Dual Visible-Light and NHC-Catalyzed Relay Trifunctionalization of Unactivated Alkenes

Jianquan Feng,^a Luning Li, ^a Jingyi Wang, ^a aoting, Ni, ^a Zexuan Wei, ^a Ding Du^{*a}, Jie Feng,^{*a} State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China

Email: 1020162519@cpu.edu.cn (J. Feng); ddmn9999@cpu.edu.cn (D. Du)

Supporting Information

Table of contents

1.	General methods	S2
2.	General procedure for radical trifunctionalization of hexenenitriles	S2
3.	DFT calculations for activating energy	S3
4.	DFT calculations for transition state	520
5.	Characterization of the products	S41
6.	Copies of NMR spectra	·S56

1. General methods

All reactions were carried out in dry glassware and were monitored by analytical thin layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 400 MHz for ¹H and 75 MHz or 101 MHz for ¹³C respectively. Chemical shifts (δ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl₃ in CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for ESI⁺.

2. General procedure for synthesis of sodium sulfinate

Sodium trifluoromethanesulfinate, Sodium difluoromethanesulfinate and Sodium fluoromethanesulfinate were commercially available. Other sodium sulfinates **3aa**, **3ad** and **3ae** were synthesized according to the following procedures.

$$R^{I} \xrightarrow{Na_{2}S_{2}O_{4} (2.5 \text{ equiv.})}{RSO_{2}Na} RSO_{2}Na$$

Iodoalkanes (1 mmol 1 equiv.) was dissolved into CH₃CN (5 mL) in a round bottomed flask. The solid NaHCO₃ (164 mg, 2 mmol), Na₂S₂O₄ (435 mg, 2.5mmol) and H₂O (2 mL) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at room temperature overnight. When the reaction was finished (monitored via TLC). The reaction mixture was then extracted with ethyl acetate (3×25 mL). The obtaining organic phase was dried over anhydrous MgSO₄ and concentrated to afford solids. The solid was dried at 30-40 °C in vacuum to yield the relative sodium sulfinate. The sodium sulfinate was used without any other purification.

$$\bigwedge_{F \in F}^{O} \bigvee_{Na}^{V} = \sum_{Na}^{O} \sum_{Na}^{V} \sum_{2-\text{ethoxy-1,1-difluoro-2-oxoethane-1-sulfinate sodium (3aa)}}^{O}$$

The title compound was obtained according to the general condition (178.0 mg, 85% yield). ¹H NMR (300 MHz, D₂O) δ 3.53 (q, *J* = 7.1 Hz, 2H), 1.06 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (282 MHz, D₂O) δ -103.8, -104.8, -105.6, -106.6.

(3ad)

The title compound was obtained according to the general condition (337.0 mg, 95% yield, ¹⁹F NMR (282 MHz, D₂O) δ -82.1, -123.0 -123.5, -127.1, -130.8.

tosylmethanesulfinate sodium(**3ae**). The title compound was obtained according to the general condition (205mg, 85% yield) ¹H NMR (400 MHz, D₂O) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 3.18 (s, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, D₂O) δ 146.2, 136.9, 130.1, 126.9, 46.2, 18.77

3. General procedure for radical trifunctionalization of hexenenitriles

To a reaction tube (5 mL) quipped with a Teflon® stir bar and fitted with a rubber septum were added acid (0.2 mmol, 1.0 equiv.), CDI (0.2 mmol, 1.0 equiv.), DCE 1 mL. The mixture was stirred at room temperature for 2 hours. To another quartz tube (10 mL) equipped with a Teflon® stir bar and fitted with a rubber septum were added NHC-A (9.5 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (130 mg, 0.4 mmol, 2.0 equiv.), sodium sulfite **1** (0.4 mmol, 2.0 equiv.). The mixture was charged with the in-situ prepared acylazole via springe. Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (1 mL), hexenenitrile **3** (0.2 mmol, 1.0 equiv.) were added under the protection of nitrogen. The reaction was stirred at Blue LEDs for 24 hours. The reaction mixture was concentrated under reduced

pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 20/1 to 15/1) to afford the desired products **4**.

4. Procedure for reduction of product 4a to produce compound 5

To an oven-dried reaction tube (10 mL) equipped with a Teflon® stir bar and fitted with a rubber septum were added **4a** (100 mg, 0.21 mmol) and LiAlH₄ (69.6 mg, 0.4 mmol, 2.0 equiv.). Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry THF (4 mL) was added, The reaction was stirred at 25 °C for 10-12 hours. The reaction mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 15/1) to afford the desired product **5** in 83% yield.

