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Abstract
Immune checkpoint inhibitors represent a major therapeutic advance in non-small-cell lung cancer with several 
approved anti-programmed death-1 and anti-programmed death-L1 immunotherapies. A majority of patients 
however, will not respond to immune checkpoint inhibitors and display primary resistance while a subset of 
initially responsive patients will present secondary resistance. Thus, there is a crucial need for biomarkers 
to enable better prediction and diagnosis, and to overcome such resistance. Along with improvement in the 
understanding of immune escape, new biomarkers are being developed, including large scale proteomic, genomic 
and transcriptomic approaches in tumor and blood samples. We review the novel biomarkers that have been 
investigated in non-small-cell lung cancer and discuss how they can rationalize therapeutic strategies.

Keywords: Non-small-cell lung cancer, immune checkpoint inhibitors, resistance, predictive biomarkers, diagnostic 
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INTRODUCTION
Immune checkpoint inhibitors (ICI) such as programmed death-1 (PD-1) and programmed death ligand-1 
(PD-L1) inhibitors represent a major breakthrough in the treatment of non-small cell lung cancer (NSCLC). 



However, only 20%-30% of NSCLC patients respond to anti-PD-1/PD-L1[1-5]. There is therefore a crucial 
need to integrate biomarkers of resistance for a more personalized approach to immunotherapy. 

“Primary resistance” is found in patients who have never responded to ICI whereas “secondary/acquired 
resistance” is defined by tumor progression after prior response[6]. The efficacy of ICI relies on the de-
repression of immune checkpoints hindering the action of existing anti-tumor lymphocytes. Thus, several 
steps of the adaptive immune response need to be fulfilled: (1) production by tumor cells of tumor-specific 
antigens; (2) activation and expansion of T-cells specific for these antigens; (3) migration to and infiltration 
by effector T-cells of target cells; (4) recognition of target tumor cells; and (5) cytotoxic and immuno-
stimulatory activity of the effector T-cells. 

Mechanisms of resistance to ICI can impair each step of this immune response[7]. We review the existing 
and potential biomarkers to discuss which could serve as practical tools to predict or diagnose resistance to 
ICI. 

RESISTANCE BIOMARKERS RELATED TO INTRINSIC FACTORS OF TUMOR CELLS 
Mechanisms of intrinsic resistance include defects in immune recognition, cell signaling, gene expression 
and DNA damage responses. Emerging biomarkers are developed after considering these different 
mechanisms of resistance. 

Oncogenic PD-L1 expression
Theoretically, the efficacy of ICI targeting the PD-1/PD-L1 axis relies on the de-repression of effector 
T-cells inhibited by the binding of PD-L1 on their membranes receptors. PD-L1 expression is currently the 
only validated biomarker in patients. Indeed, immunohistochemistry (IHC) staining of PD-L1 in tumor 
cells or immune cells is more frequently observed in responders to anti-PD-1/PD-L1 monoclonal antibody 
therapies[2-5,8]. However, even when a tumor displays > 50% PD-L1 staining, half of NSCLC patients still 
have primary resistance to first line Pembrolizumab[8]. Conversely, clinical benefit is found in 10% of 
patients negative for PD-L1[2,9].

Historically, the development of ICI in NSCLC has been based on the PD-L1 status of tumor cells, 
specifically, via a tumor proportion score[8], which is the percentage of viable tumor cells showing partial 
or complete membrane staining at any intensity. Given the rising role of PD-L1 expression on non-tumor 
cells, the use of a combined positivity score has been developed by taking into account the number of PD-L1 
staining cells (tumor cells, lymphocytes, macrophages[10]). However, PD-L1 expression, whether on tumor 
cells or immune cells, still appears insufficient in predicting resistance. Other PD-1 ligands though, may be 
relevant to the clinical activity of ICI. The prevalence of programmed cell death-ligand 2 (PD-L2), the other 
known ligand of PD-1, has been investigated[11,12]. PD-L2 expression was correlated with treatment response 
using a cut-off value of 50% expression in tumor cells in NSCLC[11].

Pre-analytical, analytical, and post-analytical aspects of PD-L1 IHC testing such as specimen type, size 
of samples, diversity of IHC antibodies, and lack of standardization of positivity cut-offs can all influence 
PD-L1 results[13,14]. Moreover, the intra-tumor heterogeneity of PD-L1 expression[15] must be taken into 
account[8] in anticancer treatment[16].

