalous behavior. The possible causes that can lead a device to misbehave are a wide range of
security threats that we explain using our threat model.

Security in IoT and CPS devices are addressed differently based on the application and the devices’ compute
capabilities (e.g., Radio Frequency Identification based devices in supply chain management [7] and unmanned
aerial vehicles [15]). However, themain focus of this paper is on devices that perform basic functions as outlined
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above in the reference device’s model. Although the reference device’s model seems basic and simple, such a
device and the performed tasks exist in a wide range of applications. Whether it is self-driving cars, smart
parking systems, Industrial IoT, or any cyber-physical system, to name a few, the explained reference model
still applies. In all of these systems, we find that tasks like sensing, actuating, and controlling are there.

A device can be operating in two main operation modes (statuses), namely normal operation and abnormal
operation, as shown in Figure 3. In the normal operation mode, if the device carries out its tasks without
exhibiting any issues, it said to be a healthy behaving device. In contrast, the abnormal operation mode refers
to a misbehaving device where the cause of such a behavior can be a security threat, which we explain using
the following threats model, or a faulty device which is out of the scope of this paper due to the following fault
tolerance assumption. In fail-stop model, a device with one or several faulty components stops working, hence
it can be detected right away once it becomes unresponsive. The focus of this paper is detecting the security
threat; therefore, we use the following threats model. We define security threats as security issues or harmful
events that aim to harm the device in one of the following ways: (i) Compromise the confidentiality and the
integrity of the device/user/system through (a) transferring of data to unintended remote servers (e.g., malware
and spyware); (b) hijacking of the device’s resources to perform tasks for the attacker’s desire (e.g., bots: mining
cryptocurrency and ransomware). (ii) Restrict the availability of the device such that the provided services
become partially/fully inaccessible (e.g., DDOS and jamming).

In comparison to previous methods [7,15], the only assumption wemake in our systemmodel is that an attacker
has the ability to install a threat on the targeted device regardless of the communication protocol. Moreover,
the installed malicious code can gain full control over the device’s resources (software and hardware). Since
in our proposed anomalous behavior detection framework, we mainly target Internet-connected devices, such
an assumption holds in real systems/scenarios.

DATA ANALYTIC METHODOLOGY
In this section, we start by providing an overview of the tools used throughout our methodology. Then, we
describe the proposed detection methodology and the idea behind it in detail.
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Preliminaries
Our methodology makes use of three well-known algorithms. In the following subsections, we give the nec-
essary background on: (i) the used technique to extract features—Restricted Boltzmann Machine (RBM); (ii)
the employed dimensionality reduction technique—Principle Component Analysis (PCA); and (iii) the used
classifier—One-Class Support Vector Machines (OC-SVM). Then, in Model Pipeline subsections, we give the
details of how these tools and algorithms are used to make up our detection framework.

Restricted Boltzmann Machine (RBM)
RBMs are an unsupervised machine-learning that were first introduced by Hinton et al. [33]. They are origi-
nally intended for nonlinear dimensionality reduction and feature extraction. Later, and due to their capability
to efficiently model the training data distribution, they are a suitable option for anomaly detection applica-
tions [34–36]. RBM is a stochastic graphical model which learns a probability distribution over input dataset
and extracts their relevant statistical features. This is done while restricting its visible units and hidden units
from forming a fully connected bipartite graph. Unlike other DL (Deep Learning) structures which utilize
deterministic activation functions (e.g., logistic or ReLU) in their activation units, RBM uses stochastic units
with particular distribution (usually binary of Gaussian). An RBM is comprised of two layers, visible and hid-
den layers, interconnected using symmetrically weighted connections (weights). Units (h) in the hidden layer
capture higher-order correlations of the visible units (x) in the visible layer connected to it [37].

The training procedure minimizes the overall energy so that the data distribution can be well captured. The
used energy function is defined by [37]:

𝐸 (v, h) = −
∑
𝑖∈v

𝑏𝑣𝑖 −
∑
𝑗∈h

𝑐ℎ 𝑗 −
∑
𝑖, 𝑗

𝑣𝑖ℎ 𝑗𝑤𝑖 𝑗 (1)

where v is the input signal vector that forms the visible units and ℎ is a vector that forms the hidden units
(features); 𝜃 = {𝑤, 𝑏, 𝑐} are model parameters. Starting with random weights, the state of hidden units h is set
based on the joint probability defined using:

𝑝(v, h; 𝜃) = 1
𝑍 (𝜃) 𝑒𝑥𝑝(−𝐸 (v, h; 𝜃)) (2)

where 𝑍 (𝜃) is a normalizing factor called partition function. The marginal distribution over the visible layer v
is:

𝑝(v; 𝜃) = 1
𝑍 (𝜃)

∑
ℎ

𝑒𝑥𝑝(−𝐸 (v, h; 𝜃)) (3)

Since single RBM structured models poorly represent the features of the dataset, we can build a more robust
model that can sufficiently extract high-level abstract features by stacking several RBMs to form stacked RBM
Autoencoders (also called Deep Belief Network (DBN)) [38]. The stacked AE can be trained via a greedy layer-
wise procedure. Each layer is trained as an RBM using Contrastive Divergence (CD) strategy (e.g., Gibbs
sampling [37,39]); after each RBM layer of the stacked AE has been trained, weights are clamped and a new
layer is added. Finally, fine-tuning using gradient descent and backpropagation is required to glue everything
together. For more details on the structure of RBM and stacked RBM AEs and the way they are trained, the
reader is directed to [33,37,38,40].

