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Abstract
Extranodal natural killer/T cell lymphoma (NKTCL) is a heterogenous and unique epidemiological non-Hodgkin’s 
lymphoma, which is strongly associated with Epstein-Barr virus (EBV) infection. Based on the development of 
various sequencing methods and molecular biology technologies, genome- and transcriptome-wide association 
studies of NKTCL have provided insight into the etiology and pathogenesis of NKTCL. Comparative genomic 
hybridization detected variations in tumor suppressor genes such as PRDM1, RUNX3, and EZH2. Whole-exome 
sequencing identified pathogenic variant such as DDX3X, and TP53. Signal pathways such as the Janus 
kinase/signal transduction and activator of transcription pathway and nuclear factor kappaB pathway are 
frequently abnormal in NKTCL. In addition, programmed death-1, programmed death ligand-1, and the human 
leukocyte antigen risk alleles are significantly associated with NKTCL pathogenesis. Meanwhile, epigenetics 
analysis has also exposited changes such as PTPRK, HACE1, microRNAs, and long non-coding RNAs, which play 
important role on the development and biology of NKTCL. EBV infection is tightly correlated with NKTCL. Viral 
genomic alterations and lytic genes of EBV are reported to have pathogenic effects on host cells that contribute to 
the etiology of NKTCL. We summarize the genomic and genetic alterations during the pathogenesis and 
development of NKTCL and exhibit the potential therapeutic targets that are worth exploring in future research and 
clinical trials.
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INTRODUCTION
Extranodal natural killer/T cell lymphoma (NKTCL) commonly involves the upper aerodigestive tract such 
as the nasal cavity and is prevalent in Asia, Mexico, and Latin America[1,2] while rare in the United States and 
Europe[2,3]. NKTCL was previously called “lethal midline granuloma”, of which the pathological features are 
pleomorphic and atypical cells ranging from medium to large, obvious necrosis, irregular nucleus and 
cytoplasmic changes, and showing an angiocentric/angiodestructive growth pattern with infiltration of 
immune inflammatory cells[1,4-7]. Neoplasm cells are positive for CD56, CD2, and CD3ε with the expression 
of cytotoxic molecules, such as TIA1 and Granzyme B. Epstein-Barr virus (EBV) DNA and non-coding 
EBV-encoded RNAs could be detected in tumor tissues[8-10], which leads to the correlation of EBV infection 
and the pathogenesis of NKTCL. In addition, NKTCL tumor cells express P-glycoprotein, which is related 
to multidrug resistance, resulting in poor response to anthracyclines[11]. Concurrent L-asparaginase-
containing regimens with or without radiotherapy are the current standard treatment. The International T-
cell Project’s report showed great improvement in the survival of NKTCL patients over the past decade[12]. 
The five-year overall survival rates for stage I, stage II, and stage III-IV are 55%, 42%, and 24%, 
respectively[12]. However, the treatment for advanced-stage, relapsed, or refractory patients is still 
challenging[12]. Therefore, there is an urgent need for more effective treatments to improve the survival of 
NKTCL patients.

Identifying the unique gene expression profile, dysregulated molecules, and signaling pathways of NKTCL 
provided a new perception for understanding pathogenic mechanisms and potential therapeutic targets[13,14]. 
Genome-wide association study revealed susceptible genes significantly associated with the higher risk of 
NKTCL[15,16]. EBV genome and transcriptomics analysis showed that EBV infection might contribute to the 
pathogenesis of NKTCL by affecting the host cell genome[17]. Exploring the genomics and genetic variations 
in the tumorigenesis and development of NKTCL from the molecular aspects has vital biological 
significance for the future clinical diagnosis, treatment, and prognosis of NKTCL. Xiong et al.[18] integrated 
the cell origin, EBV expression pattern, clinical significance and characteristics of alterations in the human 
genome of NKTCL samples, and divided NKTCL into three molecular subtypes: TSIM subtype [based on 
variants in the Janus kinase/signal transduction and activator of transcription (JAK/STAT) pathway and 
TP53], MB subtype (based on MGA mutation and 1p22.1/BRDT loss of heterozygosity), and HEA subtype 
(based on HDAC9, EP300, and ARID1A mutation)[18]. Disease stratification bridges the pathogenesis of 
NKTCL with clinical intervention from pathogenesis theory into clinical practice.

THE ALTERATION OF HUMAN GENETICS AND POTENTIAL TREATMENTS
The network of NKTCL pathogenesis has not been totally revealed. However, changes in a variety of genes 
and signaling pathways have been reported. We try to excavate underlying signatures from reported genetic 
variations and search the genetic hallmarks increasing the risk of NKTCL, which furnish guidance for 
mechanism-based anti-tumor therapy.

Tumor suppressor genes and Somatic mutations
Dysfunction of tumor suppressor genes occupies a significant position in the development of hematological 
malignancies, which has been discussed in leukemia and myeloma[19,20]. Many major candidate genes, such 
as PRDM1, TP53, HACE1, FOXO3, and ATG5, are located in the deletion region of chromosome 6q21, 
which is the most frequently discussed in NKTCL[13,14,21]. There are recurrent somatic mutations in NKTCL 
as well.
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PRDM1
PRDM1 encodes Blimp, a transcription inhibitor of NK cell and T cell differentiation, and regulates the 
proliferation and maturation of NK cells[22]. As a tumor suppressor gene (TSG) located in the 6q21 region, 
PRDM1 is inactivated due to mutation, promoter methylation, or deletion, with a low expression level in 
NKTCL[23,24]. Inhibition or inactivation of PRDM1 is supposed to upregulate genes or pathways related to 
proliferation and cell cycle regulation such as MYC and to downregulate the pro-apoptotic factor BIM[21]. 
The above indicates that PRDM1 may mediate malignant transformation of cells and be a potential genetic 
target. A recent study found that pan-acetyltransferase inhibitor vorinostat might restore PRDM1 response 
to IL21 through decreasing BCL6 bound to PRDM1 in follicular lymphoma (FL) cells[25]. According to the 
results from vorinostat on nonfunctional CREBBP, FL cells showed a significant increase in PRDM1 
expression after IL21 exposure. The expression of PRDM1 might be an important response predictor for 
pan-HDAC inhibitors on FL cells. However, whether agents that restore PRDM1 exert anti-tumor activity 
in NKTCL is still to be explored.

