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Abstract
Aims: Cerebral amyloid burdens may be found in otherwise cognitively intact adults, often not showing worsening 
deficits with passing years. Alzheimer’s transgenic rodents have been widely used to investigate this phenomenon, 
but a spontaneous disorder in other animals, such as dogs that cohabit with humans and thus may have some 
shared environmental risks, may contribute and offer opportunities not possible in the smaller laboratory animals. 
In animals, the spontaneous disorder most comparable to Alzheimer’s disease (AD) affects mature to aged dogs 
and is designated canine cognitive dysfunction. Motivated by AD, many studies have revealed that amyloid 
progressively accumulates in the canine central nervous system, including the retina. Here, we investigated 
whether deposits of amyloid and/or tau can be found in the canine retina of neurologically normal animals from the 
first year of life to the elderly. Suppose canine ocular amyloid and tau are present from early life. In that case, that 
raises the question of whether similar patterns of accumulation occur in man, whether as part of aging, AD, or 
other.

Methods: This study used eye tissues from 30 dogs with a variety of ophthalmic or other orbital disorders, of which 
7/30 were 1-2 years old. Tissues were subdivided into dogs of three different age groups: young (1-5 years old), 
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middle (6-10 years old), and old (≥ 11 years old).

Results: Following immunostaining of tissue sections with nanobodies against retinal Aβ1-40 and Aβ1-42 oligomers, 
and antibodies against Aβ plaques (Aβp) and hyperphosphorylated Tau (p-Tau), our investigations revealed that 
accumulation of Aβ1-40 and Aβ1-42 oligomers were widespread in the retina in all age groups.  In contrast, Aβp were 
detected in the middle and old age groups but not in the young age group. Furthermore, p-Tau staining was 
observed in four old dogs only, while other dogs were p-Tau free. Interestingly, both Aβo and Aβp co-localized in 
the middle and old age groups of dogs. Moreover, diffuse granular p-Tau co-localized with intracellular Aβo in the 
old age group. Finally, we also observed co-localization of Aβo and Aβp in the retinal vasculature which might be 
similar to cerebral amyloid angiopathy associated with AD.

Conclusion: As far as we know, the presence of amyloid and tau in the canine retina is hitherto unreported. If 
similar, early-in-life subclinical retinal deposits occur in a human cohort perhaps identified by AD genetic risk 
factors, following this group may offer the prospect of preclinical therapeutic intervention in imminent dementia, a 
strategy recognized as likely necessary to impact this burgeoning disorder.

Keywords: Alzheimer’s disease, canine cognitive dysfunction, retina, early diagnosis, Aβo, Aβp, p-Tau

INTRODUCTION
The principal neuropathological lesions in Alzheimer’s disease (AD) brains include extracellular neuritic 
and/or diffuse plaques containing amyloid-beta (Aβ), intracellular tau protein (p-Tau) in the form of 
neurofibrillary tangles (NFTs) in addition to cerebral amyloid angiopathy (CAA), ubiquitin, severe synaptic 
loss, neuronal death, and brain atrophy[1-4]. While the deposition of Aβ in the human brain has traditionally 
been accepted as a major hallmark of AD[5], its accumulation is also observed in about 20% of cognitively 
unimpaired, aged individuals[6,7]. For decades, the association of Aβ with AD has been demonstrated, but the 
significance and impact of Aβ accumulation in healthy individuals are both poorly understood[8] and a 
source of confusion. For example, previous studies did not establish a clear correlation with memory loss in 
the aging brain[9-11]. Previous reports documented the progressive accumulation of both Aβ plaques (Aβp) in 
the brain[12,13] and Aβ oligomers (Aβo) in the brain and periphery of cognitively unimpaired individuals[14,15]. 
A study by Lesne et al. measured the levels of three Aβo “species”, including Aβ trimers, Aβ*56 and Aβ 
dimers, in brain tissues from 75 cognitively unimpaired individuals, including young children and 
adolescents[14]. The authors showed that Aβ trimers were present in the central nervous system (CNS) of 
children and adolescents, and their levels increased progressively with age, suggesting that this particular 
Aβo could be used to track the potential progression into AD from a very young age. Another study 
investigated the relationship between amyloid levels and memory performance[15]. This study, which 
included 147 participants divided into three groups of adults 30-49, 50-69, and 70-89 years of age, 
established a clear relationship between episodic memory performance and amyloid accumulation in the 
youngest group[15]. A longitudinal study by Hanseeuw et al. demonstrated a correlation between Aβ/p-Tau 
and declining cognition in 60 clinically normal individuals aged between 65-85 years[16]. The authors 
concluded that there was a positive correlation between Aβ/p-Tau positron emission tomography (PET) 
and cognition, where participants with high Aβ and tau were at higher risk of developing mild cognitive 
impairment (MCI)[16]. These studies highlighted the importance of investigating and characterizing normal 
aging in cognitively unimpaired younger individuals to identify those at risk of progressive increase of AD-
associated neuropathology changes and cognitive impairment and establish a time frame for early 
diagnostic and therapeutic intervention. However, such studies are difficult to implement in human subjects 
and will take decades to deliver any meaningful outcome[8,17].
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Currently available transgenic animal models of AD do not replicate the subtle clinical and pathological 
features of the disease, as demonstrated by their lack of reproducible therapeutic outcomes[18,19]. As to the 
dog’s age, there is an anatomically defined accumulation of Aβ peptides in the CNS, while less is known 
about cerebral p-Tau deposition. Some animals will develop a progressive cognitive decline with loss of 
learned behaviors and memory, a syndrome named canine cognitive dysfunction (CCD)[20-24], with CNS 
changes similar to the neuropathological hallmarks characteristic of AD[25-28]. In those destined to develop 
AD, amyloid precursor protein (APP) is sequentially cleaved by β and γ secretase leading to the production 
of Aβ peptide fragments (36-43 amino acids), which then aggregate and deposit as plaques[4,5,29]. The canine 
APP and Aβ peptides are 98% and 100% identical to their human counterparts[24]. In older dogs and others 
affected with CCD, Aβ deposits as diffuse plaques, while the dense core of humans’ mature plaques is very 
rare or absent[20,21,27,30].

There are two major isoforms of Aβ, Aβ1-40 (~80%-90%) and Aβ1-42 (~5%-10%) and three major 
assemblies[31-34] recognized in man and animals/dogs, including monomeric Aβ, Aβo containing 12-24 
monomers which become elongated to form protofibrils and finally insoluble fibrils[35]. Among these three 
stages, Aβo is thought to be the most toxic to neurons and responsible for the structural and functional 
pathologic changes associated with AD[36-39]. Likewise, a previous study reported that cognitive decline 
occurs before the accumulation of Aβp in CCD, supporting the premise that earlier assembly states of Aβ 
may be the toxic species[23]. In addition, CAA, ubiquitin, and severe synaptic loss have also been reported in 
CCD[20,40-43]. Another cardinal pathological hallmark of AD is the accumulation of p-Tau[3,4]. Several 
phosphorylation sites were identified on tau in aged dogs including Thr181[42], Ser422[43], 
Ser202/Thr205[40,43], Ser396[30,40,43], Ser189, and Ser207[44]; however, demonstrating the presence of NFTs has 
been infrequent compared to the consistent demonstration of amyloid oligomers and diffuse plaques. A 
study by Schmidt and colleagues using anti-pT205, AT8, AT100, PHF-1, and anti-pT422 antibodies seeking 
the presence of tau pathology in 24 dogs aged between two and nineteen years, showed that three 13-15-
year-old dogs displayed p-Tau and only one 15-year-old Pekingese dog displayed NFT-like appearance[43].