Lack of tumor immunogenicity
Low tumor mutational burden, insufficient neo-antigens
Under certain conditions, mutations occurring in the genetic material of tumors can lead to the production 
of abnormal proteins, which can then be processed by the proteasome and antigen presenting machinery, 
resulting eventually in the presentation of immunogenic tumor specific neo-antigens[17]. Thus, it has been 
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hypothesized that a higher frequency of non-synonymous mutations in tumor cells, the so called “tumor 
mutational burden (TMB)”, should result in a higher rate of neo-antigen production and probability of 
triggering an adaptive immune response.

In NSCLC, a high, non-synonymous mutation burden is defined by a threshold superior to 178 mutations/
sample after whole exome sequencing (WES) and has been correlated to response, durable clinical benefit 
and progression-free survival. Conversely, a low TMB predicts poor efficacy in NSCLC patient cohorts and 
can be considered as a marker of primary resistance to ICI[18]. The association between TMB and response 
to ICI was demonstrated globally in a meta-analysis across 27 tumor types, including NSCLC[19]. 

Multiple gene panels have also been used to evaluate the TMB in a more feasible way than WES with good 
accuracy[20]. In Checkmate 227, a next generation sequencing (NGS) panel of 324 genes[21] was assessed 
by the FoundationOne CDx assay in NSCLC patients treated with the combination of Ipilimumab and 
Nivolumab. A good correlation between progression-free survival and TMB status was found using a 
threshold defined by 10 mutations/megabase. 

TMB data have also been extracted from blood samples. The advantages of this approach are the 
convenience of blood sampling and a more global estimate of TMB given heterogeneity concerns in tissue 
samples[22]. Gandara et al.[22] demonstrated the validity of TMB assessment in blood samples (bTMB) 
for predicting the response of metastatic NSCLC patients to Atezolizumab. The technique relied on the 
association of NGS of a large portion of cell-free DNA, allowing the identification and quantification of 
abnormal tumor sequences related to circulating tumoral DNA. In the MYSTIC study, metastatic NSCLC 
patients displaying a low bTMB (defined as < 16 mutations/megabase in the Guardant Health Omni assay, 
a NGS panel of 500 genes[23]) had lower overall survival under Durvalumab + Tremelimumab treatment 
compared to standard chemotherapy[24].

However, the CheckMate227 study failed to demonstrate correlation between overall survival and TMB and 
this revived debates about diagnostic techniques[25,26]. Beyond the crucial need to standardize practices (pre-
analytical parameters, thresholds, type of samples or sequencing methods), it has also been hypothesized 
that the TMB may not be a sufficient marker for predicting primary resistance to ICI[27,28].

One should also keep in mind that mutations occurring in non-exonic regions of tumor DNA can lead 
to abnormal mRNA and peptide sequences, particularly via alternative splicing, thus generating potential 
neo-antigens that would not be predicted using the methods described above[29]. A refinement of TMB 
analysis could be neo-antigen burden assessment since only mutations resulting in the production of these 
immunogenic antigens would be relevant for predicting the existence of an adaptive anti-tumor response. 
Such an approach has been used in NSCLC via bioinformatics tools to enable calculation of neo-antigen 
load from genomic and transcriptomic data[30]. Indeed, a low neo-antigen burden has been associated with 
poor treatment response to anti-PD-1[8,30]. McGranahan et al.[30] focused on the importance of the tumoral 
distribution of neo-antigenes and showed that clonal neo-antigens predominant in responders are more 
immunogenic than sub-clonal antigens.

Loss of neo-antigens/immuno-editing
Conversely, several mechanisms including immunoediting, can potentially lead to the loss of neo-antigens 
that enable primary responses to ICI, such that tumors develop secondary resistance. This phenomenon 
seems to be facilitated by the existence of intra-tumoral genomic heterogeneity, both at baseline and after 
PD-1 blockade[31]. Immunoediting has also been observed in NSCLC by dynamic blood sampling along 
anti-PD-1 therapy. The decrease in the number of circulating anti-tumor T-ell clones (see below “Clonality 
of tumor-specific T-cells”) correlated with secondary resistance, suggesting a decrease in the number of 
neo-antigens stimulating the anti-tumor immune response[32].
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Oncogenic addiction
Phase III trials have failed to demonstrate the efficacy of PD-1/PD-L1 monoclonal antibody in patients with 
EGFR and ALK mutations, which suggests the co-expression of inhibitory receptors or T-cell interactions 
with immunosuppressive cells[3-5]. EGFR results were summarized in a meta-analysis[33]. A retrospective 
study on patients receiving ICI monotherapy for advanced NSCLC with at least one oncogenic driver 
alteration (EGFR, BRAF, MET, HER2, ALK, RET, or ROS1), showed lower clinical activity compared with 
the KRAS group and the lack of response in cases of rearrangement[34]. In the subset of KRAS-mutated lung 
adenocarcinomas, co-mutation of the tumor suppressor gene STK11 is associated with a lack of response to 
ICI[35].