http://dx.doi.org/10.20517/jsss.2020.19


Albasir et al. J Surveill Secur Saf 2021;2:1­25 I http://dx.doi.org/10.20517/jsss.2020.19         Page 9

Principal Component Analysis (PCA)
PCA is a dimensionality reduction technique that reduces the number of features in the dataset. At the same
time, it tries to retain as much information as possible by preserving the maximum variance in the original
dataset [41]. Therefore, by linearly transforming the original data points to another space, the inherent structure
of the data makes them easier to recognize/classify. PCA is performed by using Singular Value Decomposition
(SVD). Given X which is a matrix of signals of size 𝑀 × 𝑛. Each row is signal/observation x that forms a
vector of a size 1 × n. The first step of PCA is to mean center the matrix of signals, which is accomplished by
subtracting the mean of signals from each signal x𝑖 as shown in Eq. [41]:

𝑥𝑖 = x𝑖 − 𝜇𝑖 , 𝜇𝑖 =
1
𝑀

𝑀∑
𝑖

x𝑖

The resultant mean centred matrix X̂ (it is of the same size as X) is then decomposed using SVD,

X̂ = U𝚺VT

Here, U is a 𝑛 × 𝑀 unitary matrix, V is a 𝑛 × 𝑛 unitary matrix, and 𝚺 is a diagonal matrix comprising the
singular values of X̂ in decreasing order [42]. A reduced dimensional representation of X̂ can be obtained by
discarding columns of U and V,

X̂ ≈ U0: 𝑗𝚺0: 𝑗 ,0: 𝑗VT
0: 𝑗

Here, 𝑗 denotes the number of columns (principle components) retained.

To this end, we have explained the theory of computing PCA using SVD; however, in practice, computing SVD
is computationally complex. Thus, several efficient algorithms are widely used to compute PCA efficiently. In
the implementation of our methodology, we use scikit-learn Python library [43] to compute the PCA. For more
details on the scikit-learn PCA implementation, the reader is directed to [44].

Classification - One Class SVM
One-Class Support Vector Machines (OC-SVM) is an anomaly detection technique. It was originally devel-
oped by scholkopf [45] to identify novelty unsupervisedly. In his formulation [45], given a training set X =
{𝑥𝑖}𝑚𝑖=1, the algorithm learns a function (soft boundary) that returns +1 in a region capturing “majority” of
the training observations if 𝑥𝑖 falls within “normal region”, and −1 elsewhere. In the case where the data is
not linearly separable, the so called kernel trick is applied, where each point is implicitly projected to a higher
dimensional feature space (through linear/nonlinear kernel) to separate the data set from the origin. Then one
needs to solve the following quadratic optimization problem [45]:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1
2
| |𝑊 | |2 + 1

𝜐𝑚

𝑚∑
𝑖=1

𝜉𝑖 − 𝜌 (4)

subject to

⟨𝑊,Φ(𝑥𝑖)⟩ ≥ 𝜌 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 (5)

The parameter 𝜐 ∈ (0, 1] sets an upper bound on the fraction of outliers and a lower bound on the number of
training examples used as support vectors.
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Figure 4. Overview of the methodology: Signals Transformation and Model Training

Model Pipeline
The intuition behind our methodology is that power consumption signals obtained from a device that is free
of security threats should have similar patterns (normal/expected behaviors). Such behaviors can be charac-
terized by training Stacked RBM Autoencoders (AE). However, if the device starts to behave anomalously due
to certain causes (presence of security threats in our case), its power consumption signals should reflect that
as a form of deviation from the norm. Consequently, the resultant AE’s output-reconstruction error-should
be minimal if the wireless device is still behaving normally and maximal once the device starts to behave
anomalously. The framework illustrated in Figure 4 is designed based on the above stated intuition.

The basic concept of our methodology can be explained using two main procedures. Procedure 1, shown in
Figure 4, is comprised of two main stages, namely the Feature Extraction stage and Classification stage. Proce-
dure 1 is used to train and test the model on a dataset collected from uncompromised device(s). Procedure 2,
shown in Figure 5, which makes use of the learned models from Procedure 1, describes the process of labeling
a new unlabeled measurement obtained from a device as to whether it came from a compromised device or
not.

The structure of our Feature Extraction stage starts with data augmentation to increase the number of observa-
tions used in the training phase. Following the data augmentation, we use a pretrained RBMAE to extract the
features. The structure of the pretrained RBM AE is kept simple with two RBMs only. Such a simple/shallow
structure is chosen to reduce the complexity of the methodology. Going for a deeper structure increases the
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Figure 5. Detection of Anomalous Behavior

computational complexity. Therefore, to make the methodology suitable and efficient for online and real-time
detection, we chose to keep themodel sizeminimal as long as it provided us with a good detection performance
across the validation scenarios. Finally, we apply PCA to reduce the dimensions of the extracted features space
so that the classifier avoids the over-fitting problem, and the resultant detection performance is optimized.

Although combiningRBMAE andPCA structure seems redundant, as both RBMandPCAare commonly used
for dimensionality reduction, the way we use the pretrained RBM AE does not overlap with the functionality
of PCA. We use the pretrained RBM AE to extract features in a novel way, as shown in the following sections.
In our particular case, PCA complements the feature extraction process in a flexible and lightweight manner.
The flexibility is in terms of exploring the number of features (number of principal components) that can be
used in the classification phase. However, if we used stacked RBMs to do the whole process (i.e., extracting
the features and lowering the dimensionality in one shot, and then exploring how many features are needed
to achieve a satisfactory detection performance), it would require a deep stacked RBM structure, which would
be computationally costly. Moreover, in practice, having a deep stacked RBM is not suitable for real-time
applications, such as quickly detecting security threats.