In AD, visual disturbances are one of the early complaints and include loss of color vision, impairment of 
peripheral vision and object recognition, contrast sensitivity, and decreased visual memory and 
perception[45-47]. A recent longitudinal study of 1349 older adults showed that poor visual acuity paralleled 
the development of dementia[48], suggesting the possibility that ocular disturbances can be used as an early 
predictor of dementia risk in the older population[48]. Moreover, post-mortem studies of AD and animal 
models of AD demonstrated a strong association between retinal accumulation of Aβo[49,50]. Aβ plaques[51,52], 
p-Tau[53,54] and brain depositions and cognitive decline, where retinal Aβo was shown to deposit earlier than 
the brain and before deficits in cognition. Although, to our knowledge, age-dependent retinal deposition of 
Aβo and/or Aβp has not been investigated in AD and cognitively unimpaired individuals, including children 
and adolescents, our recent studies in AD mice models confirmed the conversion of cerebral and retinal Aβ
o to Aβp in an age-dependent manner, where retinal Aβo was detected as early as 3-month old APP/PS1 
mice, before brain pathology and cognitive decline were observed[49,55].

In this study, we investigated the retinal accumulation of Aβo, Aβp, and p-Tau in three age groups of 
genetically diverse and neurologically intact populations of dogs. Here, following immunohistochemistry 
and immunofluorescence analysis, we confirmed the presence of retinal Aβ40 and Aβ42 oligomers, Aβp, and 
p-Tau. Retinal Aβ40 and Aβ42 oligomers deposition was conspicuous and widespread and observed in all age 
groups, including the young 1-5-year-old neurologically intact group. Moreover, retinal co-localization of 
Aβ40/Aβ42 oligomers and Aβp was observed in few middle-aged dogs and most dogs in the old neurologically 
intact age group, while retinal co-localization of Aβ40/Aβ42 oligomers and p-Tau was only seen in the old 
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neurologically intact age group of dogs. Morphologically, extracellular Aβp deposits appeared as small, dot-
like rounded deposits, while intracellular p-Tau deposits adopted a diffuse appearance in the retinal 
layers[54]. No NFTs or neuropil threads were observed in these dogs. Taken together, these results highlight 
the importance of further investigations of AD-related pathology in the retina of presymptomatic children 
and adolescents to gain insight into disease progression and potentially identify early at-risk individuals to 
help implement speedy therapeutic interventions.

METHODS
Dog eye samples and animal ethics
Sections of eyes used in this study were prepared from archived cases in the Comparative Ocular Pathology 
Laboratory of Wisconsin (COPLOW) at the Department of Pathobiological Sciences, School of Veterinary 
Medicine, University of Wisconsin, Madison. Surgical enucleations had been submitted by practicing 
veterinarians to COPLOW for routine pathological diagnosis. These canine eyes came from 30 random, 
genetically diverse dogs (15 different breeds) ranging from 1 to 16 years of age with a broad variety of ocular 
disorders [Tables 1 and 2]. Such tissues, historically submitted for disease investigation purposes, are not 
subject to approval by institutional animal ethical regulations.

Tissue preparation
Enucleated eyes were submitted to the laboratory fixed in 10% neutral buffered formalin. On receipt, they 
were examined for gross abnormalities before trimming, followed by processing overnight using a Leica 
ASP300S tissue processor (Leica biosystem, Wetzlar, Germany). Tissues were then embedded in paraffin 
blocks and sectioned at 4μm thickness using a Leica RM2235 microtome (Leica biosystem, Wetzlar, 
Germany) and placed on charged slides. Sections were then stained with hematoxylin and eosin (H&E) and 
Congo red (CR). Further sections were used for immunohistochemistry (IHC) and immunofluorescence 
(IF) staining, and both upper and lower parts of the retina were assessed.

Hematoxylin and eosin staining
Paraffin sections were dewaxed by two changes of absolute xylene for 5 min each. Sections were rehydrated 
using two changes of 100% ethanol for 2 min each, 95% ethanol for 3 min, 70% ethanol for 2 min, and 
finally rinsed in deionized water for 2 min. H&E stain was then performed by adding Gill ll Haematoxylin 
solution (Leica Biosystems, Wetzlar, Germany), followed by 1% acid alcohol and subsequently eosin stain 
(Leica Biosystems, Wetzlar, Germany). Finally, the sections were dehydrated with increasing concentrations 
of ethanol, from 70%, 95% to 100%, then dewaxed by two changes of xylene and finally mounted with 
xylene-based mounting media (Sigma Aldrich, Missouri, United States)[56]. H&E staining was used to assess 
retinal morphology, the neuronal population within the eye.

Congo red staining
Initially, the CR working solution was prepared by mixing 50 ml Congo red solution and 0.5 ml potassium 
hydroxide solution supplied in the Congo red amyloid special stain kit (Leica Biosystems, Wetzlar, 
Germany). Retinal sections were placed in the working solution for 20 min and then rinsed in 5-8 changes 
of deionized water. This was followed by staining with Gill ll Haematoxylin (Leica Biosystems, Wetzlar, 
Germany) for 1-3 min and rinsing in 3 changes of deionized water. Sections were then dehydrated in two 
changes of 95% alcohol followed by three changes of absolute alcohol for one minute each. Finally, the 
sections were cleared in two changes of xylene and mounted in a xylene miscible medium. Amyloid fibrils 
appeared as dull to red brick under light microscopy (Olympus CX 43, Shinjuku, Tokyo, Japan) and apple 
green birefringent under polarized light (Olympus CX 43, Shinjuku, Tokyo, Japan).
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Table 1. Signalment for 30 dogs and their retinal Aβ oligomers and plaques IHC scores

Pathological Aβ IHC findings in the dog retina
Age groups Age (year) Sex Breed Size

A11 - Aβ oligomers 4G8 - Aβ plaques

1 SF Staffordshire terrier Medium + -

1.4 M Siberian husky Medium - -

1.8 SF Mixed breed ND* +++ -

1.10 SF Siberian husky Medium ++ -

2 F Chihuahua mix Toy +++ -

2 M Bichon frise mix Small + -

2 NM Shih Tzu Small + -

3 NM German shepherd Large +++ -

3 F Giant schnauzer Large + -

Young (1-5 years)

3.6 M Siberian husky Medium + -

7 NM Hound mixed Medium - -

8 SF Bedlington terrier Small - -

8 SF Cocker spaniel Medium - -

8 M Mixed breed ND* - -

8 M Cocker spaniel Medium + -

8 F German shepherd mix Large - -

8 SF Great dane dog Giant - -

9 M Jack Russell terrier dog Small - -

9.5 SF Boxer dog Large - -

Middle age (6-10 years)

9.9 SF Cocker spaniel Medium - -

11 NM Mixed breed ND* - -

11 NM Beagle Small - -

11.9 SF Bouvier des flanders Large + -

12 SF German shepherd Large - ++

12 SF German shepherd mix Large - -

12 NM Husky mix Medium - -

12.8 NM Shih-tzu Small - ++

13 NM Border collie Medium - -

15 SF Basset hound Medium - +

Elderly (11-16 years)

16 SF Shih Tzu Small - -

Sizes were determined according to the American Kennel Club (AKC)[76]. Size range between 34 - ≥ 54 kg is considered “giant”, 24-38 kg is 
considered “large”, 15-29 kg is considered “medium”, 3-15 kg is considered “small”, and 0.9-4 kg is considered “toy”. Aβ oligomers and Aβ 
plaques staining intensity were semi-quantitatively analyzed and scored across the retinal layers under the brightfield microscope (Olympus CX 
43, Shinjuku, Tokyo, Japan). The total area was examined at 40 magnification and categorized into no immunostaining “-”; low immunoreactivity 
found only in limited areas of the retinal layers “+”, moderate immunoreactivity where Aβ deposits were more apparent “++”; and finally strong 
immunoreactivity with widespread A11 and 4G8 positive Aβ labeling were exhibited “+++”. ND*: Not determined; SF: spayed female; F: female; 
NM: neutered male; M: male; IHC: immunohistochemical.