5-(4-bromophenyl)-6-(4-chlorophenyl)-6-hydroxy-2-

(2,2,2-trifluoroethyl)hexanenitrile(5)The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 10/1, v/v) as a white liquid (76.0 mg, 83% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.41 (m, 2H, two isomers), 7.33-7.27 (m, 4H, two isomers), 7.21-7.08 (m, 2H, two isomers), 7.07-6.97 (m,2H, two isomers), 4.75(dd, J=18.7, 6.8 Hz 1H, two isomers), 3.00-2.55 (m, 2H, two isomersisomers),2.52-2.28 (m, 1H, two isomers), 2.20-2.11 (m, 2H, two isomers), 1.96-1.70 (m, 2H, two isomers), 1.67-1.58 (m, 2H, two isomers), 1.56-1.34 (m, 2H, two isomers).¹³C NMR (101 MHz, CDCl₃) δ 140.5 (overlap, two isomers), 138.4 & 138.3 (two isomers), 133.7 & 133.68 (two isomers), 131.9 & 131.78 (two isomers), 130.6 & 130.5 (overlap, two isomers), 128.6 & 128.5 (overlap, two isomers), 128.0 & 127.90 (overlap, two isomers), 130.4 & 130.34 (two isomers), 129.1 & 129.0 (two isomers), 126.67 (q, ${}^{1}J_{C-F} = 282.6$ Hz) & 126.65 (q, ${}^{1}J_{C-F} = 282.6$ Hz) (two isomers), 121.3 &121.28 (overlap, two isomers), 52.9 & 52.7(two isomers), $36.4 (q, {}^{2}J_{C-F} = 30.3 \text{ Hz})$ & 36.1 (q, ${}^{2}J_{C-F} = 30.3 \text{ Hz}$) (two isomers), 36.3 & 36.25 (overlap, two isomers), 30.1 & 30.0 (overlap, two isomers), 29.72 (overlap, two isomers), 29.01 & 28.93 (two isomers), 26.29 (overlap, two isomers), 25.7 (q, ${}^{3}J_{C-F} = 3.0$ Hz) & 25.6 (q, ${}^{3}J_{C-F} = 3.0$ Hz) (two isomers), 22.72 (two isomers), 14.1 (two isomers). HRMS (ESI) calcd. for

C₂₀H₁₉BrClF₃NO [M+H]⁺: 460.0286, 462.0265; found: 460.0240, 462.0230.

5. Procedure for hydrolysis of product 4a to produce compound 6

To a tube were added **4a** (100 mg, 0.21 mmol) and 1 mL HOAc, 1 mL H₂O, 1.5 mL 98 % H₂SO₄. The reaction was stirred at 120 °C for 24 hours. Quenching reaction of saturated sodium bicarbonate. The reaction mixture was extracted with ethyl acetate (3×50 mL). The combined organic layers were dried over anhydrous MgSO₄. After concentration, and dryness, the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 15/1) to afford the desired product **6** in the yield 75%.

5-5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanamide(6) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 5/1, v/v) as a white soild (67.0 mg, 75 %yield, dr =1:1).¹H NMR (300 MHz, DMSO-*d*6) δ

8.02 (dd, J = 8.7, 2.4 Hz, two isomers),7.57-7.42 (m, 4H, two isomers), 7.26(dd, J = 8.5, 2.4 Hz, two isomers), 4.84-4.78 (m,1H,two isomers), 2.67-2.49 (m, 2H, two isomers), 2.28-2.18 (m, 1H, two isomers), 2.12-2.94 (m, 2H, two isomers), 1.81- 1.69 (m, 2H, two isomers), 1.59-1.23 (m,2H,two isomers).¹³C (75 MHz, DMSO-*d*6) δ 199.0 & 198.9 (two isomers), 179.6 & 179.5 (overlap, two isomers), 139.2 & 138.9 (two isomers), 138.78 (two isomers), 138.74 (two isomers), 135.1 & 134.9 (overlap, two isomers), 135.0 (overlap, two isomers), 132.1 & 132.08 (overlap, two isomers), 130.9 & 130.8(two isomers), 129.78 & 129.38 (two isomers), 124.69 (q, ¹ $_{JC-F} = 266.6$ Hz), 120.6 (overlap, two isomers), 119.95 & 119.87 (two isomers), 51.7 & 51.6 (overlap, two isomers), 30.88 (overlap, two isomers), 30.19(overlap, two isomers), 26.80(q, ³ $_{JC-F} = 3.3$ Hz) HRMS (ESI) calcd. for C₂₀H₁₉BrClF₃NO₂ [M+H]⁺: 476.0235, 478.0214; found: 476.0240, 478.0220.