Antigen presentation defect in tumor cells: loss of human leukocyte antigen expression
Events altering antigen presentation by the major histocompatibility class I complex (MHC-I) occur 
at a different level and are believed to prevent ICI efficacy. These include genetic, transcriptional, post-
transcriptional and epigenetic mechanisms[36]. McGranahan et al.[37] applied a specifically designed 
computational method on DNA sequencing data from the HLA locus of NSCLC. They found a 40% 
prevalence of loss of heterozygosity in HLA class I alleles, impairing neo-antigen presentation by tumor 
cells. HLA loss of heterozygosity also seemed to be acquired heterogeneously in tumor sub-clones, as an 
adaptive mechanism in immune escape. This suggests that the assessment of HLA loss of heterozygosity 
could predict resistance in spite of a favorable tumor microenvironment and/or high TMB.

Impaired cytotoxicity of effector T-cells
Decreased interferon-gamma signaling. Interferon-gamma (IFN-γ) is produced by CD8+ T-cells upon 
activation, as well as other inflammatory cells, and is a major effector of anti-tumor activity by enhancing 
the antigen-presentation machinery and having strong immune stimulatory properties. Defects in the 
IFN-γ signaling pathway have been identified as a major mechanism of resistance[38] to PD-1 and CTLA-4 
blockade[39]. It has been shown that genetic alterations of the Janus kinase/signal transducers and activators 
of transcription pathway[38,40] can lead to secondarily PD-L1 negative tumor cells with altered antigen 
presentation. Therefore, transcriptomic analyses have been performed in order to identify a gene expression 
signature predictive of ICI efficacy. Panels of IFN-γ signature genes have allowed prediction of responses 
of NSCLC patients to anti-PD-1/PD-L1[41,42]. A decrease in the level of expression of these genes could 
be interpreted as a lack of CD8+ activity. Two different IFN-γ signatures including respectively 8 and 4  
genes showed a significant association with overall survival in NSCLC patients treated by anti-PD-L1[41,43]. 
However, in lung and other types of cancer, results are contradictory[44-46]. It must be specified that IFN-γ is 
also produced by a variety of inflammatory cells, leading to a transcriptional elevation of IFN-γ genes and 
therefore, some imprecision in result interpretation. On the other hand, prolonged IFN-γ stimulation leads 
to the expression of PD-L1, and thus, immune escape.

Production of immunosuppressive metabolites. The enzyme indole 2,3-dioxygenase (IDO) has an 
immunosuppressive activity in tumors and are associated with ICI resistance[47,48]. IDO expression, assessed 
by IHC, has commonly been found in NSCLC, notably in PDL-1 positive tumors[49]. Concentrations of 
these metabolites were measured with liquid chromatography and mass spectrometry[50] and a higher 
kynurenine to tryptophan ratio and quinolinic acid at baseline, resulting from IDO metabolic activity, 
was found in plasma samples of NSCLC patients with early progression under Nivolumab treatment. To 
overcome this putative mechanism of resistance to ICI, the combination of ICI with IDO specific inhibitors 
are currently being evaluated in pre-clinical and human studies.

resistance biomarkers related to immune reaction and host factors
Insufficiency of tumor-specific T-cell activation
Impaired T-cell trafficking to tumor cells and tumor infiltration
Chemokines regulate the infiltration of different immune cell subsets into tumors. As such, these molecules 
affect tumor immunity and can influence therapeutic outcomes in patients[51]. High levels of intra-tumoral 
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chemokines such as CCL5, CXCL9, CXCL10 enhance the recruitment of T-cells into the tumor[52] and 
preclinical studies in mice showed that infiltrating anti-tumor CD8+ T-cells are required for clinical 
response to anti-PD-1 treatment[53]. Similar studies in humans have shown that the pre-existing CD8+ 
T-cells in the tumor microenvironment correlate with response to anti-PD-1/PD-L1 therapies in various 
cancer types, including NSCLC[44,54,55]. Thus, the lack or paucity of T-cell infiltration of tumors characterizes 
the more general concept of “hot” and “cold” tumors with regard to the immune micro-environment[56]. The 
exclusion of T-cells involves multiple mechanisms such as the inhibition of T-cells attracting chemokines. 
In vivo, transforming growth factor beta, a multipotent immunosuppressive cytokine, suppresses CD8+ 
T-cell expression of CXCR3 and limits their trafficking into tumors[57].