Immunohistochemical staining of amyloid-beta plaques and amyloid-beta oligomers
Eye sections that contained the retina were pre-treated using the 2100 antigen retriever (Aptum Biologics 
Ltd, Southampton, United Kingdom) to expose the target epitopes. The sections were then treated with 90% 
formic acid for 5 min at room temperature (RT) followed by cell membrane permeabilization, achieved by 
using 0.1% Triton X for 1 min before the addition of 0.3% H2O2 for 15 min to inactivate endogenous 
peroxidases. Sections were then blocked with protein block serum-free (Agilent, City, Country) for 15 min. 
The sections were then stained for 1 h with the following primary antibodies in phosphate-buffered saline 
(PBS): mouse purified 4G8 anti-Aβ17-24 (1:500; Bio legend, San Diego, CA, USA) or A11 rabbit anti-Aβo 
(1:250; Merck Millipore, Burlington, MA, USA) antibodies. After washing with PBS, sections were 



Page 6 of Habiba et al. Ageing Neur Dis 2022;2:7 https://dx.doi.org/10.20517/and.2022.0621

Table 2. Signalment for 30 dogs, their ophthalmological disorders, and retinal Aβ and p-Tau IF scores

Pathological IF findings in the dog 
retina

Age groups Age 
(year) Sex Breed Size Ophthalmological disorders which 

resulted in enucleation Aβ40 
oligomers

Aβ42 
oligomers

Aβp p-
Tau

1 SF Staffordshire 
terrier

Medium Anterior segment dysgenesis + + - -

1.4 M Siberian husky Medium Anterior segment dysgenesis - - - -

1.8 SF Mixed breed ND* Anterior segment dysgenesis +++ +++ - -

1.10 SF Siberian husky Medium Anterior segment dysgenesis +++ +++ - -

2 F Chihuahua mix Toy Anterior segment dysgenesis +++ +++ - -

2 M Bichon frise mix Small Proptosis +++ +++ - -

2 NM Shih Tzu Small Melanoma limbal ++ ++ - -

3 NM German 
shepherd

Large Rhabdomyosarcoma orbital +++ +++ - -

3 F Giant schnauzer Large Phthisis bulbi ++ ++ - -

Young (1-5 
years)

3.6 M Siberian husky Medium Anterior segment dysgenesis ++ ++ - -

7 NM Hound mixed Medium Hemangiosarcoma - - - -

8 SF Bedlington 
terrier

Small Neoplasia - - - -

8 SF Cocker spaniel Medium Conjunctivitis +++ +++ + -

8 M Mixed breed ND* Conjunctival melanoma +++ +++ + -

8 M Cocker spaniel Medium Pre glaucoma +++ +++ +++ -

8 F German 
shepherd mix

Large Mast cell tumor ++ ++ + -

8 SF Great dane dog Giant Complex apocrine adenocarcinoma + + - -

9 M Jack Russell 
terrier dog

Small Sialoadenitis ++ ++ - -

9.5 SF Boxer dog Large Hemangioma + + - -

Middle age 
(6-10 years)

9.9 SF Cocker spaniel Medium Adenocarcinoma a orbital +++ +++ +++ -

11 NM Mixed breed ND* Squamous cell carcinoma - - - -

11 NM Beagle Small Melanoma conjunctival +++ +++ +++ -

11.9 SF Bouvier des 
flanders

Large Melanoma eyelid + + - -

12 SF German 
shepherd

Large Melanoma eyelid +++ +++ +++ +++

12 SF German 
shepherd mix

Large Melanoma conjunctival +++ +++ +++ -

12 NM Husky mix Medium Orbital carcinoma +++ +++ ++ +++

12.8 NM Shih-tzu Small Glaucoma +++ +++ ++ +++

13 NM Border collie Medium Melanoma skin +++ +++ +++ +++

15 SF Basset hound Medium Conjunctival hemangiosarcoma +++ +++ +++ -

Elderly (11-16 
years)

16 SF Shih Tzu Small Squamous cell carcinoma + + - -

Existing ophthalmological conditions of the 30 neurologically intact unimpaired dogs were determined from the clinical report. Sizes were 
determined according to the American Kennel Club (AKC). Size range between 34 - ≥ 54 kg is considered “giant”, 24-38 kg is considered “large”, 
15-29 kg is considered “medium”, 3-15 kg is considered “small”, and 0.9-4 kg is considered “toy”. Aβ oligomers Aβ plaques and p-Tau staining 
intensity were semi-quantitatively analyzed and scored across the retinal layers under the confocal microscope (LSM800, Zeiss, Oberkochen, 
Germany). The total area was examined at 40 magnification and categorized into no immunostaining “-”; low immunoreactivity found only in 
limited areas of the retinal layers “+”, moderate immunoreactivity where deposits were more apparent “++”; and finally strong immunoreactivity 
with widespread Aβo, Aβp, and p-Tau labeling was exhibited “+++”. ND*: Not determined; SF: spayed female; F: Female; NM: neutered male; M: 
male; IF: immunofluorescence.

incubated for 1 h at RT with the following secondary antibodies in PBS: HRP-conjugated anti-mouse IgG 
(Sigma-Aldrich, Missouri, United States) or anti-rabbit IgG (Sigma-Aldrich, Missouri, United States). The 
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sections were then washed three times with PBS before the addition of the 3,3'-Diaminobenzidine substrate 
chromogen system and incubated for 5-10 min. The sections were then counterstained with hematoxylin for 
1 min before mounting. Sections were finally imaged using Olympus CX 43 light microscopy (Shinjuku, 
Tokyo, Japan).

The staining intensity was semi-quantitatively analyzed and scored across the retinal layers. Each bright 
field was examined at 40× magnification and categorized into no immunostaining “-”; low 
immunoreactivity, found in limited areas of the retinal layers “+”; moderate immunoreactivity where Aβ 
deposits were numerous “++”; and finally strong immunoreactivity with widespread A11 and 4G8 positive 
Aβ labeling “+++” [Table 1].