6. Procedure for synthesis of hydrazone 7

To an oven-dried reaction tube (10 mL) equipped with a Teflon® stir bar and fitted with a rubber septum were added 4a (100 mg, 0.21 mmol) and 3,5-Dimethylphenylhydrazine hydrochloride (68 mg, 0.42 mmol 2.0 equiv.), triethylamine (40 mg, 0.42 mmol 2.0 equiv.) and EtOH (4 mL). Then, the reaction mixture was stirred at 25 °C for 8 hours. The reaction mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 15/1) to afford the desired product 7 in the yield of 80%.

6-(4-bromophenyl)-6-(4-chlorophenyl)-6-(2-(3,5dimethylphenyl)hydrazineylidene)-2-(2,2,2-

trifluoroethyl)hexanenitrile (7) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a white solid (57.0 mg, 54%yield, dr =1:1).¹H NMR (400 MHz, CDCl₃) δ 7.67

(dd, J = 8.8, 7.3 Hz, 2H, two isomers), 7.48-7.40 (m, 4H, two isomers), 7.33(dd, J =8.8,7.3 Hz, 2H, two isomers), 7.04 (d, J=8.1 Hz, 2H, two isomers), 6.82 (s, 1H, two isomers), 3.11 (td, J = 12.7, 3.9 Hz, 1H, two isomers), 2.91 (ddd, J = 12.9,11.1,4.9 Hz, 1H, two isomers), 2.75 - 2.62 (m, 1H, two isomers), 2.62 - 2.45 (m, 1H, two isomers), 2.42 (d, J = 2.5 Hz, 3H,two isomers), 2.33 (ddt, J = 19.4, 9.7, 4.8 Hz, 1H,two isomers), 2.02 (d, J = 8.3 Hz, 3H,two isomers), 1.68 (s, 1H,two isomers), 1.21 – 0.86 (m, 2H,two isomers). ¹³C NMR (101 MHz, CDCl3) δ 178.8 & 178.7(two isomers), 154.7 & 154.6 (overlap, two isomers), 139.4 & 139.3 (two isomers), 139.2 (two isomers), 137.4 (two isomers), 137.0 (overlap, two isomers), 132.7 (overlap, two isomers), 132.6 (overlap, two isomers), 130.44 & 130.34 (two isomers), 130.16 (two isomers), 129.32 & 129.15 (two isomers), 124.67 (q, ${}^{1}J_{C-F} = 278.6 \text{ Hz}$) & 124.65 (q, ${}^{1}J_{C-F} = 278.6 \text{ Hz}$) (two isomers), 121.6 (overlap, two isomers), 119.95 & 119.87 (two isomers), 119.12 & 119.00 (two isomers) 63.95 (overlap, two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.3$ Hz) & 36.1 (q, ${}^{2}J_{C-F} = 30.3 \text{ Hz}$) (two isomers), 36.3 & 36.25 (overlap, two isomers), 28.92 (overlap, two isomers), 28.20 (overlap, two isomers), 26.57(two isomers), 26.29 (overlap, two isomers), 25.7 (q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.6 (q, ${}^{3}J_{C-F} = 3.0$ Hz) (two isomers), 21.42 & 21.40 (two isomers), 17.27 & 17.22 (two isomers) HRMS (ESI) calcd. for C₂₈H₂₇BrClF₃N₃ [M+H]⁺: 576.1024, 578.1004; found: 576.1056, 578.1000.

7. Radical trapping experiment

To a reaction tube (5 mL) quipped with a Teflon® stir bar and fitted with a rubber septum were added acid (0.2 mmol, 1.0 equiv.), CDI (0.2 mmol, 1.0 equiv.), DCE 1 mL. The mixture was stirred at room temperature for 4 hours.