RUNX3 and MYC
Runt-related transcription factor 3 (RUNX3) presents a bilateral significance in different tumor 
backgrounds. It is overexpressed in colorectal cancer and could promote TRAIL-induced apoptosis exerting 
anti-tumor effect[26]. In cutaneous T-cell lymphoma, the re-expression of RUNX3 decreases tumor cell 
survival and induces apoptosis, indicating that RUNX3 acts as tumor suppressor gene[27].

There are different degrees of expression of MYC in different types of lymphoma[28]. Compared with NK 
cells, MYC is highly expressed and activated in NKTCL. The inhibition of its target genes may be a possible 
mechanism for it playing an important role in the development of NKTCL[29].

Selvarajan et al.[30] demonstrated that RUNX3 is overexpressed and oncogenic in NKTCL. MYC is involved 
in the positive transcriptional regulation of RUNX3[30]. JQ1, a small molecule inhibitor, may induce 
apoptosis of NKTCL cell lines by inhibiting transcription of MYC and downregulating RUNX3, which 
indicates that RUNX3 and MYC may be potential therapeutic targets in NKTCL[30]. In addition, 
homoharringtonine is considered to downregulate the expression of MYC via directly binding to NKRF, the 
inhibitor of nuclear factor kappaB (NF-κB)[31]. Relevant clinical trials have shown that homoharringtonine-
based induction regimens can significantly improve the complete remission (CR) rate and progression-free 
survival of acute myeloid leukemia patients[32]. The potential therapeutic implication of this reagent deserves 
to be further explored in NKTCL.

EZH2
Enhancer of zeste homolog 2 (EZH2) is overexpressed in NKTCL and acts as oncogene in tumor 
progression[33,34]. Previous studies have shown that EZH2 undergoes frequently somatic mutations in FL and 
diffuse large B-cell lymphoma (DLBCL), resulting in dysregulation of epigenetic silence function of 
methyltransferase[35]. Interestingly, Yan et al.[36] considered that EZH2, as a transcriptional activator, 
promoted proliferation through regulation of cyclin D1 expression by a non-canonical pathway. JAK3 
kinase inhibitor PF956980 can induce the arrest of EZH2 phosphorylation and block its non-canonical 
pathway via limiting the growth advantage of NKTCL cells[36]. A recent study found that MELK (maternal 
embryonic leucine zipper kinase), which regulates the ubiquitination and turnover of EZH2, increased 
EZH2 S220 phosphorylation and promoted stabilization of EZH2 protein in NKTCL[37]. These studies 
demonstrate a potential target role of EZH2, and a JAK3 inhibitor may be a prospective treatment option. 
Additionally, a phase II clinical trial (Clinical Trial No. NCT01897571) about the EZH2 inhibitor 
tazemetostat treating refractory/relapsed B-cell non-Hodgkin’s lymphoma patients is ongoing. Of note, 
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results from a phase I clinical trial demonstrated that tazemetostat had a favorable safety profile and anti-
tumor activity in refractory NHL and advanced solid tumors, including epithelioid sarcoma[38]. Analogously, 
EZH2 inhibitors might be worth exploring in NKTCL treatment.

DDX3X
DDX3X belongs to the RNA helicase family, and its gene mutation is involved in the formation of a variety 
of human tumors[39-41]. According to Jiang et al.[42], DDX3X is the most common somatic mutation gene 
(20%, 21/105) in NKTCL. Notably, tumors with DDX3X mutation show activation and upregulation of NF-
κB and mitogen-activated protein kinase (MAPK) pathways, which also reflects that DDX3X mutation has 
biological significance in NKTCL pathogenic process. However, the actual significance in clinical treatment 
of NKTCL still needs more studies and trials to confirm.

Other TSGs and Somatic mutations
The tumor suppressor gene TP53 is considered to be dysfunctional due to somatic mutations[41,43]. Genes 
normally suppressed by TP53 are upregulated in tumor tissues, which may lead to the progression of 
NKTCL[29]. FOXO3 is lowly expressed in NKTCL and induces apoptosis and cell cycle arrest of NK cell 
lines, which is recognized to be of great significance in the pathogenesis of NKTCL[23]. Hexokinase domain 
component 1 has been proven to be transcriptionally upregulated in the NKTCL cell line. It not only 
promotes the proliferation of tumor cells but also inhibits EBV replication and P-glycoprotein expression 
through promoting the overproduction of ROS and DNA damage[44]. Besides, survivin is overexpressed in 
NKTCL. In vitro, terameprocol, a survivin inhibitor, can significantly inhibit the growth of NKTCL cell 
lines[29].

The alterations of these genes further enrich the molecular network of NKTCL pathogenesis and provide 
potent targets for anti-tumor therapy. The relevant content is summarized in Table 1. Whether they could 
be used as valuable clinical factors for diagnosis and treatment needs to be verified in larger-scale 
experiments.

Oncogenic signaling pathways
JAK/STAT signaling pathway
Targeted capture sequencing observed somatic alteration of the JAK/STAT pathway in 78% (85/109) of 
NKTCL samples. STAT3 and TP53 genes (21%, 23/109) were mutated most frequently, followed by JAK3, 
JAK1, and suppressor of cytokine signaling 1 mutations. Furthermore, STAT3 activation resulting from 
mutations or abnormal phosphorylation may drive the high expression of programmed death ligand-1 (PD-
L1), which may have an influence on immune escape of NKTCL[45]. In another study, STAT3 is the most 
common mutant gene of NKTCL (9/34, 26.5%), and all mutations are located in the SRC homology 2 
domain that seems to be an underlying effective target region[46]. Apart from mutations, abnormal 
expression of phosphorylated STAT3 (pSTAT3) at Tyr705 is also recognized as aberrant activation 
signature[13]. Dysregulated JAK2 mediates the constitutive phosphorylation of STAT3 (Tyr705) facilitating 
the growth of NKTCL MEC04 cells and Ser727 phosphorylation of activated MAP-Kinase/Erk pathway, 
both of which have similar oncogenic significance[47]. In addition, receptor-type tyrosine-protein 
phosphatase κ (PTPRK) binding to pSTAT3 led to the dephosphorylation of pSTAT3, and some NKTCL 
patients suffer from function deficiency of PTPRK according to the previous formulation[48]. The above 
suggests that STAT3 is activated through different mechanisms in NKTCL.