Immunofluorescence detection and co-localization studies
To investigate whether Aβo co-localized with Aβp or with p-Tau, we performed immunofluorescence 
double labeling using camelid-derived single domain anti-A40 (PRIOAD12) or anti-A42 (PRIOAD13) 
oligomer antibodies with 4G8 anti-Aβp antibody (Bio legend, San Diego, California, United States) or anti-
phosphorylated tau AT8 antibody targeting amino acid residues Ser202/Thr205 (Thermo-fisher Scientific, 
Massachusetts, United States). Slides were processed as described above for IHC before adding the primary 
antibodies. The sections were double-stained with either PRIOAD 12 (1:500) or PRIOAD 13 (1:500)[57] and 
4G8 antibody overnight (1:500) or AT8 (1:500) and either PRIOAD 12 (1:500) or PRIOAD 13 (1:500). 
Sections were then washed in Tris-buffered saline with 0.05% Tween 20 (TBST) and incubated with 
secondary antibodies at a dilution of 1:500, including goat anti-llama IgG conjugated to FITC (Bethyl 
Laboratories, Inc, Texas, USA) or donkey-anti-mouse IgG conjugated to Texas red (Sigma-Aldrich, 
Missouri, United States) for 2 hours at room temperature. Other sections were used as negative control and 
stained with secondary antibodies with the omission of the primary antibodies. Retinal sections derived 
from an APP/PS1 and TAU58/2 transgenic mice models[58,59] were used as positive control and stained with 
anti-Aβ and anti-P-Tau antibodies, respectively. The sections were covered, slipped with paramount 
aqueous mounting medium (Dako, Agilent, Santa Clara, California, United States), sealed, and dried 
overnight. Finally, the sections were visualized with LSM800 confocal microscope with a standard FITC/
Texas Red double band-pass filter set (Zeiss, Oberkochen, Germany).

RESULTS
Histological assessment of the retina in 30 dogs
We performed H&E staining of the canine eye sections and examined the retinal layers to assess their 
general morphological appearance and identify pathological changes such as vacuolation, neuronal death, 
and eosinophilic deposits[49,55]. No specific lesions were observed in the retinal layers of the young and 
middle age groups (data not shown). However, scattered eosinophilic deposits in the ganglion cell layer 
(GCL) and inner nuclear layer (INL) of the retina were noticeable in 5/10 dogs in the older age group (11-16 
years old), including an 11-year-old Beagle, a 12-year-old German shepherd, a 12-year-old Husky mix, a 
12.8-year-old Shih Tzu, and a 15-year-old Basset hound [Figure 1A and B]. Furthermore, CR staining used 
to detect any amyloid fibrils and CAA in eye sections of the dogs did not display any staining in the retina 
tissues from all age groups (data not shown).

Immunohistochemical detection of Aβ oligomers and plaques in the retina of 30 dogs
While demonstrated in the CNS of aged animals including cats and bears[24,60], dogs have been more 
comprehensively studied and shown to develop human type Aβ deposition at a very young age. Retinal 
tissues stained with A11 exhibited intracellular Aβo depositions in the outer nuclear layer (ONL), INL, and 
GCL [Figure 1C and D]. The intraneuronal Aβo intensity following A11 staining ranged from low (+), 
moderate (++) to strong (+++) in all dogs in the young age group except a 1.4 years old male Siberian husky 
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Figure 1. Photomicrographs of the microscopic lesions in the canine retina. The retina in a 12-year-old German shepherd dog. 
Eosinophilic deposits (green arrows) were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL). Representative of 10 
cases of old-aged dogs. Hematoxylin and eosin (H&E) 40×. (B) Higher magnification of the deposits in image (A) (green arrowhead) in 
the GCL. H&E 100×. (C) Retina of a 3-year-old German shepherd dog. Immunohistochemical staining with A11 anti-Aβo IgG antibody 
exhibited cytoplasmic Aβo depositions in the GCL and INL (green arrows). Representative of 10 cases of young age group. IHC 40×. 
(D) Higher magnification of deposits from image (C) in the GCL (green arrowheads). IHC 100×. (E) Retina of a 12-year-old German 
shepherd mix dog. Immunohistochemical staining with 4G8 anti-Aβp IgG antibody exhibited extracellular Aβ aggregates in the GCL and 
INL (green arrows). IHC 40×. (F) Higher magnification of deposit from image (E) in the GCL (green arrowhead). (G and H) 
Representative retinal sections derived from dogs of all age groups stained with secondary antibodies with the omission of the primary 
antibody did not show any depositions (40× and 100×, respectively). The photomicrographs were taken from the peripheral region of 
the retina - away from the optic disc. Representative of all 30 dogs examined. IHC 100×. IHC: Immunohistochemistry.

that did not display any A11 positive stain [Supplementary Figure 1A]. Of note, retinal sections derived 
from wild-type mice were used as negative control following immunofluorescence staining [Supplementary 
Figure 1B and C].

A spayed female mixed breed aged 1.8 years, a female Chihuahua aged 2 years, and a neutered male German 
shepherd aged 3 years showed strong (+++) accumulation of A11 positive Aβo [Figure 1C and D]. Two dogs 
displayed a low amount (+) of A11 positive Aβo in the retinal layers in the middle and old age groups, 
including an 8-year-old male Cocker spaniel and an 11.9-year-old spayed female Bouvier des Flanders 
[Table 1]. In addition, 4G8-positive small rounded and dot-like extracellular Aβp deposits were observed in 
the INL, inner plexiform layer (IPL), and GCL [Figure 1E and F] of the retina. They were structurally 
different from the typical large diffuse plaques normally observed in dog brains with CCD[21,30,61]. The 
extracellular Aβp intensity following 4G8 staining ranged from low (+) to moderate (++) in some dogs in 
the old age group, including a 15-year-old spayed female Basset hound, a 12.8-year-old neutered male Shih 
Tzu, and a 12-year-old spayed female German shepherd. Other dogs in this age group were all negative for 
4G8 staining [Table 1, Figure 1E and F]. Representative retinal sections derived from dogs of all age groups 
stained with secondary antibodies with the omission of the primary antibody did not show any depositions 
[Figure 1G and H].

Immunofluorescence detection and co-localization of retinal Aβ40, Aβ42 oligomers, and Aβ plaques in 
the retina of 30 dogs
To confirm the presence of retinal Aβ40 and Aβ42 oligomers and to determine whether Aβ40 and/or Aβ42 
oligomers co-localized with Aβp in the retinas of different age groups and breeds of neurologically intact 
dogs, we performed immunofluorescence double staining using PRIOAD12 (Aβ40 oligomers), PRIOAD13 