Procedure 1: Features Extraction and Model Generation
The input data to Procedure 1 is X, which represents the raw dataset used for training and testing. The formal
definition of X is as follows: X = {𝑥 (𝑡)1 , 𝑥 (𝑡)2 , ..., 𝑥 (𝑡)𝑖 , ..., 𝑥

(𝑡)
𝑚 }, which is a matrix of size 𝑚 × 𝑛. 𝑥 (𝑡)𝑖 represents

one reference signal [shown in Figure 4 (a)] and is taken by keeping the same time duration and conditions in
terms of configuration of a wireless device. Each of the rows which forms the matrix X is represented by 𝑥 (𝑡)𝑖 ,
which is described as follows: 𝑥 (𝑡)𝑖 = [𝑥1, 𝑥2, ..., 𝑥𝑖 , ..., 𝑥𝑛]. Hence, 𝑥 (𝑡)𝑖 is a vector of size 1 × 𝑛. In other words,
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the elements in 𝑥 (𝑡)𝑖 represent the values of the power consumed by a device sampled at frequency 𝐹𝑠 for a time
𝑡 = 𝑇 .

Stage 1: Feature Extraction (FE)
• Min-Max Normalization: Step (1) depicted in Figure 4, is the first step in this stage whereMin-Max Normal-
ization is performed to every signal in the dataset. Since power consumption signals from different devices
have different scales, we normalize [using the formula described in Equation (6)] all signals to be in the
range [0,1]. This is also necessary for a faster convergence when training the AE.

𝑥′(𝑡) =
𝑥 (𝑡) − min(𝑥 (𝑡))

max(𝑥 (𝑡)) − min(𝑥 (𝑡))
; 𝑤ℎ𝑒𝑟𝑒 𝑥 (𝑡) ∈ X (6)

• Signals Partitioning with Sliding Window: Then, in Step (2), for each normalized power signal, we apply a
sliding window to partition the signals into sub-signals, as shown in [Figure 4 (b)]. Based on a window
size𝑊𝑖𝑛 and an offset 𝑂, we partition each signal accordingly. The output of this process is a transformed
version of our input dataset X′. X′ is also a matrix of size 𝑚 ∗ 𝐾 ×𝑊𝑖𝑛, where 𝐾 = ⌊ 𝑛−𝑊𝑖𝑛

𝑂 ⌋. The sliding
window idea is introduced at this point in the model pipeline to address the cases where the datasets are
limited. The main reason behind this step is to deploy a robust model and avoid the over-fitting problem
regardless of the dataset size.
Next, we use the subsignals in X′ to train the RBM AE and compute the reconstruction error.

• Pre-trained Stacked RBM Autoencoders: This is the main block in our FE stage [Step (3) in Figure 4]. As
shown byHinton et al. [33] in an RBMAutoencoder can be built using a pretrained RBMs. Such an approach,
RBMbased Autoencoders, showed a good performance in different domains such as speech recognition [46],
obstacle detection [47], text categorization [48], and fault diagnosis [49]. The structure of our stacked RBMs
AE includes 2 pretrained RBMs, each of a size (number of hidden units, h) 3000 and 500, respectively.
We use power consumption signals obtained from a “malware free” device to perform greedy layer-wise
unsupervised training to the two RBM layers. After data pre-processing, we use X′ as an input to train the
stacked RBM AE. Specifically, we train each of our RBMs [RBM1 and RBM2 Figure 6 (a)]individually, as
suggested in [33,38]. Then, we create a stacked RBMs AE, as shown in Figure 6 (b), by stacking the two RBMs
and unrolling them to create the RBM based AE. As shown in Figure 6, the input of the AE is the pretrained
RBM1 visible layer, and the learned feature’s activation of the RBM1 (h1) is sent to the visible layer of the
next layer, RBM2. This is what makes the encoder part. The decoder is formed by adding an equal number
of the opposite layers using transposes of the base encoder’s weights. Finally, the entire system can be
treated as a feedforward traditional AE at this point. We fine-tune the RBM AE using the backpropagation
algorithm described in algorithm 1. The objective is to minimize the mean squared error (i.e., obtain an
optimal reconstruction of the normal behavior of the device) and iteratively update the parameters of the
stacked AE. After initializing the network parameters with the pertained RBMs’ weights, we compute the
mean squared error and then update the parameters accordingly until they qualitatively converge using the
stochastic gradient descent method.
Once the AE is trained, we use the pre-trained AE as our feature extraction unit. The idea of using RBM
AE is not to reduce the dimensionality of the raw data (power consumption signals), but it is rather to
learn/extract a vector of features. These features represent the reconstruction of errors resultant from pass-
ing/feeding power traces to the trained RBM AE. At the end of Stage 1, we present a complete worked-out
example to show the numbers: the size of the extracted features, and how exactly these features are com-
puted.
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Algorithm 1: Stacked AE training algorithm.
Input :Dataset X′:

𝑥′𝑖 , 𝑖
𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑖 ∈ {1, ..., 𝑘}

Output :Optimal parameters Θ∗ = {Θ∗
𝐸 ,Θ

∗
𝐷}

1 Initialization of Network Parameters Θ𝐸 ,Θ𝐷 ;
2 while 𝑒𝑝𝑜𝑐ℎ < 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 do
3 repeat
4 Compute mean square error (MSE)
5 𝐿𝑀𝑆𝐸 (Θ; 𝑥′𝑖) = 1

𝑘

∑𝑘
𝑖=1 | |𝑥′𝑖 − D(E(x | Θ𝐸 ) | Θ𝐷)∥2

6 Update Parameters Θ𝐸 ,Θ𝐷 using SGD
7 until;
8 end
• Dimensionality Reduction (DR): Given that we are using a large window size and offset to augment the data,
as a pre-processing step, we can generate a huge number of subsignals. To avoid the over-fitting problem
when training the OC-SVM classifier, as well as extract the main components (which contain most of the
discriminative information) from the AE’s output, we apply dimensionality reduction techniques, namely
Principal Component Analysis (PCA) (explained above), to the AE’s reconstruction residual error vectors
before training the classifier. The input is the resultant reconstruction error E, and the output is E′, which
is a reduced version of E of a size 𝑚 × 𝐾′, where 𝐾′ is the number of selected principle components, and
𝐾′ ≪ 𝑊𝑖𝑛, as show in Figure 4 - step (4).