To another quartz tube (10 mL) equipped with a Teflon® stir bar and fitted with a rubber septum were added NHC-A (9.5 mg, 0.03 mmol, 15 mol%), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv.), sodium sulfite **1** (0.4 mmol, 2.0 equiv.). The mixture wa charged with the in-situ prepared acylazole via springe. Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (1 mL), hexenenitrile **3** (0.2 mmol, 1.0 equiv.) TEMPO (0.6 mmol 3 equiv.) were added under the protection of nitrogen. The reaction was stirred at Blue LEDs for 24 hours. The resulting crude material was tested by LC-MS. 2,2,6,6-tetramethyl-1-(trifluoromethoxy)piperidine was tracked by LC-Ms. No product was observed.

8. DFT calculations for activating energy

Figure 1. Gibbs free energy activating energy of different radicals(kcal/mol)

We calculated different radical species additions with **S1**. All of the transition states are similar to ${}^{2}TS1$ in Figure 1 and calculated in same level (PCMSMD(dichloroethane)-(U)M06-2X/def2TZVP).

Table 1. thermal correction to Gibbs free energy (G_0 , hartree), single point energies (SP-E, hartree), sum of electronic and thermal free energies (Gc, hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies (ΔG , kcal mol⁻¹) of various species with respect to S1 for radical coupling and radical addition reactions at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level.

IF represents imaginary frequencies (cm⁻¹).

Species SP-E $G_c(G_0+SP-E)$ G_0 **S**1 0.164981 -3093.399738 -3093.234757 r1 0.012226 -1051.045626 -1051.0334 r2 -0.022492 -1418.635734 -1418.658226 r3 0.042326 -117.2025987 -117.1602727 r4 0.074065 -307.0364691 -306.9624041 r5 -0.013958 -337.5969545 -337.6109125 r6 -0.00539 -238.3350136 -238.3404036 r7 0.002373 -139.0726147 -139.0702417 -39.82216849 r8 0.009325 -39.81284349 r9 -79.1358502 -79.1004952 0.035355 r10 0.056325 -505.5379818 -505.4816568

Structure r1				
cartesian coordinates	С	-4.29060000	-0.11900000	0.01090000
of stationary point	С	-3.75870000	0.75750000	1.16510000
structure [Å]	С	-2.21460000	0.82790000	1.24260000
	С	-1.71960000	1.37570000	2.56420000
	F	-5.58290000	0.10910000	-0.14780000
	F	-3.65720000	0.18040000	-1.11280000
	F	-4.10970000	-1.39810000	0.28570000
	F	-4.22060000	0.25460000	2.31620000
	F	-4.23050000	1.99500000	1.00710000
	F	-1.72430000	-0.40640000	1.07950000
	F	-1.78540000	1.61880000	0.25490000
	F	-1.78700000	0.53660000	3.56500000
	F	-2.20860000	2 55430000	2 86470000

S9

Structure r2					
cartesian coordinates	С	-2.31160000	0.39770000	0.17560000	
of stationary point	Cl	-1.61650000	1.38060000	1.39530000	
structure [Å]	Cl	-4.00260000	0.53710000	-0.06590000	
	Cl	-1.61560000	-1.14930000	-0.06790000	

Structure r3				
		C		
cartesian coordinates	С	0.84920000	-0.19230000	-0.01620000
of stationary point	С	2.37160000	-0.19220000	-0.01620000
structure [Å]	С	1.61030000	1.05900000	-0.08690000
	Н	0.32180000	-0.54230000	-0.90930000
	Н	0.35550000	-0.45620000	0.92490000
	Н	2.89900000	-0.54210000	-0.90930000
	Н	2.86530000	-0.45600000	0.92480000
	Н	1.61030000	1.85870000	-0.82570000

Structure r4				
cartesian coordinates	С	-0.08170000	0.89540000	-0.07930000
of stationary point	0	1.11420000	0.73460000	0.05100000
structure [Å]	0	-0.65440000	2.10800000	-0.11240000
	С	0.22490000	3.22620000	0.01570000
	С	-0.61080000	4.48260000	-0.04440000
	Н	0.96940000	3.18880000	-0.79370000
	Н	0.77260000	3.14190000	0.96630000
	Н	0.03430000	5.36570000	0.05090000
	Н	-1.14800000	4.54450000	-1.00040000
	Н	-1.34560000	4.49770000	0.77190000
	С	-1.04760000	-0.17960000	-0.21550000
	Н	-2.10730000	0.03870000	-0.32980000
	Н	-0.68220000	-1.20400000	-0.19990000