The presence of intra-tumoral CD8+ T-cells is not always associated with clinical benefit however[44]. 
Therefore, there is growing interest to improve the identification of subsets of tumor-infiltrating 
lymphocytes (TILs) and tumor-specific lymphocytes. Herbst et al.[44] propose that PD1 expressing CD8+ 
T-cells, better select for patients responding to anti-PD-144. Clarke et al.[58] have reported that the number 
of tumor-resident CD8+ T-cells at baseline, and a CD103+CD49+CD69+ subset of TILs, are more predictive 
of response to anti-PD-1 therapy than total CD8+ T-cells in NSCLC and could be a potential marker of 
primary resistance to anti-PD-1 monotherapy.

Clonality of tumor-specific T-cells
It is now admitted that a restricted T-cell receptor sequence reflects the accumulation of TILs specific for 
a restricted number of tumor antigens at the invasive margins of the tumor. The sequencing of the T-cell 
receptor β-chain repertoire of TILs revealed that patients with a low “clonality” are more likely to respond 
to immunotherapy in several types of cancers[54,59,60] using median clonality as a threshold.

Impaired expansion of T-cells 
Expansion of anti-tumor specific T-cells following ICI therapy is a dynamic marker of treatment response 
and has recently been found to correlate with primary resistance to PD-1/PD-L1 blockade in metastatic 
NSCLC[32]. However, the direct isolation and quantification of tumor-specific lymphocytes required a 
complex and customized process, given that the neo-antigen repertoire is unique. For this reason, indirect 
markers for measuring variations of this cell population could be more convenient.

Alternative immune checkpoints 
The presence of CD8+ is not sufficient as they must be functional. Apart from PD-1, the expression of 
many alternative immune checkpoints can be found in NSCLC at baseline, or after prior blockade of the 
classic immune checkpoint pathways and are likely to contribute to primary or secondary resistance to ICI 
blockade[61]. The increased expression of TIM-3 (T-cell immunoglobulin and mucin domain 3), LAG-3 
(lymphocyte activation gene 3), and BTLA (B and T lymphocyte attenuator) on CD8+ TILs are associated 
with adaptive resistance to anti-PD-1 in NSCLC[62-65]. 

Fluorescence measurements of various immune checkpoints were also performed using blood samples. 
Non-responding patients showed a stability of fluorescence levels before and after the first cycle whereas 
responding patients displayed a dramatic decrease of CTLA-4, GITR (glucocorticoid-induced tumor 
necrosis factor receptor), and OX40 (CD134) expression on CD4+ and natural killers cells after the second 
cycle of immunotherapy[66].

Exhaustion of T-cells
Exhausted T-cells demonstrate altered anti-tumor function and decreased re-invigoration potential under 
ICI, as well as an impaired capacity to generate T memory cells[7,67,68]. Terminally exhausted TILs are 
identified by the pattern of membrane markers with a high expression of CD38, CD101, and CD30 and low 
expression of CD5[69]. The co-expression of multiple immune checkpoint receptors[63] has been associated 
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with a severely exhausted state and failure to rescue function with Nivolumab in vitro. These tumor-
infiltrating but exhausted CD8+ cells could allow us to predict which patients would not respond to ICI 
because of terminal exhaustion[69].

Immunosuppressive cells
Under certain conditions, the microenvironment favors the recruitment of immunosuppressive cells such as 
regulatory T-cells (Treg) and myeloid-derived suppressor cells, which induce the production of adenosine, 
an immunosuppressive molecule. The detection and quantification of several immunosuppressive cells 
within the tumor micro-environment is ongoing to assess their ability to predict ICI resistanc[7,70]. The 
quantification of Treg and myeloid-derived suppressor cells has also been analyzed to predict resistance to 
ICI in melanoma and gastric cancer[71-73]. No direct association has yet to be observed in NSCLC however. 