• Putting FE steps together: To give an illustrative example of the Feature Extraction stage, assume that: (1)
we obtain 15 signals from a device, i.e., m=15; and (2) each signal represents the power consumed by a
device for 300 seconds, and that the power is sampled at 5000 samples/s. This gives us a power trace that
has 1,500,000 samples, i.e., n = 1, 500, 000. Thus, our dataset X is a matrix of size (15 × 1, 500, 000). After
applying the explained normalization, we use the formula given in the sliding window step. To compute
K, assume further that we use Win = 15, 000 and an offset O = 2000. This gives us K = 742 subsignals
for each original signal. In other words, each signal xi becomes 742 subsignals (x′i). Thus, after the data
augmentation step, the 15 power signals of our became 11,280 subsignals. To keep the notations consistent,
the size of our dataset X′ becomes (11, 280 × 15, 000).
The next step is to use the trained RBM AE to extract the features. To generate the features, we pass these
subsignals (x′i), each is a vector of size (1 × 15, 000), through the trained RBM AE. The trained RBM AE’s
output should be a reconstructed version of the input (x′i). We then compute the loss/error for each sub-
signal using the mean squared error (mse). Thus, the generated features vector for each signal xi is 742
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features. Each feature represents the computed reconstruction error of the subsignals of the original signal.
Refereeing back to the notations used in Figure 4, the size of our dataset matrix (E) at this point is (15×742).
The final step is to use the PCA to lower the dimensions of the dataset to the desired number of principal
components (K′). We use the obtained dataset (E′) to train the classifier, as we explain in the following
section.

Stage 2: Classification
The task of detection in our methodology is performed using a semi-supervised learning technique-Step (5)
in Figure 4. In this step, we employ One-Class Support Vector Machines (explained above) as an anomaly
detection technique. Since only data from one-class are available (power consumption signals obtained from
normal behaving wireless devices), the objective of using OC-SVM is to learn a function that returns +1 for the
normal behavior region (not anomalous) and −1 elsewhere, i.e., the malicious behavior region (anomalous).
To obtainmore versatile decision boundaries, we treat the kernel function as a hyper-parameter and investigate
its impact on the detection performance. Referring back to Figure 4, we train the OC-SVM using the feature
matrix 𝐸′ with𝑚 rows (number of observations) and 𝐾′ columns (number of features/ principal components),
as illustrated in Figure 4 (Step (5)).

Procedure 2: Detection Procedure
The detection step in real-life scenarios utilizes the learned models from Procedure 1, namely the RBM AE
and OC-SVM models. As shown in Figure 5, this procedure is designed to give an answer as to whether
a device is behaving normally or not. Given an unknown power trace 𝑆𝑠 from a device, the methodology
starts by extracting the feature vector, which represents the reconstruction error 𝐸𝑠′. This is the extracted
reconstruction error after it is fed to PCA, i.e., after reducing its dimensions. Finally, Es’ is fed to the trained
OC-SVM model; the classifier gives an answer about the health of the device.

VALIDATION DATASETS
To validate ourmethodology, we used several datasets that cover awide range of security threats. These datasets
were collected in the lab, where two main classes of experiments were conducted. The first class concerns an
experimental setup that uses a smartphone as the Device Under Test (DUT). In this class of experiments, the
implemented scenarios cover a smartphone infected with emulated malware and real malware (taken from
the well-known malware dataset-Drebin [30]). The second class of experiments is based on an IoT application,
namely a smart parking application, where the DUT is an IoT device (IoT thing). This device is responsible
for monitoring whether a parking spot is available or not. The IoT device is made of a control unit, which in
this case is a Raspberry Pi, attached to an ultrasonic sensor. The IoT device is connected to a server through
a wireless network (a WiFi gateway). In this class of experiments, the implemented scenarios a cover DDOS
attack, where, in one case, the IoT device is the target of the attack (i.e., the victim), while, in the other case, it
is the source of the attack (i.e., the attacker). It also covers malicious code that hijacks the IoT device resource
to perform cryptomining. Table 1 summarizes these datasets with a detailed description of each security threat
activity and its security implications.