4897-SupplementaryMaterials.pdf
4897-SupplementaryMaterials.pdf
4897-SupplementaryMaterials.pdf
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(Aβ42 oligomers) camelid-derived single domain anti-Aβ oligomer and 4G8 anti-Aβp antibodies. 
Morphologically, Aβo appeared as globular and annular in shape[55,62] and deposited intracellularly in the 
ONL, INL, and GCL [Figures 2-4]. 4G8 positive Aβ plaques appeared morphologically as dot-like and small 
rounded extracellular deposits[50,54] in the outer plexiform layer (OPL), IPL, and GCL [Figures 2-4]. We 
found that both Aβ40 and Aβ42 oligomers staining was widespread in the majority of the dogs in young 
[Table 2, Figure 2A and B], middle [Table 2, Figure 3A and B], and old age groups [Table 2, Figure 4A and 
B]  
except four dogs including a 1.4-years-old male Siberian husky, a 7-years-old neutered male Hound mixed, 
an 8-years-old spayed female Bedlington terrier and an 11-years-old mixed breed. In comparison, Aβp  was 
absent in young dogs [Table 2, Figure 2C and D], but its presence in the middle age group was moderate [
Table 2, Figure 3D and E] and conspicuous in the old age group [Table 2, Figure 4D and E]. Therefore, no 
co-localization of Aβo and Aβp was noticed in the retinal layers of the young age group [Figure 2E-H]. 
However, retinal Aβp was shown to co-localize with Aβ40 or Aβ42 in the GCL, IPL & INL of the middle [
Figure 3G, H, J and K] and old [Figure 4G, H, J and K] neurologically intact age groups. Co-localization of 
Aβ oligomers and 4G8 positive Aβ plaques were also exhibited in the retinal vessel wall, where young dogs 
didn’t exhibit any co-localization, the middle age group showed scarce co-localization [Figure 3I and L], and 
the older age group exhibited conspicuous co-localization in the vessel wall [Figure 4I and L]. In the middle 
age group, two Cocker spaniels aged 8 years male and 9.9 years female respectively exhibited widespread co-
localization of Aβo and Aβp, and in the old age group, a neutered male Beagle aged 11 years, two spayed 
female German shepherds aged 12 years, a neutered male Border collie aged 13 years, and a spayed female 
Basset hound aged 15 years displayed strong and widespread co-localization of Aβo and Aβp. This co-
localization study revealed an age-dependent distribution and co-accumulation of Aβo and Aβp in the 
retina of the neurologically intact dogs. We found that the young dogs exhibited widespread accumulation 
of Aβ40 and Aβ42 oligomers without any plaque deposits; in the middle age group, Aβ40 and Aβ42 oligomers 
accumulation was less conspicuous and, in some cases, co-localized with Aβp; and at the old age group, 
there was widespread and strong co-localization of Aβo and Aβp strongly distributed in most dogs [
Supplementary Figures 2 and 3]. Representative retinal sections derived from dogs of all age groups stained 
with secondary antibodies with the omission of the primary antibody did not show any co-localization [
Supplementary Figure 4A-F]. Retinal sections derived from an APP/PS1 mouse were used as positive 
control and confirmed the presence of Aβ40 and Aβ42 oligomers [Supplementary Figure 5A and B] and Aβp [
Supplementary Figure 5C][49,55].

Immunofluorescence co-localization of retinal Aβ oligomers and phosphorylated tau in the retina of 
30 dogs
To confirm the presence of p-Tau and to investigate whether p-Tau co-localizes with Aβo, we performed 
double fluorescence staining of Aβo and p-Tau using PRIOAD 12 (Aβ40) or PRIOAD 13 (Aβ42) anti-
oligomer[57] and AT8 anti-p-Tau antibody, targeting Ser202/Thr205[54]. Aβo appeared as globular and 
annular in shape[55,62] [Figure 5A and B] and AT8 positive p-Tau appeared morphologically as diffuse and 
granular intracellular deposits[54] in the OPL, INL, IPL, and GCL [Figure 5C and D]. Overall, Aβo and p-Tau 
did not display consistent co-localization in all age groups, as P-tau was only detected in the old age group 
and Aβ40 or Aβ42 oligomers were identified in all age groups. Among ten dogs in the old age group, only four 
dogs have displayed the presence of p-Tau including a spayed female German shepherd and a neutered 
male Husky aged 12 years, a neutered male Shih Tzu aged 12.8 years, and a neutered male Border collie aged 
13 years, and they exhibited strong co-localization with Aβ40 or Aβ42 oligomers [Figure 5E-H]. 
Representative retinal sections derived from Tau 58/2 mouse were used as positive control and confirmed 
the presence of AT8 positive p-Tau [Supplementary Figure 5D][58]. Representative retinal sections derived 
from dogs of all age groups stained with secondary antibodies with the omission of the primary antibody 
did not show any co-localization [Supplementary Figure 6A and B].
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Figure 2. Immunofluorescence (IF) detection and co-localization of retinal amyloid-beta oligomers and amyloid-beta plaques in the 
dogs of the 1-5-year-old group. Retinal co-staining of oligomers with anti-Aβ40 (PRIOAD12) or anti-Aβ42 (PRIOAD 13) camelid-derived 
single domain antibodies (green) and plaques with anti-Aβ (4G8) antibody (red) of a 3-year-old German shepherd dog (A-H). A and B 
show widespread accumulation of Aβ40 and Aβ42 oligomers in the GCL, INL, and ONL (white arrows) and retinal vasculature, 
respectively. IF 40×. (C and D) No Aβp was detected in the retinal layers. IF 40×. (E and F) Co-localization of Aβo and Aβp was not 
observed in the retinal layers of this animal (Aβo was present - white arrows). G and H are higher magnification 100× of images (A and 
B) in the GCL and INL, ONL and retinal vasculature. Representative of 10 dogs in the younger age group (1-5 years). GCL: Ganglion cell 
layer; INL: inner nuclear layer; ONL: outer nuclear layer.

Influence of demographic factors on the retinal deposition of Aβ oligomers, Aβ plaques, and 
phosphorylated tau in 30 dogs
To investigate the influence of the demographic factors on retinal Aβ and p-Tau deposition, staining 
intensity was compared with the age, breed, size, and sex of the neurologically intact dogs [Table 2]. Aβ40 
and Aβ42 oligomers, Aβp and p-Tau fluorescence intensity, were assessed at 40× magnification. 
Immunoreactivity throughout the retinal layers was semi-quantified and categorized into no 
immunostaining “-”; low immunoreactivity, exhibited in limited areas of the retinal layers “+”; moderate 
immunoreactivity where deposits were more apparent “++” and finally strong immunoreactivity with 
widespread Aβo, Aβp and p-Tau labeling “+++” [Table 2]. After comparing the age of the dogs and 
immunofluorescence staining scores, we found that both Aβ40 and Aβ42 oligomers staining was high in young 
dogs, which slightly decreased in the middle age group, then finally, an upward trend was noticed in older 
dogs [Table 2, Figure 6]. In comparison, Aβp was absent in young dogs, but its presence in the middle age 
group was moderate and high in the old age group [Table 2, Figure 6]. Finally, p-Tau deposits were not 
observed in the young and middle age groups, whereas old dogs exhibited widespread staining for p-Tau 
[Table 2, Figure 6].  However, when the size of the dog was compared with the pathological outcome, we 
found that six medium-sized dogs displayed strong Aβo staining and only two dogs exhibited strong p-Tau 
staining [Table 2, Figure 7]. In addition, seven dogs revealed strong Aβp staining, of which four were 
medium size [Table 2, Figure 7].

Influence of eye pathology on the retinal deposition of Aβ oligomers, Aβ plaques, and 
phosphorylated tau in 30 dogs
Further, to understand whether the presence of pre-existing underlying eye pathology in the dogs may 
influence retinal Aβ and p-Tau depositions, we compared their staining intensity with the reported 
underlying clinical eye conditions [Table 2]. We found that four young dogs aged 1-5 years affected with 
anterior segment dysgenesis, a spectrum of disorders that affect the development of the anterior segment, 
including the cornea, iris, ciliary body, and lens[63-65], displayed "moderate" to "strong" intensity staining for 
Aβ40 and Aβ42 oligomers [Table 2]. However, another two dogs in this age group and affected with anterior 
segment dysgenesis showed little to no deposition of Aβ40 and Aβ42 oligomers [Table 2]. Eighteen out of 
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Figure 3. Immunofluorescence detection and co-localization of retinal amyloid-beta oligomers and amyloid-beta plaques in dogs of the 
6-10-year-old group. Retinal co-staining with anti-Aβ40 (PRIOAD 12) and anti-Aβ42 (PRIOAD 13) camelid-derived single domain 
antibody (green) and 4G8 antibody (red) of a 9-year-old Cocker spaniel dog (A-L). (A) A large number of Aβ40 and (B) Aβ42 oligomers 
were found in the GCL, INL, and ONL (white arrows, 40×). (C) Detection of Aβ42 oligomers in the vasculature. 4G8 positive Aβ plaque-
like deposits were observed in the (D and E) GCL, IPL, INL, and OPL of the retina (white arrows, 40×). Widespread co-localization was 
observed in the (G and H) retinal layers (white arrows, 40×). Co-localization of 4G8 positive Aβ plaque with (J) Aβ40 and (K) Aβ42 