STAT3 obtained phosphorylated activation following JAK3 constitutive phosphorylation on tyrosine 
Tyr980[49]. Whole-exome sequencing detected JAK3 mutations (A572V and A573V) that exceptionally 
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Table 1. Key targets and their potential pathogenic mechanisms and therapeutic significance from the alterations TSGs and somatic 
mutations in NKTCL

The 
alterations of 
human 
genetics

Potential 
hallmark/signaling 
pathways

Role in pathogenic 
mechanism of 
lymphoma

Ref. Potential treatment 
significance Ref.

TSGs and 
somatic 
mutations

PRDM1 Downregulated and 
promotes cell proliferation 
and reduces apoptosis

Karube et al.[23] 
Küçük et al.[24]

IL21 plus vorinostat 
upregulates PRDM1 
expression in FL and may be 
explored in NKTCL treatment

Desmots et al.[25]

RUNX3 Overexpressed and 
oncogenic in NKTCL

Selvarajan  et al.[30] JQ1, a molecule inhibitor, may 
induce apoptosis in vitro

Selvarajan  
et al.[30]

EZH2 Overexpressed and 
promotes cell proliferation 
as a transcriptional 
activator by a non-
canonical pathway

Yan et al.[36] JAK3 inhibitor PF956980 
blocks the non-canonical 
pathway of EZH2 and limit 
cell growth in vitro 
A phase II clinical trial about 
EZH2 inhibitor tazemetostat 
treating NHL is ongoing, and 
it may try to be included in 
NKTCL therapy

Yan et al.[36] 
Italiano et al.[38]

MYC Highly expressed and 
inhibits its target genes

Ng et al.[29] HHT improved the CR and 
PFS of AML cases in a clinical 
trial and deserves to be 
further explored in NKTCL

Jin et al.[32]

DDX3X DDX3X mutation has vital 
significance in lymphoma 
pathogenesis

Jiang et al.[42] N/A N/A

P53 Dysfunctional and may lead 
to the progression of 
NKTCL

Ng et al.[29] 
Choi et al.[43]

N/A N/A

FOXO3 Downregulated and 
induces apoptosis and cell 
cycle arrest in vitro.

Karube et al.[23] N/A N/A

 HKDC1 Upregulated, promotes the 
proliferation of tumor cells, 
and inhibits EBV replication 
and P-gp expression.

Chen et al.[44] N/A N/A

Survivin Upregulated and inhibits 
apoptosis in NKTCL.

Ng et al.[29] Terameprool, as a survivin 
inhibitor,  
inhibits the survival of NKTCL 
cell lines

Ng et al.[29]

NKTCL: Extranodal natural killer/T cell lymphoma; TSGs: tumor suppressor genes; PRDM1: PR/SET domain 1; IL21: interleukin 21; RUNX3: runt-
related transcription factor 3; FL: follicular lymphoma; EZH2: enhancer of zeste homolog 2; JAK3: Janus kinase 3; MYC: bHLH transcription factor; 
HHT: homoharringtonine; CR: complete remission; PFS: progression-free survival; AML: acute myeloid leukemia; DDX3X: DEAD-box helicase 3 X-
linked; FOXO3: forkhead box O3; HKDC1: hexokinase domain component1; EBV: Epstein-Barr virus; P-gp: P-glycoprotein.

activated the JAK/STAT signaling pathway and had a tumorigenic effect on NKTCL[50]. Moreover, 
Sim et al.[51] identified two novel JAK3 mutations (H583Y and G589D) on exon 13 with carcinogenic 
properties. Tofacitinib, a JAK3 inhibitor, could inhibit the growth of mutant NKTCL cell lines. The study 
also discovered that the malignant growth advantage of STAT3 Y640F and STAT3 D661Y mutant were 
inhibited by the STAT3 inhibitor Stattic but not affected by Tofacitinib[51]. Besides, the JAK3 inhibitor CP-
690550 restrained the growth and invasion of tumor cells in vivo and in vitro[49,50]. A recent study also 
uncovered that PRN371, a highly selective inhibitor of JAK3, apparently suppressed proliferation of NKTCL 
cells with the overexpression of phosphorylated JAK3 and phosphorylated STAT3/5, which showed a more 
durable inhibitory effect compared to tofacitinib[52].
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According to the above studies, the dysregulation of JAK/STAT pathway is highly prevalent in NKTCL and 
may play an important role in the pathogenesis of the disease through diverse mechanisms. JAK3 and 
STAT3 are two latent therapeutic targets, and their inhibitors might have promising results in the treatment 
of NKTCL patients. In the future, the feasibility and safety of the treatment strategy targeting the 
deregulated JAK/STAT pathway should be further studied.

NF-�B signaling pathway
NF-κB has critical biological implications in the growth, proliferation, differentiation, and regulation of 
lymphocytes that are regarded as vital pathogenetic factors in lymphomas[53]. Expression of RelA and cRel, 
two canonical molecules of the NF-κB pathway in NKTCL, suggested abnormal activation of canonical 
NF-κB pathway[13]. In another study, RelB, a molecule of the alternative NF-κB pathway, was positive in 
NKTCL tumor tissue. The differential expression of molecules might imply constitutive activation of NF-κB 
pathway in NKTCL and that it might be involved in the development of the disease through various 
mechanisms[29]. Interestingly, EBV-encoded latent membrane protein 1 (LMP1) induced aberrant 
expression of eukaryotic translation initiation factor 4E[54], survivin[55], and PD-L1[56] to participate in 
NKTCL progression via NK-κB pathway, which further implied that targeting this carcinogenic pathway 
might have potent clinical value for NKTCL patients.