To this end, the normal operation of the DUT in the both cases, the smartphone and IoT device, is as follows:
(1) In all of the smartphone-based experiments that employ the emulated malware explained in Table 1, the
collected datasets comprise twomain classes: Normal class andMalicious class. In the Normal operation class,
we collected the power consumed by the smartphone while running YouTube, and no other applications were
running in the background. In the Malicious behavior class, the power measurements were obtained from
the smartphone running YouTube and an emulated malware (datasets E-DC, E-RA, or E-1S, as explained in
Table 1) running in the background; and (2) In all of the IoT-based experiments that employ all of the security
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Table 1. Summary of the used security threats datasets

Dataset
Name (DUT)

Dataset and Threat Description

E-DC (SP) Emulated malware: it is a piece of code that runs in the background of the device and executes certain activities. The assump-
tions made while designing these experiments are: (i) Real malware perform network activity to either (a) only download
(DL) information to the compromised device (100% DL), (b) only upload (UL) user’s information to a remote server (100 %
UL), or (c) upload and download information from/to the compromised device (ex. 50 % UL and 50 % DL). (ii) Real mal-
ware performs some local computations such as read/write to memory/storage. And (iii) real malware is not continuously
active when they are installed; rather they work in bursts of activities. By having these aspects included in the development
of the emulated malware, a wide range of real malware that are out there can be largely covered. In spite of the malware
type (botnets, rootkits, and worms, refer to [50] for a detailed description of these malware), the activities it performs will fall
largely in the range considered above. In these datasets, these scenarios can be classified into two main groups of malware,
namely non-adaptive and adaptive malware. Non-adaptive refers to a malware that is active periodically (in a cyclic fashion).
Several datasets are generated; each one of them represents a family of malware that depends on their network activity (ex.,
50DL50ULmalware family). Each family includes different malware instances depending on their “activity Duty Cycle” (DC).
The DC represents the degree of activeness of the malware and is calculated as: DC=TONTON+TOFF × 100%, where TON
refers to the time the malware is active performing some tasks and TOFF refers to the time when the malware is inactive.
DC is the percentage of the time malware is active performing some tasks. Such classes of malware can compromise the
confidentiality and integrity of users and their information.

E-1S
E-RA (SP)

In contrast to the aforementioned malware, adaptive malware tries to eliminate the frequency component (cyclic) from its
activities by randomized activation times and periods. In this scenario, there are two datasets: (1) E-1S refers to emulated
malware that has a single activity period that gets activated at a random time and duration; and (2) E-RA which refers to
emulated malware that gets activated at random times and durations (i.e., multiple activity periods). Such a class of malware
is difficult to detect and can compromise the confidentiality and integrity of users and their information.

Real (SP) In this set of experiments, we use 5 real applications (namely, Buscaminas, Tetris, Tilt, Wordsearch, and Yams) that are classi-
fied/known as malware from the well-known malware dataset discussed in [30] . We downloaded their real-non-malicious
versions from the Google Play store and conducted the experiments. These malware intend to steal users’ data and hence
can compromise their Confidentiality.

DDOS (IoT) Distributed Denial of Service (DDOS) attack: In a nutshell, DDOS involves a node (ex., IoT device) or a large number of them
sending large traffic volumes to overwhelm the Internet infrastructure or servers in a harmfulway (i.e., to restrict the availability
of services). In our experiment, we consider two cases: (i) IoT device as a source/contributor of the attack – DDOS-A; (ii)
IoT device as a victim of the attack - DDOS-V. In the first scenario, the assumption is that an attacker/hacker takes control
over the device and injects a code that instructs the device to generate requests/traffic to flood the network. In the second
scenario, we consider the IoT device as a server that provides information to a system. So when the IoT device is attacked,
it becomes unreachable and hence the system losses it. We use Low Orbit Ion Cannon (LOIC) as a tool for simulating the
DDOS attack [51] .

Cry-M (IoT) CryptocurrencyMiningMalware: This is amalicious piece of code (also known as cryptojacking) that tries to hijack the device’s
resources so that it can perform cryptocurrency mining (such as Bitcoin) for the benefits of the hacker who installed it. Such
a security threat can compromise the availability of the users’ resources. In this kind of security breach, we assume that the
attacker has made it past all of the security measures in place and was able to install the malware (Miner). The Internet of
Things is a very suitable target for this type of malware, due to the increasing number of devices connected to the Internet, as
well as the increasing computational power of IoT devices. While each IoT device has nowhere near enough computational
power to obtain measurable profit from cryptocurrency mining by itself, cryptojacking malware can easily spread across the
Internet and infect very large numbers of IoT devices. Many cryptojacking programs have targeted IoT devices, specifically
targeted Raspberry Pi based IoT devices [50,52] . The program simulates cryptocurrency mining by computing the SHA-256
hashes of random byte sequences in order to find sequences whose hashes start with multiple zero bytes. Except for the
difficulty of the problem, this is exactly the same protocol that Bitcoin uses for its proof-of-work, and is exactly how Bitcoin
mining programs work. The program/miner is only active for part of the time, which is a strategy used by malware to avoid
detection.

threats explained in Table 1, theNormal operation class represented the operation of the IoT device performing
the tasks needed for the smart parking application.

The Normal operation in both cases (smartphone or IoT device) should not deviate much when it is perform-
ing its regular tasks. Therefore, its normal behavior is expected to be reflected closely in the power consumed
by the device. In both classes explained above, the DUT was supplied with power using the Monsoon Power
Monitor. The Monsoon Power Monitor is a reliable device which measures different electrical parameters,
namely voltage and current, in real time for a device while providing constant direct current voltage to it. The
measurements were taken at a sampling rate (𝐹𝑠) of 5000 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠; thus, we can assert that it has high sensi-
tivity to detect any short activity running on the DUT. We repeated each class’s experiment a number of times,
with each observation (power measurement) lasting for 300𝑠 (5𝑚𝑖𝑛). Given the sampling frequency of our
power monitor was 𝐹𝑠 = 5000 samples/s and the duration of the observation was 𝑇 = 300 s, each observation
contained 1, 500, 000 samples that characterize a smartphone in either of the above-mentioned classes. Fur-
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Figure 7. RBM-AE’s features visualization.

thermore, the laptop was connected to the monitoring device and was used to store the measurements that
were collected to build up the datasets.