depositions (white arrowhead) showed with higher magnification (100×) in the GCL and INL of the same 9-year-old Cocker spaniel dog 
retinal section. (C) Aβ oligomers and (F) 4G8 positive Aβ plaques were observed in the retinal vasculature (white arrows). (I and L) Co-
localization of Aβ oligomers and 4G8 positive Aβ plaques were exhibited with 40× and with higher 100× magnification in the retinal 
vessel wall, respectively (white arrowhead). The photomicrograph was derived from the peripheral region of the retina - away from the 
optic disc. Representative of 10 dogs examined from middle age group (6-10 years). GCL: Ganglion cell layer; IPL: inner plexiform layer; 
INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer.

thirty dogs presented with eye neoplasms, including two in the young age group, seven in the middle age 
group, and nine in the old age group [Table 2]. There was no clear relation between neoplasms and the 
intensity of Aβ or p-Tau [Table 2]. Interestingly, eye inflammation (proptosis/ phthisis bulbi in young dogs 
and conjunctivitis in a middle-aged dog) corresponded to Aβ40 and Aβ42 oligomers intensity that ranged from 
"moderate" to "strong" [Table 2]. Finally, a case of pre-glaucoma in the middle age group and a case of 
glaucoma in the old age group also matched well with Aβ40 and Aβ42 oligomers as well as Aβp intensity. 
Overall, this analysis appears to indicate that no direct influence of pre-existing eye disorders on Aβ and 
p-Tau  intensity exists; however, the small size of the cohorts used in this study did not allow to reach a 
substantive conclusion, and studies with much larger cohorts are needed.

DISCUSSION
Eye imaging can provide an opportunity to develop an easily accessible and point-of-care routine diagnostic 
testing to help predict MCI/AD early[66,67]. A study by Ko and colleagues examined the retinal NFL thickness 
and cognitive status of individuals aged 40 to 69 years over three years[68]. The authors found that 
individuals with thinner NFL showed a higher incidence of reduced cognition.
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Figure 4. Immunofluorescence co-localization of retinal amyloid-beta oligomers and amyloid-beta plaques in dogs of 11-16-year-old 
group. Retinal co-staining with anti-Aβ40 (PRIOAD 12) and anti-Aβ42 (PRIOAD 13) camelid-derived single domain antibody (green) and 
4G8 antibody (red) of a 12-year-old German shepherd dog (A-L). A large number of (A) Aβ40 and (B) Aβ42 oligomers were found in the 
GCL, INL, and ONL (white arrows, 40×). 4G8 positive Aβ plaque-like deposits were observed in the (D and E) GCL of the retina (white 
arrows, 40×). Widespread co-localization was observed in the (G and H) retinal layers (white arrows, 40×). Co-localization of 4G8 
positive Aβ plaque with (J) Aβ40 and (K) Aβ42 depositions (white arrowhead) showed with higher magnification (100×) in the GCL of 
the same 12-year-old German shepherd dog retinal section. (C) Aβ oligomers and (F) 4G8 positive Aβ plaques were observed in the 
retinal vasculature (white arrows). (I and L) Co-localization of Aβ oligomers and 4G8 positive Aβ plaques were exhibited with 40× and 
also with higher 100× magnification in the retinal vessel wall, respectively (white arrowhead). The photomicrograph was derived from 
the peripheral region of the retina - away from the optic disc. Representative of 10 dogs examined from elder age group (11-16 years). 
GCL: ganglion cell layer; INL: inner nuclear layer; ONL: outer nuclear layer.

Despite the validation of the dog as a robust translational model for AD[24,30,69], only very limited studies 
investigated AD-related changes in the young and neurologically intact dogs. One study by Stylianaki and 
colleagues confirmed a similar pattern to that of humans; 61 dogs were subdivided into young (0-4 years 
old), middle-aged (4-8 years old), aged cognitively normal (8-20 years old), and aged cognitively impaired 
(8-17 years-old)[70]. The authors found that young dogs displayed the highest levels of total plasma Aβ42 and 
Aβ42/Αβ40 ratio and the middle-aged dogs had the highest cerebrospinal fluid Aβ40 and Aβ42 when compared 
to neurologically intact aged dogs. Our first step was to investigate the distribution and morphological 
appearance of both Aβ40 and Aβ42 oligomers representing the canine lifetime, in the retinal layers of these 
neurologically intact 30 dogs. Previous studies have shown that A11 anti-oligomer antibody binds to 
different epitopes of the Aβo but also reacts with oligomeric aggregates of other proteins independent of 
their primary sequences. Of note, A11 cannot differentiate between Aβ40 and Aβ42. In contrast, PRIOAD12 
and PRIOAD13 nanobodies bind to Aβ40 and Aβ42, respectively. Previous studies reported an inverse 
interrelationship between neurotoxicity and the size of Aβo, where the toxic effect of Aβo was shown to 
decrease with increased size. The general molecular weight of Aβo was found to range between 10-100 kDa 
in AD brain and included dimers to dodecamer[71]. A study by Lambert and colleagues first describes the 
cytotoxic effect of the small diffusible Aβo on the hippocampal neurons[72]. The small Aβo referred to as Aβ-
derived diffusible ligands toxicity was tested in organotypic mouse brain slice cultures. The authors found 
that 17 and 22 kDa small oligomers killed hippocampal neurons at nanomolar concentration[72]. In addition, 
a study by Cizas and colleagues confirmed that oligomers larger than 30 KDa have a less toxic effect on the 
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Figure 5. Immunofluorescence co-localization of retinal amyloid-beta oligomers and hyperphosphorylated tau in dogs of 11-16-year-old 
group. Retinal co-staining with anti-Aβ40 (PRIOAD 12) and anti-Aβ42 (PRIOAD 13) camelid-derived single domain antibody (green) and 
AT8 antibody (red) of a 12-year-old German shepherd dog. A large number of (A) Aβ40 and (B) Aβ42 oligomers were found in the GCL, 
INL, and ONL (white arrows, 40×). AT8 positive diffuse p-Tau-like deposits were observed in the (C and D) GCL, IPL, INL, and OPL of 
the retina (white arrows, 40×). Widespread co-localization was observed in the (E and F) retinal layers (white arrows, 40×). Co-
localization of AT8 positive p-Tau with (G) Aβ40 and (H) Aβ42 depositions (white arrowhead) showed with higher magnification (100×) 
in the GCL and OPL of the same 12-year-old German shepherd dog retinal section. The photomicrograph was derived from the 
peripheral region of the retina - away from the optic disc. Representative of 10 dogs examined from elder age group (≥ 11 years). GCL: 
Ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer.