PDGF signaling pathway
Platelet-derived growth factor alpha (PDGFRα) is overexpressed in NKTCL, and imatinib mesylate, a 
PDGFR inhibitor, has a limited effect on the growth of the PDGFRα + NKTCL cell line, which indicates that 
the PDGF pathway was involved in the pathogenic process of NKTCL. However, there was still no evidence 
explaining the dysregulation of PDGFRα completely[13]. Piccaluga et al.[57] revealed that activated PDGFRα 
fostered the proliferation of peripheral T-cell lymphomas, not otherwise specified (PTCL or NOS), cells 
through autocrine loop.

Other oncogenic signaling pathways
Gene sets analysis also discerned other biological pathways in NKTCL including the MAPK, WNT, AKT, 
and vascular endothelial growth factor (VEGF) signaling pathways[13]. The NOTCH and aurora kinase A 
(AURKA) pathways were upregulated in NKTCL. Notch inhibitors, which potently inhibited γ-secretase 
and Notch processing, and an AURKA inhibitor (MK-8745) both may inhibit the proliferation and cell 
cycle regulation of NK-lymphoma cell lines[58]. The Akt/mammalian/mechanistic target of rapamycin 
(mTOR) pathway is abnormally activated in EBV-associated T- and NK-cell lymphoma, and their inhibitors 
restricted effectually proliferation of cell lines[59]. The excessive expression of phosphatidylinositol 3-kinase 
PIK3 isoforms, containing PIK3α, PIK3β, PIK3γ, and PIK3δ, indicated the abnormally dysregulated 
activation of PIK3 pathway in NKTCL[60]. VEGF was overexpressed in cutaneous NKTCL and related to 
poor prognosis. It also provided a potential basis for disorder of the VEGF pathway in NKTCL[61]. The 
MYC/MAP3K6 pathway is considered to be a characteristic manifestation of MB subtype NKTCL[18].

Integrating the alterations of human genetics in NKTCL, we simply depict an oncogenic molecular network 
linking dysregulated genes and signaling pathways in Figure 1. We also summarize the relevant content 
about oncogenic signaling pathways in Table 2.

Epigenetic variations
PTPRK
PTPRK directly and selectively dephosphorylates the substrate, and loss of phosphatase activity will cause 
the disruption of cell junctions and enhance invasive characteristics[62]. Because of promoter 
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Table 2. Vital signaling pathways and their potential oncogenic mechanisms and target significance in NKTCL

The 
alterations of 
human 
genetics

Potential 
hallmark/signaling 
pathways

Role in pathogenic 
mechanism of lymphoma Ref. Potential treatment 

significance Ref.

Signaling 
Pathways

JAK/STAT Aberrant activity via 
mutations or abnormal 
phosphorylation

Huang et al.[13] 
Song et al.[45] 
Bouchekioua et 
al.[49]

JAK3 inhibitor: tofacitinib 
inhibited the growth of cell 
lines 
CP-690550 restrained 
growth and invasion of 
tumor cells 
PRN371 apparently 
inhibited proliferation of 
NKTCL cells 
STAT3 inhibitor: stattic 
inhibited malignant growth 
advantage in vitro

Bouchekioua et al.[49

] 
Koo et al.[50] 
Sim et al.[51] 
Nairismägi et al.[52]

NK-κB Dysregulated and LMP1 
induces eIF4E, survivin, and 
PD-L1 via NK-κB pathway, 
which may contribute to 
NKTCL progression

Ng et al.[29] 
Huang et al.[13] 
Sun et al.[54] 
Sun et al.[55] 
Bi et al.[56]

NF-κB has critical 
biological implications in 
NKTCL and targeting the 
pathway might bring 
potent clinical value

N/A

PGDF PDGFRα is overexpressed in 
NKTCL, and the actual 
oncogenic sense needs to 
disclose

Huang et al.[13] Imatinib mesylate, a 
PDGFR inhibitor, has a 
limit effect on cell growth 
in vitro

Huang et al.[13]

AKT/mTOR Abnormally activated and 
promotes cell growth

Kawada et al.[59] mTOR inhibitors: 
Rapamycin suppressed 
mTOR activity and limited 
cell proliferation in vitro 
CCI-779 inhibited tumor 
growth in vivo and in vitro

Kawada et al.[59]

MAPK MYC/MAP3K6 pathway is a 
characteristic manifestation of 
MB subtype NKTCL

Xiong et al.[18] N/A N/A

AURKA Upregulated and may 
accelerate neoplasm cell 
proliferation

Iqbal et al.[58] AURKA inhibitor MK-
8745 inhibits proliferation 
and cell cycle regulation

Iqbal et al.[58]

NOTCH Upregulated and plays a role in 
development of neoplasm

Iqbal et al.[58] NOTCH inhibitors potently 
inhibit NK-lymphoma cell 
lines

Iqbal et al.[58]

NKTCL: Extranodal natural killer/T cell lymphoma; JAK/STAT: Janus kinase/signal transduction and activator of transcription; JAK3: Janus kinase 
3; STAT3: signal transduction and activator of transcription 3; NK-κB: nuclear factor kappaB; LMP1: latent membrane protein 1; eIF4E: eukaryotic 
translation initiation factor 4E; PDL1: programmed death ligand-1; PGDF: platelet-derived growth factor; PDGFRα: platelet-derived growth factor 
receptor alpha; PDGFR: platelet-derived growth factor receptor; AKT/mTOR: protein kinase B /mechanistic target of rapamycin; MAPK: mitogen-
activated protein kinase; MYC/MAP3K6: bHLH transcription factor /mitogen-activated protein kinase kinase kinase 6; MB: one molecular 
subtype of extranodal natural killer/T cell lymphoma that was divided based on MGA mutation and 1p22.1/BRDT loss of heterozygosity; AURKA: 
aurora kinase A.

hypermethylation (16/27, 59%) or monoallelic gene deletion (8/27, 30%), PTPRK expression is frequently 
downregulated in NKTCL, which is thought to promote constitutive activation of STAT3 and mediate the 
inhibition of cells proliferation, invasion, and migration. Similarly, demethylation reagent 5-aza-2’-
deoxycytidine-induced PTPRK re-expression confirms the aberrant epigenetic changes of PTPRK in 
NKTCL[48]. PTPRK may be a potential target of NKTCL epigenetic therapy. Whether its promoter 
methylation and pSTAT3 level can be used as biomarkers for diagnosis or prognosis of NKTCL needs 
further exploration.