EXPERIMENTS AND RESULTS
Experiments
The problem of detecting malicious behavior in wireless devices is a semi-supervised classification problem.
Consequently, given the datasets that we have, we perform binary classification to validate our method. The
healthy behavior – Normal class - is tested against its anomalous behavior version – Malware class. Based on
the this formulation, we have conducted several experiments to train and test our methodology. The analysis
covered three main components, namely: (1) visualization of the extracted features; (2) justification for the use
of OC-SVM; and (3) detection performance of the methodology and a comparison. The training and testing
experiments were performed on a powerful analysis platform (Colab) [53]. The deep learning tasks were carried
out in Python using Google Tensorflow framework and Keras [54] Python libraries. The PCA and OC-SVM
were performed using the well-know scikit-learn Python library [43].

Features’ visualization and results
The dataset used to generate the following visualizations is E-DC. We choose the malware family 50UL50DL,
which represents malware that utilize % of its active period to upload information to the cloud and the remain-
ing 50% to download from a remote server. In this family of malware we have 6 different malware instances
each with specific “activity Duty Cycle” (DC), as explained in Table 1. The duty cycles (DC) of the malware in
this family are 𝐷𝐶 = 𝑖%, 𝑖 ∈ {1, 2, 3, 4, 8, 12}. Since we use PCA as a dimensionality reduction technique,
the first step we took to investigate how effective the RBM-AE’s features are is to visualize the percentage of
variance of Normal class of this dataset (50UL50DL). Figure 7 (a) shows the percentage of the variance that
the first 12 principal components contain. It also show the cumulative PCs variance, which shows that most
of the variance (almost 100 %) is contained in these 12 components. Then in Figure 7 (b) we show how the
data points from normal class and the six malware instances (from 50UL50DLmalware family) are distributed
using PCA’s first two components. PC1 and PC2 are the first two components obtained from PCA, and they
represent the highest variance in the data points used in training. PC1 is the projection of the features vec-
tor in the direction of the highest variance, and PC2 is the projection of the features vector in the direction
of the second-highest variance. As can be noticed in Figure 7 (b), although dimensionality reduction loses
some information and visualization results of low-dimensional space cannot fully reveal what are in the high-
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Table 2. Performance evaluation metrics

𝐴𝑐𝑐 = 𝑇 𝑃+𝑇 𝑁
(𝑇 𝑃+𝐹𝑃+𝑇 𝑁+𝐹𝑁 ) 𝑃 = 𝑇 𝑃

𝑇 𝑃+𝐹𝑃 𝑅 = 𝑇 𝑃
𝑇 𝑃+𝐹𝑁 𝐹1 = 2 × 𝑃×𝑅
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Figure 8. OC-SVM decision boundary and malware classes distribution

dimensional space, it is still insightful that the extracted features carry good information that can be used to
construct an effective detection model. In the next part of the results, we show the impact of the number of
the chosen principle components on the methodology overall detection performance.

Classifier performance analysis
After visualizing the output of our methodology’s feature extraction stage, next we evaluate the performance
of the chosen classifier - OCSVM. To training OC-SVM, there are some model specific hyper-parameters that
needs to be tuned in order to achieve the best detection performance. We use cross-validation and grid search
to optimise the performance of the classifier. We start by randomly splitting the dataset, the Normal class data,
into training and testing datasets. Then, we use the training portion to perform five-fold cross-validation. In
this step we basically split the training dataset into five portions and use four of them to training the OC-SVM
and evaluate the learned model on the fifth fold. We repeat this step 5 times and finally using the grid-search
we pick the parameters that gives us the best detection performance.

Before we report the results, we explain the metrics used to evaluate the performance of our methodology.
Our problem is an anomaly detection problem, which means, in practice, we have many data from the Normal
class and a few observations from the anomalous class, Malware in this case. Thus, in addition to reporting
the accuracy (Acc), recall (R), and precision (P) in some of the results, we chose to use the F1-score (F1) as
a single and main metric to evaluate the detection performance of our methodology since it combines both
recall and precision, as shown in Table 2. We find that reporting the precision and recall individually is very
important as well since they put more weight to a false positive and false negative, respectively.

True Positive (TP) refers to malicious behavior correctly identified as malware, False Positive (FP) means a
benign/normal behavior is incorrectly identified as malware, True Negative (TN) is benign/normal behavior
correctly identified as benign, and False Negative (FN) refers to malicious behavior incorrectly identified as
benign.

Figure 8 illustrates the decision boundary found by the kernelizedOC-SVM.The used kernel function is Radial
Basis Function (RBF), which is a kind of Gaussian kernels. The decision boundary shows that the model can
separate most of the positive points (Normal class observations) from the negative ones correctly. It also shows
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Figure 9. RBM-AE’s features visualization.

that the learnedmodel is able to correctly classify the unseen observations from the Normal class (green circles
with black edges in the figure). Figure 9 (a) highlights the impact of the OC-SVM kernel functions on the
accuracy of the model for different evaluation metrics. It can be noted that the RBF gives the best detection
performance over the linear and Sigmoid kernels. It was thus used in all of the following experiments.