Figure 6. Semiquantitative analysis of Aβ40 and Aβ42 oligomers, Aβ plaques, and p-Tau in neurologically intact young (1-5-years), 
middle (6-10-years), and old (11-16-years) age groups of dogs. PRIOAD12 (Aβ40 oligomers), PRIOAD13 (Aβ42 oligomers), 4G8 (Aβp), 
and AT8 (p-Tau) fluorescence immunoreactivity and intensities were examined and quantified at 40× magnification under the 
fluorescence microscope. Semiquantitative analyses were compared with the three different age groups. A large amount of Aβ40 and 
Aβ42  oligomers were found in young dogs, which decreased in middle age group, then finally, an upward trend was noticed in older 
dogs. In comparison, Aβp were completely absent in young dogs, and then moderately found in middle, and large amounts in old age 
groups. Finally, p-Tau deposits were not found in young and middle age groups of dogs, whereas old dogs exhibited a considerable 
amount of p-Tau.
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Figure 7. Influence of the size of dogs on the retinal deposition of amyloid-beta oligomers (Aβo), plaques (Aβp), and phosphorylated 
tau (p-Tau) in cognitively unimpaired young (1-5-years), middle (6-10-years) and old (11-16-years) age groups of dogs. PRIOAD12 
(Aβ40 oligomers), PRIOAD13 (Aβ42 oligomers), 4G8 (Aβp), and AT8 (p-Tau) fluorescence immunoreactivity and intensities were 
examined and quantified at 40× magnification under the fluorescence microscope. In three different age groups, semiquantitative 
analyses were compared with the size of the dogs. In young dogs,  a large number of oligomers were displayed by the small and big size 
dogs. The majority of medium-sized dogs displayed strong Aβo and Aβp staining intensity in the middle-aged dogs. Finally, among the 
different sizes of old dogs, medium-sized breeds displayed the highest amount of Aβo, Aβp, and p-Tau staining intensity.

inhibition of long-term potentiation[73]. They also suggested the transition of sizes from small to large 
correlate with the high to a low toxic effect of Aβo[73]. A11 specifically binds to the prefibrillar oligomers. 
However, studies suggested that the specificity of A11 to AD-related oligomers might vary as it recognized 
prefibrillar oligomers from various proteins that share a common structure including α-synuclein, islet 
amyloid polypeptide, polyglutamine (PolyQ), lysozyme, and prion peptide[36]. A study by Glabe and 
colleagues reported the ideal band size of prefibrillar oligomer-specific antibody A11 ranged from 
approximately tetrameric up to ~75 kDa[35]. In our study, we confirmed the presence of an A11-specific 
band at ~70KDa, confirming binding to prefibrillar oligomers in APP/PS1 mice. In comparison, camelid-
derived single-domain nanobodies bind to ~15KDa band representing the small oligomers. In agreement 
with this current study, our previous report[55] also suggested that nanobodies were able to detect the toxic 
small diffusible oligomers specific to AD, whereas A11 binds to the larger oligomers believed to be less toxic 
to the neurons.

Studies suggested that in the canine brain, Aβo may be the toxic species responsible for cognitive decline 
and can potentially be an early biomarker for the detection of CCD[23,74]. Naaman and colleagues recently 
reported that Aβ42 oligomers cause extensive retinal neurotoxicity in rats when compared to fibrillary Aβ40 
and Aβ42

[75]. Our findings demonstrated extensive deposition of Aβ40 and Aβ42 oligomers in the retinal layers, 
including GCL, INL, and ONL in 26/30 in the young, middle, and old age groups, except for a 1.4-year-old 
male Siberian husky, a 7-year-old neutered male Hound mixed, an 8-year-old spayed female Bedlington 
terrier, and an 11-year-old neutered male mixed breed. Moreover, we did not notice any difference in the 
intensity of immunofluorescence (graded - to +++), the pattern of deposition, or morphology between Aβ40 
and Aβ42 oligomers in all age groups. This presentation was unlikely influenced by the breed of the animals; 
for instance, out of three Siberian Huskies, one dog failed to display Aβ40 and Aβ42 oligomers accumulation. 
Remarkably, the younger age group, with an age range of 1-5 years, equivalent to humans aged 15-40 years 
according to the American Kennel Club[76], has displayed extensive deposition of Aβ oligomers. Of interest, 
a 2013 brain study investigated the presence of three different types of Aβ oligomers, including Aβ trimers, 
Aβ*56, and Aβ dimers, in 75 cognitively unimpaired individuals aged 1 to 96 years[14]. Young children and 
adolescents were positive for Aβ oligomers; the authors found an age-related accumulation of Aβ oligomers 
where the level of the amyloid-β dimer was significantly higher in subjects in their 60s, and amyloid-β trimer 
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in their 70s, whereas Aβ*56 level was significantly higher in individuals in their 40s. The investigators 
proposed that Aβo, specifically Aβ*56, might trigger the pathological cascade in asymptomatic AD, a phase 
that may be identifiable two decades before the clinical onset[14].

Having found that the eyes of 26/30 dogs contained Aβ40 and Aβ42 oligomers, our next step was to 
demonstrate the presence/deposition of fibrillar Aβ in the canine retina of this same cohort. We show that 
none of the young dogs displays 4G8-positive Aβ fibrils and plaques (Aβp). However, Aβp were observed in 
some of the middle age group, where three dogs exhibited "low" staining intensity and two exhibited 
"strong" staining intensity in the GCL, IPL & INL. Aβp were also observed in the old age group, where five 
dogs showed "strong" signal intensity and two with "moderate" signal intensity in the GCL, IPL & INL. A 
pattern, not surprising, emerges; Aβ40 and Aβ42 oligomers are deposited in the retina following birth and 
subsequently, a fibrillar Aβ configuration, aggregated as plaques follow. Several studies have demonstrated 
the presence of Aβp in the canine brain and suggested only a weak correlation with the severity of cognitive 
dysfunction[77,78]. Schütt et al. investigated this question in further depth by studying dogs at differing ages, 
specifically aged 9-15 years, including neurologically intact dogs and dogs with CCD, and compared their 
amyloid burden with that of young dogs aged less than 6 years[69]. The authors reported that the levels of Aβ 
deposition strongly correlated with the age of the dog but not to their cognitive capacity. Asking the same 
questions regarding amyloid accretion in non-CNS neuronal populations, such as the retina, has not been 
investigated in the canine, but some recent reports confirmed their presence in the retina of AD[50,54,79]. In 
this study, we have demonstrated accumulation of retinal Aβp in the mature to an aged group of these 30 
dogs which supports the hypothesis that Aβp might not influence the severity of cognitive deficits but can 
be a predictor of AD development[11,17]. Overall, our study revealed that the Aβ deposition pattern in the 
retina was such that Aβo was observed in all age groups, whereas Aβp accumulation was restricted to the 
middle and more intensely the old age group of dogs, regardless of demographic criteria, breed and gender. 
Interestingly, co-accumulation of both Aβo and Aβp were apparent in some middle and old dogs. This is in 
agreement with our report this year, where 17-18 months old APP/PS1 mice showed high levels of 
oligomers deposits in the retinal layers that co-localized with Aβp[55]. Previous neuropathological studies in 
AD have shown that cerebral Aβo is usually present in early disease stages and is the most cytotoxic of Aβ 
species, mostly responsible for neurotoxicity and synaptic dysfunction[34,80-83], whereas extracellular Aβp is 
believed to accumulate at later ages and may act as a reservoir for Aβo[84]. Moreover, the involvement of Aβo 
in retinal degeneration in AD has also been reported[85-87]. In the study reported herein, we noticed 
widespread distribution of Aβo in the retinal layers of dogs of all age groups, indicating potential 
involvement in retinal degeneration, perhaps leading to vision impairment in some dogs[88,89]. Of 
importance, a previous study by Ozawa and colleagues that focused on web and paper-based surveys of dogs 
aged ≥ 10 years to identify physical disturbances related to CCD showed that more than 90% of dogs 
affected with CCD had vision impairment[90]. In addition to the neural retina, we observed Aβ deposition s 
in the retinal microvasculature of young, middle, and old age groups, which might imitate CAA in AD[91-93]. 
Sharafi et al. suggested that retinal vasculature changes captured by hyperspectral imaging can differentiate 
cerebral amyloid status between cognitively impaired and unimpaired individuals[94].