Resistance biomarkers related to the host: microbiota
A strong immuno-modulatory effect of gut microbiota in the context of cancer has recently been reported. 
In the feces of NSCLC patients, the baseline paucity of several commensal bacteria species, after evaluation 
with a shotgun metagenomic analysis, has been associated with poor response to anti-PD-1 treatment. 
This could be reversed by fecal transplantation in a mouse model[74]. As for now, there is still a lack of 
congruence between the results of different studies correlating gut microbiota profiles to response to 
immune therapy to determine precisely which would be predictive of primary resistance, and would need 
to be modified for subsequent treatment[75]. 

DISCUSSION
Resistance biomarkers are necessary at each stage of disease to define therapeutic strategies. Prior to the 
initiation of treatment, they are expected to rationalize the choice between monotherapy and combination 
therapy. During treatment, they are also needed to distinguish between radiological and pseudo-
progression, and in cases of progression they are essential for personalized treatment. 

From a short-term point of view, as the majority of patients currently eligible for ICI do not respond, 
such biomarkers would allow early cessation of and switching to another treatment. Notably, in the case 
of localized NSCLC, this would allow neoadjuvant immunotherapy without losing the opportunity of 
proceeding to surgery. In oligo-metastatic patients, the kinetics of sensitive biomarkers would also help in 
making decisions on complementary local treatment for complete cytoreduction. Lastly, an undetectable 
or dramatic decrease in systemic levels of biomarkers would allow suspending ICI safely in case of serious 
adverse events or persistent complete response.

Until now, the only validated marker to guide ICI prescription in NSCLC, outside of clinical trials, remains 
PD-L1 [Table 1]. As discussed above, this indicator is far from sufficient and still need to be refined and 
harmonized. 

Currently, TMB appears as one of the potential biomarkers likely to guide future ICI prescriptions in the 
near future. The inter-individual diversity of alterations makes comprehensive approaches such as WES 
or analysis of large panels of genes increasingly attractive[21]. The speed of technical improvement in this 
field renders short-term routine exploitation realistic and should warrant consideration to spare obtaining 
sufficiently high amounts of tissue or blood from our current patients.

At the histopathological level, the increasing number of relevant cellular types to identify, coupled with 
the necessity of analyzing their spatial relationships, should lead us to multi-parametric in situ imaging 
methods such as MIBI[76] or CODEX[77]. Multiplexed IHC represents a promising approach to analyze 
immune composition and define precisely CD8+ cell subpopulations, location and functionality. 
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In addition to the complexity of their immune composition, biomarkers must integrate immune changes 
during treatment. As an example, in a longitudinal study from Chen et al.[78], sequential gene expression 
profiling of melanoma found no baseline difference between responders and non-responders to anti-PD-1 
therapy, but hundreds of genes were then differentially expressed in early on-treatment biopsies. Therefore, 
repeated samplings represent a promising solution to assess the dynamic nature of treatment resistance and 
will probably remain key for treatment adaptation in patients responding to ICI. However, blood-based 
analysis represents a growing field of interest to achieve immune-monitoring. Other approaches using 
bronchoalveolar lavage fluid are in development to evaluate the local immune status at the site of lung 
cancer. This procedure may be performed during lung cancer diagnosis and repeated during therapy[79].

The variety of biomarkers and resistance mechanisms discussed in this review [Table 1], and their 
cooccurrence at a single-patient-level, in addition to the growing number of available immunotherapies, 
emphasizes the necessity of including a much larger number of biological parameters in our strategies. This 
implies a shift in the scale of biological analyzes and techniques that are presently in use. Immunotherapy 
monitoring will certainly need both tissue and blood sampling and the combination of several biomarkers. 
Beside PD-L, other biomarkers are beginning to emerge: specific immune cell sub-populations analyzed by 
multiplexed IHC, plasmatic TMB, circulating immune cells and their antigenic repertoire. 

Current advances including molecular profiling and specific tumor-associated immune characterization, 
allow us to hypothesize the following strategy: 

BioMarker Treatment Population Methods Findings associated with resistance Ref.
TMB Anti-PD-/PD-L1; 

Anti-PD-1/PD-L1 + 
anti-CTLA-4

Advanced 
NSCLC

WES; NGS gene panels; Tissue 
and blood samples

Low mutational burden correlates 
with poor response, reduced OS and 
PFS

[18,20,22,27]

Tumor 
neoantigen 
burden

Pembro LUAD WES, tissue samples Low neo-antigen burden correlates 
with poor OS

[30]

Intra-tumor 
neoantigen 
heterogeneity

Pembro Early stage 
NSCLC

WES; resected NSCLC High intra-tumor neo-antigen 
heterogeneity correlates with poor 
OS

[30]