HACE1
HACE1, the novel E3 ubiquitin ligase mapping to the deletion region of 6q21 chromosome, inhibits cell 
cycle progression via regulating the degradation of cyclin D1. As a tumor suppressor gene, it has been found 
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Figure 1. The interrelationships among JAK/STAT, NF-κB, MAPK, and AKT carcinogenic pathways and dysregulated tumor suppressor 
genes, somatic mutations, and epigenetic mutations. Molecules located at junctions of the non-arrow ends have effects on the part 
pointed by the arrows. Specific explanations are disclosed in the corresponding sections. JAK/STAT: Janus kinase/signal transduction 
and activator of transcription; JAK2/3: Janus kinase2/3; STAT3: signal transduction and activator of transcription 3; PTPRK: receptor-
type tyrosine-protein phosphatase κ; PDL1: programmed death ligand-1; NK-κB: nuclear factor kappaB; TRAF6: tumor necrosis factor 
receptor associated factor 6; DDX3X: DEAD-box helicase 3 X-linked; MAPK: mitogen-activated protein kinase; MAP3K6: mitogen-
activated protein kinase kinase kinase 6; PRDM1: PR/SET domain 1; MYC: bHLH transcription factor; SNHG12: small nucleolar RNA host 
gene 12; TET1: methylcytosine dioxygenase ten-eleven translocation 1; RUNX3: runt-related transcription factor 3; EZH2: enhancer of 
zeste homolog 2; BCYRN1: brain cytoplasmic RNA 1; AKT: protein kinase B.

to be silenced by its CpG methylation in a variety of tumors[63]. Interestingly, another study showed a 
normal HACE1 protein expression level in the NKTCL cell line but did not observe a similar cell cycle 
arrest[64]. These inconsistent results indicate that the specific function of HACE1 in NKTCL is not clear, and 
more studies are needed to discover the real function of HACE1 in NKTCL.

The ten-eleven translocation 1
The expression of the methylcytosine dioxygenase ten-eleven translocation 1 (TET1) maintains DNA 
hydroxymethylation and prevents the DNA hypermethylation of cells, whose deficiency leads to B-cell 
lymphoma. Promoter CpG methylation is the main transcriptional silencing mechanism of TET1[65]. 
However, Poole et al.[66] showed that inactivation of MYC relieved the regulation of TET1 resulting from the 
overexpression of TET1 in T-cell acute lymphatic leukemia acting as a tumor promoting factor. There was 
continual methylation of TET1 occurring in 83% (10/12) of NKTCL[67]. The functional mechanism of TET1 
in the tumorigenesis of NKTCL has not been completely revealed, but it is indeed a potentially meaningful 
epigenetic marker.

Other epigenetic variations
The lysine [K]-specific methyltransferase 2D (KMT2D), also known as MLL2, encodes a histone 
methyltransferase. Mutations of KMT2D may cause dysregulation of gene transcription regulation, which 



Page 331Jiang et al. J Transl Genet Genom 2021;5:323-40 https://dx.doi.org/10.20517/jtgg.2021.21

may contribute to the development of NKTCL[43]. Loss of function mutations of BCOR are considered 
highly specific in NKTCL[41]. Another study demonstrated that BCOR and MLL2 were mutated genes 
followed only by STAT3[46]. The two aberrant mutated chromatin-modifying genes may also be significant 
targets of NKTCL epigenetic therapy. All the content regarding epigenetic variations is summarized in 
Table 3.

microRNAs and lncRNAs
microRNAs
microRNAs are small non-coding RNAs with a length of 19-24 bp nucleotides that negatively regulate target 
genes and are associated with the regulation of crucial biological processes such as cell growth, 
differentiation, and apoptosis[68]. Many studies have revealed the functional significance of microRNAs 
dysregulation in NKTCL.

Ng et al.[69] discovered that miR-342-5p, miR-26b, miR-363, miR-150, miR28-5p, miR-26a, and miR-101 
were downregulated in NKTCL tumor tissues and in vitro, as compared with normal NK cells. These 
microRNAs inhibited the growth of NKTCL cell lines in vitro. Nevertheless, the expression of miR-155 and 
miR-378 were upregulated[69]. miR-150 may impact the sensitivity of NKTCL cells to radiotherapy by 
inhibiting the PI3K/AKT/mTOR pathway and participate in the development of lymphoma[70].

miR-15a is downregulated in NKTCL cell lines and tumor tissues, which may predict poor prognosis and 
response to treatment[71]. Paik et al.[72] proved that the overexpression of miR-146a in NKTCL cells may 
inhibit NF-κB pathway and thus serve as a feasible tumor suppressor. In addition, Liang et al.[73] found that 
miR-223 targeted the 3’-untranslated region (UTR) of PRDM1 gene to downregulate its expression at the 
post-transcriptional level. miR-21 is overexpressed in NKTCL, acting as an oncogenic RNA which mediates 
apoptotic activity reduction through the abnormally dysregulated PTEN/AKT signaling pathway. Aberrant 
overexpression of miR-155 may induce activation of SHIP1/AKT pathway and affect the occurrence of 
NKTCL[74].