Structure r5			50	
cartesian coordinates	С	-2.25330000	0.47990000	0.03290000
of stationary point	F	-3.56210000	0.50110000	-0.00390000
structure [Å]	F	-1.79700000	1.12510000	1.07700000
	F	-1.79720000	-0.74680000	-0.00380000

Structure r6				
cartesian coordinates	С	-1.76908700	1.37788100	-0.05744900
of stationary point	Н	-2.85973300	1.43260600	0.03780200
structure [Å]	F	-1.27266800	0.15629800	0.00238100
	F	-1.27286200	2.04081500	-1.08500500

Structure r7				
cartesian coordinates	С	-1.80597000	1.35107100	-0.12419200
of stationary point	Н	-1.31026700	1.96901300	-0.87342400
structure [Å]	Н	-2.87424700	1.41610900	0.08428500
	F	-1.27720100	0.13941500	0.03968000

Structure r8				
cartesian coordinates	С	-1.84042200	1.28465200	-0.21883700
of stationary point	H	-1.32742400	0.37812000	0.09553600
structure [Å]	Н	-1.32740100	2.01016800	-0.84673000
	Н	-2.86576800	1.46665500	0.09638000

Structure r9				
cartesian coordinates	С	-4.16024200	2.19606900	-0.18646600
of stationary point	Н	-3.66098100	2.94112300	-0.80706700
structure [Å]	Н	-5.18632000	2.40158600	0.12083300
	С	-3.58196800	0.83517000	-0.02721200
	Н	-2.48279400	0.85928300	0.00125700
	Н	-3.93895200	0.34450900	0.89008400
	Н	-3.85784900	0.16713800	-0.86605600

Structure r10				
cartesian coordinates	С	-1.94267700	1.23214300	-0.08508700
of stationary point	F	-1 28457600	0.66666000	-1.05372000
structure [Å]	F	-1 26462800	2 14272900	0 55151400
	ſ	-3 39675100	1 18019000	-0.06769000
	0	-4 03228900	0.46392400	-0.80431900
	0	-3 89640500	1 96497200	0.88160100
	C	-5 32302500	1.90197200	1 03470600
	C	-5 68498400	2 86542800	2 16512600
	н	-5.62984400	0.89746000	1 23670000
	ч	5 78374800	2 23864700	0.08395700
		-5.78574800	2.23804700	0.08393700
		-0.77324400	2.00/03000	2.30022000
	н	-5.20993500	2.54188/00	5.100/5500
	Н	-5.36067300	3.89030200	1.94099500

Table 2. thermal correction to Gibbs free energy (G_0 , hartree), single point energies (SP-E, hartree), sum of electronic and thermal free energies (Gc, hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies (ΔG , kcal mol⁻¹) of various species with respect to S1 for radical coupling and radical addition reactions at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level.

IF represents imaginary frequencies (cm⁻¹).

Species	G_0	SP-E	$G_c(G_0+SP-E)$	ΔG	IF
TS1-r1	0.195184	-4144.446762	-4144.251578	10.4	282.73i
TS1-r2	0.161555	-4512.031559	-4511.870004	14.4	446.64i
TS1-r3	0.224678	-3210.596043	-3210.371365	14.8	479.35i
TS1-r4	0.257243	-3400.429793	-3400.17255	15.4	562.19i
TS1-r5	0.167974	-3430.998087	-3430.830113	9.8	296.19i
TS1-r6	0.177126	-3331.731329	-3331.554203	13.1	469.28i
TS1-r7	0.18472	-3232.465663	-3232.280943	15.1	531.72i
TS1-r8	0.192931	-3133.213832	-3133.020901	16.8	592.82i
TS1-r9	0.219204	-3172.526101	-3172.306897	17.8	569.51i
TS1-r10	0.240747	-3598.936076	-3598.695329	13.2	451.95i

Structure TS1-r1		2:38		
cartesian coordinates	С	-1.89710000	-0.31870000	0.13820000
of stationary point	С	-0.50790000	-0.31340000	0.03370000
structure [Å]	С	0.20780000	0.88730000	0.05440000
	С	-0.48900000	2.09220000	0.17970000
	С	-1.87870000	2.10380000	0.28800000
	С	-2.57010000	0.89480000	0.26580000
	Н	-2.44780000	-1.25960000	0.12500000
	Н	0.02610000	-1.26140000	-0.06340000
	Н	0.05360000	3.04030000	0.20290000
	Н	-2.41470000	3.04770000	0.39110000