Furthermore, the impact of PCA on the classification performance was verified. The way we investigates that
was to vary the number of principal components (PC) used to train our OC-SVM and observe the detection
performance accordingly, as shown in Figure 9 (b). The results show that the first two PCs produce the best
detection performance. This confirms the observation shown in Figure 7 (a) that the first two PCs contain
much of the variance [Figure 7 (a)] and the fact that visualizing the first two PCs showed good separation of
the malware instances of the 50UL50DL malware family. Moreover, in Figure 9 (b), it can be noted that the
higher the number of PCs is, the lower the detection performancewe get. Theworst detection performancewas
experienced when the number of principal components (PCs) was 5; this could be attributed to the problem
of overfitting. However, we notice that, when the number of PCs passes five, the model surprisingly performs
well again. Havingmore features (higher number of PCs) in this case should consistently get the trainedmodel
to fall into the overfitting problem. Thus, the detection performance is expected to worsen as the number of
PCs is increased.

Comparison results
To demonstrate the effectiveness of our AE based features extraction technique, we compared the average
accuracy and F1-score of our methodology against a baseline model, as well as against previously reported
techniques [9,19,27]. A brief description of the used baseline model is as follows: We extracted two features
(namely, the mean and standard deviation) out of each power trace. Then, we trained the traditional Support
Vector Machine (SVM [55]) on the extracted features.

Since the objective in [9,19,27] is similar to the objective of our paper (malware detection in wireless devices),
and the nature of the raw data is the same as the data considered in this study (i.e., the power consumed by
devices treated as signals), this technique was chosen to be the best fit to have a fair comparison with. In the
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Table 3. Comparison results

Model Detection Accuracy% F1 Score %

Our Model: {RBM AE + OC-SVM} 98 (± 2%) 96.55 (± 2%)

Baseline: {mean&STD} + SVM 65 (± 6%) 67 (± 5%)
[27]: {ICA+RF} 88.0 (± 2%) 87 (± 0%)
[9]: {ANN} 90.1 (± 5%) -
[19]: {MFCC + GMM} 68.3 (± 5%) 72.2 (± 5%)

Note: STD = standard deviation, ICA = independent component analysis, RF = random forest, ANN = artificial neural network, MFCC=Mel-
frequency cepstral coefficients,
GMM = gaussian mixture model.

literature, there are a couple of studies that share the same objective; we felt that the comparison would not be
fair since the type of the raw data (EM emissions [10,11,25]) is completely different.

Table 3 shows that AE based features outperform two of the techniques, the baseline and the one in [19], with
at least 30% performance gain. To compare with the model in [19], we have implemented their approach and
run it on our dataset. The obtained accuracy of our approach reached 97%, while the accuracy of the models
in [9,27] were 88% and 90%, respectively. We argue that such a good detection performance is due to: (1) the
ability of the stacked RBMAE to learn good features that capture the complexity of the normal behavior of the
device under study; and (2) the high sampling rate that is used in our monitoring methodology. Such a rate
makes it possible to capture information about the short-lived events executed onboard a device. Since the
model in [19] depends on data sampled at a rate of 5 samples/s, the approach fails to perform well, as the results
in Table 3 show. Although the models in [9,27] were based on supervised learning and used the same dataset
as ours (dataset E-DC in Table 1), which is sampled at the same sampling rate as the one used in this study,
the performance of our methodology shows at least 7% detection improvement over the models in [9,27]. The
main reason goes back to Point (1), i.e., the good features extracted by the stacked RBMs. It is important to
note that the performance of our methodology is not very far from the performance reported in [27]; however,
our methodology has two main advantages over [27]: (1) it requires fewer computation resources, which makes
it more suitable for real-time detection and resource constrained applications; and (2) it is a semi-supervised
technique, whichmakes it more practical. A final remark on the impact of sampling rate: our comparison with
the model in [19] showed that the higher is the sampling rate, the better is the detection performance. This is
aligned with the findings reported in [9], where the authors showed that the detection performance can worsen
as the sampling rate is lowered.

Figure 10 shows a comparison we performed to ensure that the chosen classifier is a good pick. In Figure 10,
we compare OC-SVM with two other unsupervised methods namely, Robust covariance (RC) [56] and Isola-
tion Forest (IF) [57]. In this comparison we show how the three methods compare in terms of the F1-score
performance as well as the time to recall the model. It can be noticed that Robust covariance and Isolation
Forest performance is always 0.8 irrespective of the malware activeness degree (DC %). The reason is that
the normal behavior is used in training all of the classifiers, so the decision’s boundary of the modeled data
(normal behavior) does not change as the malware DC % changes.

The distribution of the malware points falls outside of the normal region across the version of malware scenar-
ios. It is also worth mentioning the sudden drop of OC-SVM in the case of malware with DC = 12%; some
points, for an unrecognized reason, seemed similar to the normal behavior and fell in the normal region, i.e.,
were classified wrongly as not malicious. Clearly, in Figure 10, OC-SVM is the fastest in terms of predicting
new observations and also out performs the RC and IF classifiers with significant gain throughout the 6 mal-
ware instances (𝐷𝐶 = 𝑖%, 𝑖 ∈ {1, 2, 3, 4, 8, 12}). Whether the malware is with 𝐷𝐶 = 1% - the least active
case, or the malware with 𝐷𝐶 = 12% - the most active case; the model shows good detection performance
regardless how active the malware is, where the obtained F1-score reaches 96.6%, thanks to the good features
learned by the RBM AE.
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Figure 10. Classifier performance comparison

Detection coverage results
In this section, we show the performance of the proposed methodology in detecting different security threats
that target wireless/IoT devices. In the applications of anomaly detection, including detection of security
threats, we are more interested in finding out when a security threat is present but is not detected, the so-called
false negative (FN). Therefore, when analyzing the performance of our methodology, we not only report the
accuracy, but also show the F1-score, recall, and precision, as they are more indicative in our case. Table 4
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Table 4. Summary of the results across all of the datasets - (* averaged results)