lncRNAs
In addition to microRNAs, some long non-coding RNAs (lncRNAs) have also been thought to be involved 
in the oncogenesis of NKTCL. ZFAS1 suggested genes participate in critical pathways associated with cell 
growth and tumor transformation, such as NF-κB and WNT signaling pathways[75]. Recently, Wang et al.[76] 
discovered that brain cytoplasmic RNA 1 in NKTCL tissue was significantly higher in contrast to normal 
NK cells, which may induce autophagy via inhibiting PI3K/AKT/mTOR and p53/mTOR signaling pathways 
and enhance the resistance to L-asparaginase. lncRNA X-inactive-specific transcript (XIST) is overexpressed 
in NKTCL, and its downstream target miR-497 could decrease the synthesis of the anti-apoptotic molecule 
Bcl-w to further regulate XIST-mediated proliferation and migration of NKTCL cells[77]. In addition to 
these, small nucleolar RNA host gene 12 is upregulated in NKTCL, as a direct transcription target of c-myc, 
which accelerates the proliferation of tumor cells and may suppress the response to cisplatin[78].

In summary, studies on the connection between non-coding RNAs and NKTCL not only present the 
possible therapeutic value of non-coding RNA but also provide enlightenment for overcoming the 
resistance of NKTCL patients. These potential targets and their significance are summarized in Table 4.

Immune-related changes
PD-1 and PD-L1
Programmed death-1 (PD-1) is an immune checkpoint receptor that binds to PD-L1 expressed by neoplasm 
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Table 3. Summary of key targets, potential pathogenesis mechanisms, and treatment significance in NKTCL epigenetic variations

The alterations 
of human 
genetics

Potential 
hallmark/signaling 
pathways

Role in pathogenic mechanism of 
lymphoma Ref. Potential treatment 

significance Ref.

Epigenetic 
variations

PTPRK Downregulated for methylation or 
deletion and mediates inhibition of cells 
proliferation, invasion, and migration

Chen et al.[48] PTPRK may be a potential 
target of NKTCL 
epigenetic therapy

N/A

HACE1 Encodes E3 ubiquitin ligase and inhibits 
cell cycle progression, but silenced due 
to CpG methylation 
The specific function of HACE1 is not 
clear

Zhang et al.[63] N/A N/A

TET1 Frequently methylated, and the 
oncogenic mechanism has not been 
revealed

Li et al.[67] N/A N/A

KMT2D Mutations may cause dysregulation of 
gene transcription regulation

Choi et al.[43] N/A N/A

BCOR Loss of function mutations of BCOR are 
considered highly specific in NKTCL

Dobashi et al.[41] N/A N/A

NKTCL: Extranodal natural killer/T cell lymphoma; PTPRK: receptor-type tyrosine-protein phosphatase κ; HACE1: HECT domain and ankyrin 
repeat containing E3 ubiquitin-protein ligase 1; CpG: cytosine-phosphate-guanine; TET1: methylcytosine dioxygenase ten-eleven translocation 1; 
KMT2D: lysine [K]-specific methyltransferase 2D; BCOR: bcl6 corepressor.

Table 4. Important non-coding RNAs and their potential roles and therapeutic significance associated with NKTCL

The alterations 
of human 
genetics

Potential 
hallmark/signaling 
pathways

Role in pathogenic 
mechanism of lymphoma Ref. Potential treatment 

significance Ref.

microRNAs miR-15a Downregulated in NKTCL cell 
lines

Komabayashi 
et al.[71]

May predict poor response to 
treatment and survival of 
NKTCL patients

Komabayashi 
et al.[71]

miR-21 Upregulated and mediates 
apoptotic activity reduction

Yamanaka  
et al.[74]

N/A N/A

miR-146a Overexpressed and may limit 
Bcl-2 expression by inhibiting 
NF-κB pathway

Paik et al.[72] N/A N/A

miR-150 Downregulated in NKTCL 
tumor tissues and in vitro

Ng et al.[69] Overexpression of miR-150 
impacts the sensitivity to 
radiotherapy

Wu et al.[70]

miR-155 Overexpressed and induce 
aberrant activation of 
SHIP1/AKT pathway

Yamanaka  
et al.[74]

N/A N/A

miR-223 Upregulated and targets and 
downregulates PRDM1

Liang et al.[73] N/A N/A

lncRNAs BCYRN1 Upregulated and may induce 
autophagy

Wang et al.[76] Aberrant expression of 
BCYRN1 enhances resistance 
to L-asparaginase.

Wang et al.[76]

XIST Overexpressed and mediates 
proliferation and migration in 
vitro

Liu et al.[77] N/A N/A

SNHG12 Upregulated and advances 
cell proliferation as a direct 
transcription target of c-myc

Zhu et al.[78] C-myc may suppress the 
response to cisplatin by 
promoting SNHG12 expression 
in NKTCL

Zhu et al.[78]

NKTCL: Extranodal natural killer/T cell lymphoma; Bcl-2: B cell leukemia/lymphoma 2; NK-κB: nuclear factor kappaB; SHIP1/AKT: inositol 
polyphosphate-5-phosphatase D/ protein kinase B; PRDM1: PR/SET domain 1; BCYRN1: brain cytoplasmic RNA 1; XIST: X-inactive-specific 
transcript; SNHG12: small nucleolar RNA host gene 12.

cells and inhibits the activation, proliferation, and cytokine expression of T cells[79]. The combination of PD-



Page 333Jiang et al. J Transl Genet Genom 2021;5:323-40 https://dx.doi.org/10.20517/jtgg.2021.21

1 and PD-L1 is one of the most important pathways for tumors to escape immune surveillance[80]. PD-1/PD-
L1 blockade in various tumors, such as relapsed/refractory Hodgkin’s lymphoma[81], non-small-cell lung 
cancer[82], melanoma[83], and colorectal cancer[84], has been verified to be a newly favorable treatment option 
distinctive from traditional chemotherapeutics.