Br	-4.46080000	0.89920000	0.41820000
С	1.71490000	0.85140000	-0.13220000
С	2.10370000	0.93550000	-1.62340000
Н	2.09780000	-0.09790000	0.27390000
С	3.60760000	0.79810000	-1.86040000
Н	1.56590000	0.12900000	-2.14380000
Н	1.73540000	1.88990000	-2.03230000
Н	4.13190000	1.60430000	-1.31420000
Н	3.96980000	-0.15660000	-1.44730000
С	3.97130000	0.89810000	-3.30850000
С	4.74970000	0.00630000	-3.95490000
Н	3.63210000	1.79580000	-3.83810000
Н	4.97340000	0.11690000	-5.01910000
С	2.37480000	1.92350000	0.62810000
Ν	2.89700000	2.77920000	1.19910000
Н	5.03680000	-0.93580000	-3.47770000
С	6.88230000	0.81500000	-3.27880000
С	7.94500000	0.21730000	-4.17070000
F	6.81230000	2.12850000	-3.33720000
F	6.96260000	0.39660000	-2.02750000
С	9.38590000	0.42080000	-3.64470000
F	7.85210000	0.78130000	-5.38350000
F	7.72940000	-1.10100000	-4.27690000
С	10.48470000	0.15060000	-4.69460000
F	9.51440000	1.68590000	-3.22690000
F	9.58010000	-0.40210000	-2.61160000
F	11.65830000	0.07120000	-4.09020000
F	10.24390000	-0.99230000	-5.31970000
F	10.52350000	1.12940000	-5.58150000

Structure TS1-r2		2.27		
cartesian coordinates	С	-1.90720000	-0.41680000	-0.10640000
of stationary point	С	-0.51700000	-0.34380000	-0.05610000
structure [Å]	С	0.13300000	0.89090000	0.03330000
	С	-0.63110000	2.06020000	0.07190000

С	-2.02320000	2.00410000	0.02510000
С	-2.64830000	0.76270000	-0.06560000
Н	-2.40690000	-1.38370000	-0.17240000
Н	0.06970000	-1.26470000	-0.08530000
Н	-0.14120000	3.03400000	0.14680000
Н	-2.61260000	2.92080000	0.06030000
Br	-4.54200000	0.67490000	-0.13050000
С	1.65150000	0.92940000	0.00790000
С	2.18810000	1.00890000	-1.43710000
Н	2.03700000	0.00820000	0.47230000
С	3.71450000	0.95510000	-1.51870000
Н	1.75200000	0.16360000	-1.99000000
Н	1.81150000	1.93290000	-1.90410000
Н	4.13360000	1.79980000	-0.94090000
Н	4.08610000	0.03040000	-1.04950000
С	4.20580000	1.04690000	-2.92780000
С	5.06890000	0.16780000	-3.49560000
Н	3.88600000	1.92400000	-3.50190000
Н	5.31740000	0.23940000	-4.55740000
С	2.17470000	2.04660000	0.80840000
Ν	2.59270000	2.93700000	1.41130000
Н	5.31590000	-0.77140000	-2.99060000
С	7.15110000	0.91540000	-2.99040000
Cl	7.25230000	2.50530000	-3.68170000
Cl	7.22880000	0.89860000	-1.25420000
Cl	8.19080000	-0.25270000	-3.75140000

Structure TS1-r3		2:31		
cartesian coordinates	С	-1.93570000	-0.37060000	0.01620000
of stationary point	С	-0.54910000	-0.27890000	0.12370000
structure [Å]	С	0.09800000	0.95480000	0.01150000
	С	-0.66440000	2.10460000	-0.21510000
	С	-2.05170000	2.03020000	-0.32350000
	С	-2.67450000	0.78920000	-0.20680000
	Н	-2.43310000	-1.33640000	0.11000000