Metric
Threat E-DC* E-1S E-RA Real* DDOSA DDOS-V Cry-M

F1-score 0.91 0.7 0.80 0.87 0.985 0.98 0.90
Accuracy 0.89 0.6 0.83 0.81 0.98 0.98 0.86
Recall 0.933 0.93 1.00 0.93 0.97 0.97 0.97
Precision 0.90 0.56 0.67 0.83 1.00 1.00 0.85
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Figure 11. F-score results.

shows a summary of the performance of our methodology on the seven datasets that we used. The most chal-
lenging detection task was encountered on the E-1S dataset. The obtained F1-score is not as high as on the
other datasets; however, having a high recall for this particular case indicates a low FN. This means, in most
cases, our methodology was able to correctly label and detect the presence of malware, even though, in the
case of E-1S, the malware is only active at random intervals. The performance on the E-RA dataset is also
considerably lower than the other datasets, which is something we expected given the fact that its activation
times and periods are randomized. Both E-1S and E-RA are adaptive malwares, which means that they tend
to hide their operation and activity so that they go undetected.

In the real malware dataset, Real, the results reported in Table 4 were averaged over the five malicious apps in
the dataset. Overall, the results are in the range of 85%. Figure 11 demonstrates the detection performance in
terms of the four selected measures (F1-score, accuracy, recall, and precision). These results justify that the
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used emulated datasets cover a wide range of malicious behaviors/attacks, hence their value in evaluating new
detection techniques.

In all of the IoT device datasets, namely distributed of service attacks (DDOS-V and DDOS-A) and the crypto-
mining (Cry-M) datasets, the detection accuracy and F1-score reach 90% in most of the cases. Thus, whether
a device is under attack or it is hacked to serve as the source of the attack, the device’s owner can be notified
and alarmed of such a cyber-threat.

One might argue that DDoS and cryptocurrency mining malwares are high-power malicious attacks by na-
ture, thus are easy cases to detect using the proposed approach. This argument makes the need to implement
emulated malware, where we can control the amount of time a malware can be active, even more compelling.
As we explain in the Validation Datasets Section, various malicious behaviors/activities (e.g., a malware that
is active for one short time only, as in dataset E-1S; a malware with 1% DC activity, as in dataset E-DC, or a
malware with random activation periods, as in dataset E-RA) were generated to represent malwares that do
not consume/use a lot of power. The detection performance, as shown in Table 4, of the proposed approach
on these scenarios confirms that our approach is not only effective on security threats that are caused by at-
tacks/malwares that consume a lot of power, but is also effective on the attacks/malwares that are rarely active
and consume a small amount of power.

To further elaborate on the effectiveness and the practicality of the proposed approach, a common question in
the security field is: Can the detection be evaded if attackers find out about the proposed detection approach?
Generally, this is a difficult task since there is an inherent connection between the tasks a device performs
and the power it consumes. In the side-channel attacks, the whole idea of revealing secret keys depends on
the aforementioned fact. However, one way that an attacker might seek to evade detection is through the
attempt to hide some of their malware’s activities behind legitimate power consumption bursts/spikes. In
our validation datasets scenarios, specifically in the emulated malware families, we simulated such a strategy
by having a high-power activity application (YouTube) running as the normal/legitimate behavior, while the
emulatedmalware runs in the background. Inmost of the scenarios (E-DC, E-RA, and E1S) shown in Figure 11
(b) and Table 4, our methodology performs well (91%, 80%, and 70% F1-scores, respectively). The 1Sipke (E-
1S) emulated malware case shows a relatively low precision, where we have high false positives (i.e., normal
behavior identified as malicious).

Finally, Figure 11 (b) depicts the performance of our methodology on our non-adaptive families of malware
(E-DC dataset). This figure can be interpreted as follows: each malware family, e.g., 00UL100DL family, has
six malwares, namely malware with 𝑖% 𝐷𝐶 (duty cycle), where 𝑖 ∈ 1, 2, 3, 4, 8, 12. The 1% 𝐷𝐶 Malware is
malware that is only active 1% of the cycle period. Thus, if the cycle period is 60 s, then this malware is only
active for 1 s and goes to sleep for the remaining 59 s. The obtained F1-score for this malware family is very
high throughout all the malware families and ranges between 83% and 100%. Whether the malware is only
active for a short period of time, the case of 1% DC malware, or the most active malware, 12% DC malware,
where themalware stays active for case 7.2 s, themethodology can detect all of them. A similar trend is noticed
for the other malware families, as the results in Figure 11 (b) illustrate. The results of detection coverage across
the wide range of validation datasets were very good, and, hence, confirm the usefulness and applicability of
the proposed approach.

CONCLUSIONS
In this paper, we introduce a new malware detection technique that is based on non-intrusive monitoring
of device’s power consumption. The measured power readings of a device are treated as signals carrying dis-
criminative information that can be learned. The idea is to learn robust features out of the power signals using
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stacked RBMAEs andOC-SVM.We validated our approach using real malware taken from the Derbin dataset
as well as from a wide spectrum of emulated malware. The obtained results from real as well as emulated mal-
ware confirm the effectiveness of the proposed technique. The performance of the proposed methodology was
compared to previously reported approaches. Finally, the methodology was also applied to well-known at-
tacks (namely, DDOS attack and Cryptomining malware) on the IoT application datasets, where the obtained
results show a robust detection performance.

Although this study covered the effectiveness of using stacked RBM to extract useful information from the
power consumption of a device, there are a couple of limitations to be considered in the future. In the practical
deployment of such a detection approach, the time required to detect a security threat needs to be investigated.
For instance, if a DDOS attack is initiated, how long will it take before it can be flagged should be studied.
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