TILs Pembro; Nivo Advanced 
NSCLC

Anti-CD4; anti-CD8 IHC 
staining; tissue samples

Low CD8+ T-cells density and CD8+/
CD4+ ratio correlate with poor 
response

[44]

PDL-1 Anti-PD-1/PD-L1 NSCLC Anti-PD-L1 IHC staining of 
tumor cells, immune cells; 
PDL1 mRNA; tissue samples

Low PD-L1 density expression 
predicts poor response, PFS and OS 

[2,8,43]

Alternative IC Anti-PD-1/PD-L1 NSCLC Multiparametric FACS 
detecting alternative IC on 
CD8+ TILs at baseline/after ICI

Co-expression of alternative IC 
is associated with primary and 
secondary resistance

[61,62]

IFN-ɣ Pembro; Nivo;
Durva

Advanced 
NCLC

Gene panels transcription; 
tumor sample

Decreased IFN-γ expression 
correlates with poor response and OS

[41,42]

IDO Nivo Advanced 
NCLC

Liquid chromatography and 
mass spectrometry; plasma 
samples at baseline

High kynurenine/tryptophan ratio 
and quinolinic acid level associated 
with poor response

[50]

Microbiota Nivo Advanced 
NCLC

Shotgun metagenomic analysis 
of feces at baseline

Low metagenomic species richness 
and distinct profiles correlate with 
poor response

[74]

Circulating 
tumor-reactive 
CD8+ clones

Pembro; Nivo Metastatic
NSCLC

FACS on blood samples; TCR 
sequencing

Decreased number of circulating 
clones correlates with secondary 
resistance

[32]

Alternative 
immune 
checkpoints

Pembro; Nivo Advanced 
NSCLC

CTLA-4, GITR, and OX40 
fluorescence on CD4+ and NK 
cells; blood samples

Stability of CTLA-4, GITR, and OX40 
fluorescence after 1st cycle correlates 
with primary resistance

[66]

Table 1. Predictive biomarkers for resistance to immune checkpoint inhibitors in NSCLC

IC: immune checkpoints; NSCLC: non-small cell lung cancer; NK: natural killers; GITR: glucocorticoid-induced tumor necrosis 
factor receptor; TCR: T-cell receptor; IDO: indole 2,3-dioxygenase; OS: overall survival; ICI: immune checkpoint inhibitors; IFN-γ: 
interferon-gamma; PD-L1: programmed death ligand-1; TILs: tumor-infiltrating lymphocytes; PFS: progression-free survival; IHC: 
immunohistochemistry; WES: whole exome sequencing; NGS: next generation sequencing; TMB: tumor mutational burden; FACS: 
fluorescence-activated cell sorting; LUAD: lung adenocarcinoma
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(1) Tissue and blood sampling with pathological and genomic analysis, all at baseline, in order to assess 
tumor immunogenicity and potential mechanisms of primary resistance; 
(2) Determination of first line therapy: ICI monotherapy or combination; 
(3) Early assessment of treatment efficacy and detection of primary resistance;
(4) Second line treatment or addition of supplementary antineoplastic compounds in case of primary 
resistance;
(5) Treatment pause or discontinuation when prolonged remission is achieved; 
(6) Suspicion of clinical and radiological relapse and confirmation with systemic biomarker;
(7) Determination of optimal second line immunotherapy. 

Several pre-requisite have yet to be fulfilled however, for new potential biomarkers to be routinely applied. 
The standardization of pre-analytic variables is also required[80], as the definition of precise thresholds 
varies.

Evaluation of this exciting progress must also integrate the cost of innovation. The escalating health 
expenditure in cancer care in Western countries is of particular concern and the cost of performing 
biological tests must be taken into account. This requires an assessment of the overall spending related 
to cancer cases and one should not simply sum up the costs for the tests alone. Efficient biomarkers for 
monitoring disease status would also allow treatment discontinuation in cases of remission and subsequent 
economics. For example, the cost of WES for one individual has reached a lower order of magnitude than 
the cost for a single cycle of ICI therapy[81]. 

CONCLUSION
The complexity of the immune system requires the combination of resistance biomarkers to define 
therapeutic strategies in NSCLC. A global approach integrating both immune and tumor-related 
parameters is needed. Novel composite and dynamic biomarkers of immune evasion are emerging to guide 
personalized immunotherapies. The simultaneous analysis of PD-L1 expression, specific anti-tumoral CD8+ 
infiltration and TMB, seems a highly promising approach. 
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