There are also studies on PD-1/PD-L1 blockade therapy applied to NKTCL patients. In the trial of 
Kwong et al.[85], all patients responded for a long time, including two patients with CR, three patients 
achieving clinical and radiological CR, and the rest with partial remission. Relapse/refractory NKTCL 
patients who failed previous chemotherapies were treated with pembrolizumab, and the response was 
favorable. Four out of seven patients responded to the treatment and the adverse effects were tolerable[86]. 
Whole-genome sequencing on 19 refractory/relapsed NKTCL patients receiving pembrolizumab showed 
that the structural rearrangement of the PD-L1 gene (PD-L1MUT) disrupting the 3’-UTR was the only gene 
variation in tumor samples of patient who had response to pembrolizumab in contrast with non-
responders. The somatic mutation was detected in 4/7 patients who completely responded to 
pembrolizumab, but it was not seen in all non-responders. Besides, researchers revealed this mutation was 
associated with better survival (P = 0.0279)[87]. This may be a predictive response marker of PD-1/PD-L1 
blockade therapy for NKTCL. As treatment for PD-L1 blocking therapy, a phase II clinical trial of avelumab 
was reported that 21 NKTCL patients showed a CR rate of 24% (5/21) and an overall response rate of 38% 
(8/21). The study also found patients with high PD-L1 expression levels had better treatment response[88].

A meta-analysis including 4174 cases of five types of advanced or metastatic tumors displayed that PD-
1/PD-L1 inhibitors are more effective than conventional chemotherapy, and the overall survival (OS) of 
patients is significantly prolonged, whether PD-L1 positive or negative[89]. Based on the above research 
reports, PD-1/PD-L1 blockade is a promising molecular-targeted approach. It is necessary to further explore 
how to improve the therapeutic effect and safety of PD-1/PD-L1 blockade therapy in NKTCL.

HLA risk alleles
A Japanese study containing 25 NKTCL cases and 303 control individuals reported that the frequency of 
human leukocyte antigen (HLA)-A*0201 in NKTCL patients was significantly lower than the baseline 
control population[90]. However, genome-wide association study did not observe similar results, probably 
due to the small sample size. Notably, Li et al.[15] identified 51 single-nucleotide polymorphisms (SNPs) 
associated with NKTCL that are mapped to the MHC region of chromosome 6. rs9277378 (located in HLA-
DPB1) exhibits the strongest association with susceptibility of NKTCL [P = 4.21 × 10−19, odds ratio (OR) = 
1.84]. Afterwards, Lin et al.[16] reported two novel NKTCL risk loci, the IL18RAP region on 2q12.1 
(rs13015714; P = 2.83 × 10−16, OR = 1.39) and the HLA-DRB1 region on 6p21.3 (rs9271588; P = 9.35 × 10−26, 
OR = 1.53). The rs1420106-A variant that is highly correlated with rs13015714 can upregulate the expression 
of IL18RAP, which may be conducive to the proliferation of tumor cells. In addition, a haplotype 
association analysis showed that 47F-67I, a component of the antigen binding pocket of HLA-DRB1, was 
associated with a reduced risk of NKTCL, and 47Y-67L was the opposite to 47F-67I for the genetic risk for 
NKTCL[16].

Furthermore, a seven-SNP-based classifier was designed based on the seven SNPs that correlated to 
WDR27, UMAD1, TENM2, LINC02463, KDM4C, FGD4, and FAM71A. It had better predictive accuracy 
than clinicopathological risk variables on the survival of NKTCL patients. The combined application of the 
seven-SNP-based classifier and clinicopathological risk factor should be more accurate for predicting the 
prognosis of NKTCL patients[91].
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All the above research provides new insights for the tumorigenesis and development of NKTCL and reveals 
the significance of inflammation and immune regulation through the IL18/IL-18RAP axis and antigen 
presentation involving HLA-DRB1. The relevant content is summarized in Table 5. The above implicated 
guiding significance for the risk stratification of NKTCL patients and clinical intervention. It could be 
combined with other genetic risk factors or prognostic models to help identify high-risk populations for 
targeted prevention.

THE VARIATIONS OF EBV GENOME
Epstein-Barr virus (EBV) is a widespread human herpes virus that has infected more than 90% of 
population in a lifetime[92]. EBV infection is believed to be associated with various human cancers such as 
nasopharyngeal carcinoma, Burkitt’s lymphoma, Hodgkin’s lymphoma, gastric cancer, DLBCL, NKTCL, 
etc.[92]. The virus expresses six Epstein-Barr nuclear antigens (EBNAs 1, 2, 3A, 3B, and 3C and EBNA leader 
protein), latent membrane proteins (LMP1 and LMP2), non-coding EBV-encoded RNAs (EBER1 and 
EBER2), and viral microRNA[93]. The virus presents a type II latent pattern with the episomal form 
(EBNA1+/LMP-1+ and EBNA-2) in the host body[94,95]. LMP1 is one of the main oncogenes encoded by EBV 
that is of significance for EBV-mediated B-cell immortalization[96]. EBNA1 makes a difference in virus 
replication and the maintenance of episomal form in the latent state and promotes the malignant 
transformation of B cells[97].

Structural variation of EBV genome
There are common intragenic EBV deletions (73-49,847 bp) detected in NKTCL (10/23), EBV-positive 
DLBCL (10/14), and other malignancies (2/7)[98]. Sanger sequencing revealed that LMP1 gene contained a 30 
bp deletion, which may be related to the poor prognosis of NKTCL patients[99]. Analyzing the EBV genome 
and transcriptome derived from NKTCL, in addition to the 30 bp deletion in LMP1, small deletions in 
BARTs, EBNA2, EBNA3s, BLLF1/2, and other regions were also detected, which disclosed the heterogeneity 
in EBV cloning in NKTCL patients[17]. Interestingly, this study also clarified an insertion of EBV fragments 
into the human nonhomologous end-joining 1 (NHEJ1) gene region, which may lead to changes in the 
expression and function of NHEJ1. The NHEJ1 gene is vital in repairing DNA damage and maintaining 
genome stability[100]. Thus, integration of the EBV genome and human genome might have crucial impact 
on the pathogenesis and development of NKTCL. The molecular mechanism of this integration affecting 
NKTCL tumorigenesis and whether the integration indeed contributes to clinical treatment of NKTCL need 
to be explored in further research.