Central to AD pathogenesis is the intraneuronal deposition of hyperphosphorylated tau (p-Tau) in granular 
form and eventual organization as NFTs, one of the cardinal neuropathological hallmarks[3,4]. In dogs with 
CCD, p-Tau, unlike NFTs, has been identified in the brain, but until recently, only in some cases. We 
speculate that, unlike human AD, p-Tau is only evident in pretangle granular form in dogs due to their 
shorter lifespan (Tayebi & Habiba, unpublished observation). p-Tau neuropathology was shown to develop 
about a decade before the formation of Aβp in AD brains and was hypothesized to trigger AD[95,96]. However, 
Aβo accumulation was shown to precede and drive p-Tau accumulation and transneuronal spread across 
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synapses in the parietal cortex of AD[96].

In the retina of human AD patients, p-Tau displayed a diffuse pattern in the plexiform layers in the absence 
of NFTs[54]. Schön and colleagues reported the presence of AT8-positive intracellular NFTs and diffuse 
p-Tau  signals in the retina of 5/6 deceased AD patients[97]. In this study, we investigated the presence of p-
Tau Ser202/Thr205 to confirm the presence of retinal p-Tau in dogs. We revealed diffuse p-Tau distribution 
in the OPL, INL, IPL, and GCL in 4/10 dogs of the old age group, including a spayed female German 
shepherd and a neutered male Husky aged 12 years old, a neutered male Shih Tzu aged 12.8 years old, and a 
neutered male Border collie aged 13 years old. The same dogs also showed the widespread distribution of 
Aβ40 and/or Aβ42  oligomers and 4G8- positive Aβp. Similarly, in the brains of cognitively impaired, 14-17 
years old dogs, Abey and colleagues have demonstrated the presence of p-Tau Ser202/Thr205 and p-Tau 
Ser396 in 1/6 and 6/6, respectively[40]. This pattern of deposition strongly supports a possible age-dependent 
progression as observed in AD mice models[49,55]. Previous studies have shown that breed variance does not 
determine the pathological outcome associated with CCD in aged dogs[98,99]. In agreement, our study did not 
reveal any breed-dependent pathological accumulation.

While previous studies have demonstrated the presence of Aβp and p-Tau in the aged dog brain[30,43], 
Pugleise et al. proposed that the acquisition of diffuse Aβp and p-Tau are unrelated and independent events 
of aged dogs[42]. Whether these two “ingredients” of AD dementia or CCD are closely linked (co-localized or 
at least act in concert) is likely crucial. In AD, it was shown that p-Tau and Aβo cause neuronal toxicity and 
may act synergistically to trigger synaptic dysfunction[36,37,100]. Manczak and colleagues showed that Aβ40 or 
Aβ42 oligomers co-localized with p-Tau in the brains of AD patients[101]. The authors also reported that the 
interaction between Aβo and p-Tau became more prominent with disease progression and was more 
pronounced at Braak stage V and VI compared to Braak stage III and IV[102,103]. The evidence from this 
canine retina study would support an interaction: we also show that p-Tau co-localized with Aβ40 or Aβ42 
oligomers in the OPL, INL, IPL, and GCL of the retina of 4/10 dogs in the eldest age group. A recent PET 
brain imaging study by Lockhart et al., which demonstrated the presence of both Aβ and Tau pathology in 
cognitively normal older adults, showed a significant spatial correlation with Aβ and Tau deposition[104]. 
Thus co-localization, while evident, does not itself necessarily imply neuronal cytotoxicity.

Several studies in the field of AD research highlighted the importance of diagnostic and therapeutic 
interventions in the asymptomatic phase while the individuals are cognitively intact[14,105]. However, it is 
challenging to first identify and then track disease progression in humans without sensitive, specific, and 
cost-effective early diagnostic approaches and a lack of robust natural translational models. In that context, 
dogs have the potential to be an effective natural model for the study of aging and AD. They share the same 
environment as humans[106,107]; there exists the option of brain CT and MRI imaging and intracranial biopsy, 
ease of cognitive testing which helps reduce physiological stress, and finally, a short lifespan[108]. Canine 
ophthalmology is a well-established clinical and investigative discipline (inherited retinopathies, for 
example). The current study provides strong impetus to track how this seemingly common process evolves, 
with potential consequences for aging, neurodegenerative disease, and also vision.

Lateralization in retinal and cerebral Aβ levels was previously investigated in an AD mouse model[109]. Some 
studies revealed left posterior brain-dominant lateralization in Aβ42/40; however, no left or right brain 
hemisphere or retinal dominance lateralization was observed for Aβ40 and Aβ42. Although our current study 
does not provide information about left versus right retinal accumulation of Aβ, the significance of the 
lateralization in human Alzheimer’s and CCD remains unknown. Moreover, previous reports have shown 
that Aβ accumulation was more prominent in the far-peripheral and mid-peripheral of the superior 
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temporal quadrant than in the central retina in AD patients[50,79]; however, in our study, no notable 
differences in Aβ and tau deposition have been observed in different parts of the retina.

The canine eye tissues used in this study had been surgically removed in the course of managing 
spontaneous disorders of the globe, eyelids, or structures within the orbit which necessitated enucleation. It 
could be asked whether any of these conditions played any part in Aβ and/or p-Tau deposition in the retina. 
We think this unlikely, given the diverse clinical conditions involved, which ranged from developmental 
abnormalities, inflammatory conditions, and proptosis to various neoplasms of differing grades of the eye, 
while other cases were disorders arising in the conjunctiva or orbit. The span of ages in these dogs (from 
juvenile to quite aged) would further make this seem unlikely and some evidence of human retinal Aβ and/
or p-Tau exists, though such explorations are largely performed only at the end of life.

The study presented here offers valuable insights into the deposition patterns of amyloid beta (Aβ) and 
phosphorylated tau (p-Tau) in the canine retina. However, it is important to highlight that the sample size 
of dogs may limit the generalizability of our results. Additionally, the cross-sectional design of the study 
means we cannot establish temporal relationships between Aβ/p-Tau deposition and cognitive decline. 
Longitudinal studies would provide a more comprehensive understanding of the progression of retinal 
pathology in correlation with cognitive status. Finally, it is important to recognize species differences, as 
dogs may not perfectly mirror human neurodegenerative processes. Therefore, caution is warranted when 
translating our findings into human clinical practice. Future research should explore whether ocular 
pathology itself contributes to retinal amyloidogenesis and tauopathy. Addressing these limitations through 
larger sample sizes, longitudinal designs, and careful consideration of confounding factors will strengthen 
the validity and clinical relevance of future investigations into retinal biomarkers for neurodegenerative 
diseases.
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