Lytic genes
There are two infection routes of EBV-infected cells: latent infection and lytic infection[101]. Similar to latent 
genes, lytic genes also play a crucial role in the promotion of EBV infection and tumorigenesis of NKTCL. 
Previous studies demonstrated that the lytic genes BNLF2a and BNLF2b were highly expressed in NKTCL 
tissues[17], and the expressions of BARF1, BHRF1, and BZLF1 were detected in the NKTCL cell line[102]. 
Besides, the single-nucleotide variations of lytic gene BALF3 frequently were detected, and overexpression 
of BALF3 might drive DNA damage and bring about genomic instability in NKTCL. Intragenic EBV 
deletions often affect BamHI A rightward transcript (BART) microRNA clusters, core genes necessary for 
lytic DNA replication (BMRF1, BSLF1, BALF2, BALF5, BBLF2/BBLF3, and BBLF4) and some genes related 
to the lytic cycle and latent infection[98]. High-throughput sequence identified that EBV noncoding BART 
lncRNAs RPMS1 and A73 were strongly expressed in NKTCL and delivered regulatory signals to host cells 
without triggering specific immunity, which is helpful to retain the latent state of EBV in the host[103]. 
However, deletions located on (BART) microRNA clusters often have an unfavorable effect on EBV-miR-
BART6-5p, EBV-miR-BART6-3p, EBV-miR-BART18-5p, and EBV-miR-BART20-5p, which negatively 
regulated early genes BZLF1 and BRLF1 that are thought to upregulate the lysis cycle and promote 
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Table 5. Crucial immune checkpoint and risk alleles and their potential significance to the pathogenesis and treatment of NKTCL

The 
alterations of 
human 
genetics

Potential 
hallmark/signaling 
pathways

Role in pathogenic 
mechanism of lymphoma Ref. Potential treatment 

significance Ref.

Immune evasion PD-1/PD-L1 The combination of PD-1 and 
PD-L1 is one of the most 
important pathways for 
tumors to escape immune 
surveillance

Iwai et al.[80] PD-1/PD-L1 blockade therapies 
applied to NKTCL have been 
developed or are ongoing, and 
there are a few promising 
results

Kwong et al.[85] 
Li et al.[86] 
Shen et al.[89] 
Lim et al.[87] 
Kim et al.[88]

HLA risk alleles rs9277378 Exhibits the strong association 
with susceptibility of NKTCL

Li et al.[15] Susceptible population 
screening and disease risk 
stratification

N/A

rs13015714 Located at the IL18RAP region 
and involved in inflammation 
and immune regulation

Lin et al.[16] Identifying high risk population 
for targeted prevention

N/A

rs9271588 Located at the HLA-DRB1 
region and involved in antigen 
presentation

Lin et al.[16] Identifying the high-risk 
population for targeted 
prevention

N/A

NKTCL: Extranodal natural killer/T cell lymphoma; PD-1/PD-L1: programmed death ligand-1/ programmed death-1; HLA: human leukocyte 
antigen; IL18RAP: interleukin 18 receptor accessory protein; HLA-DRB1: major histocompatibility complex, class II, DR beta 1.

lymphoma pathogenesis[104-106].

Immune cell therapies targeted EBV
Studies have proved that EBV is closely related to the pathogenesis of NKTCL. While exploring the relevant 
molecular pathogenic mechanisms, scholars commit to explore the target of EBV for therapy. After 29 high-
risk or recurrent cases with EBV+ lymphoma received autologous LMP-cytotoxic T lymphocytes (CTLs) 
therapy, 27 patients achieved CR[107]. Similarly, allogeneic donor-derived LMP-specific T cells (LMP-Ts), as 
an ancillary therapy, maintained the clinical response of EBV+ lymphoma patients who had underwent 
allogeneic bone marrow transplantation, and the two-year OS of 26 patients was 68%[108]. Noticeably, a 
recent study reported that EBV-specific induced pluripotent stem cell-derived antigen-specific CTLs can 
prompt enduring and strong antineoplastic activity[109]. The above research implies that specific immune cell 
therapies targeting EBV-related antigens are potential strategies. In the future, the safety and effectiveness of 
cell therapy should be further verified in larger multi-center trials which may bring more clinical benefits to 
NKTCL patients.

CONCLUSION
During the past decade, with the development of gene expression profiling and next-generation sequencing 
technology, people have expanded the understanding of the functional structure of genes. This provides 
novel perspectives for exploring the genetic mechanism of NKTCL and opportunities to develop new 
therapeutic strategies for NKTCL patients. Up to now, PD-1/PD-L1 blockade therapy has undoubtedly been 
an extremely noteworthy treatment option. As a novel regulator, CMTM6 regulates PD-L1 through 
endosystemic circulation, and PD-L1 can be specifically reduced due to the deletion of CMTM6. This 
discovery will be an interesting direction for further uncovering the NKTCL pathogenic mechanism[110]. 
Dysregulated signaling pathways are of noticeable significance in NKTCL and studies about related 
inhibitors also brings potential targets for the treatment of NKTCL[45,46,52,58,59]. The intimate relationship 
between EBV infection and NKTCL has been clearly proposed, and specific immune cell therapies targeting 
EBV are being investigated. Nevertheless, the interaction mechanism between the EBV genome and the 
human genome in NKTCL is yet to determined. As the results of various basic and clinical trials have been 
reported, feasible targets and possible treatments of NKTCL have been proposed and further studied. To 
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sum up, more accurate biomarkers and predictors for the response to treatment and survival are needed. 
More effective treatment and the optimal combination of these therapeutic options still need to be explored 
in the future according to the development of the above progress and further challenges.
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