Н	0.03540000	-1.18430000	0.30090000
Н	-0.17570000	3.07820000	-0.30250000
Н	-2.63990000	2.93200000	-0.49590000
Br	-4.56310000	0.67860000	-0.34930000
С	1.61540000	1.00880000	0.06040000
С	2.22810000	0.94990000	-1.35540000
Н	1.98250000	0.14510000	0.63650000
С	3.75710000	0.91430000	-1.35780000
Н	1.83080000	0.04590000	-1.84100000
Н	1.86430000	1.81490000	-1.93290000
Н	4.13350000	1.81500000	-0.83910000
Н	4.10940000	0.04240000	-0.78320000
С	4.31890000	0.86880000	-2.74610000
С	5.17690000	-0.07860000	-3.19080000
Н	4.05100000	1.70080000	-3.40790000
Н	5.47330000	-0.11060000	-4.24200000
С	2.08200000	2.20920000	0.77100000
Ν	2.45450000	3.16250000	1.30350000
Н	5.36810000	-0.97720000	-2.59680000
С	7.35240000	0.56610000	-2.74360000
С	8.27540000	0.05870000	-3.77020000
С	7.86520000	1.52080000	-3.73560000
Н	7.86940000	-0.55470000	-4.58270000
Н	9.29730000	-0.20580000	-3.47950000
Н	7.18560000	1.86680000	-4.52320000
Н	8.60590000	2.26470000	-3.42520000
Н	7.48070000	0.58040000	-1.66130000

Structure TS1-r4		2:25			
cartesian coordinates	С	-1.82330000	-0.56060000	-0.48680000	
of stationary point	С	-0.43420000	-0.48160000	-0.41300000	
structure [Å]	С	0.19770000	0.71270000	-0.05490000	
	С	-0.58330000	1.83670000	0.22860000	
	С	-1.97410000	1.77380000	0.16160000	
	С	-2.58120000	0.57230000	-0.19740000	

Н	-2.30830000	-1.49750000	-0.76260000
Н	0.16550000	-1.36690000	-0.63640000
Н	-0.10760000	2.77790000	0.51480000
Н	-2.57580000	2.65410000	0.38980000
Br	-4.47360000	0.47450000	-0.28980000
С	1.71540000	0.77780000	-0.05810000
С	2.25680000	1.22180000	-1.43390000
Н	2.11320000	-0.22440000	0.16650000
С	3.78440000	1.22780000	-1.51090000
Н	1.84540000	0.52680000	-2.18100000
Н	1.85750000	2.22220000	-1.66490000
Н	4.17590000	1.92380000	-0.74570000
Н	4.17690000	0.22750000	-1.26740000
С	4.28120000	1.65550000	-2.85480000
С	5.18300000	0.95080000	-3.59050000
Н	3.94290000	2.63300000	-3.21660000
Н	5.43300000	1.26260000	-4.60720000
С	2.21490000	1.66800000	1.00050000
Ν	2.61360000	2.38660000	1.81030000
Н	5.42390000	-0.08090000	-3.31740000
С	7.21150000	1.59060000	-2.85650000
С	7.98910000	0.67980000	-3.67970000
Н	7.16230000	2.64130000	-3.13940000
0	8.32250000	-0.44280000	-3.35840000
0	8.25620000	1.19060000	-4.89590000
С	8.97080000	0.34340000	-5.79570000
С	9.15910000	1.09480000	-7.09090000
Н	8.40140000	-0.58710000	-5.94320000
Н	9.93480000	0.06780000	-5.34160000
Н	9.70980000	0.47090000	-7.80810000
Н	8.18770000	1.35800000	-7.53290000
Н	9.72960000	2.01940000	-6.92410000
Н	7.09950000	1.32200000	-1.80670000

Structure TS1-r5				
			•	
		× ~		
		2:38		
			•	
cartesian coordinates	C	-1.88620000	-0.42910000	-0.07230000
of stationary point	С	-0.49610000	-0.34390000	-0.03930000
structure [Å]	С	0.14450000	0.89700000	0.03030000
	С	-0.62900000	2.06020000	0.06640000
	C	-2.02100000	1.99200000	0.03660000
	C	-2.63670000	0.74460000	-0.03450000
	Н	-2.37840000	-1.40080000	-0.12280000
	Н	0.09790000	-1.26020000	-0.06640000
	Н	-0.14650000	3.03880000	0.12560000
	Н	-2.61760000	2.90410000	0.06980000
	Br	-4.53020000	0.64070000	-0.07650000
	С	1.66220000	0.94800000	-0.01470000
	С	2.17900000	1.01760000	-1.46750000
	Н	2.06140000	0.03460000	0.45340000
	С	3.70390000	0.97460000	-1.57160000
	Н	1.74220000	0.16320000	-2.00570000
	Н	1.78740000	1.93350000	-1.93840000
	Н	4.12620000	1.82940000	-1.01310000
	Н	4.08780000	0.05760000	-1.09680000
	С	4.17230000	1.04580000	-2.99180000
	С	4.96740000	0.12590000	-3.57330000
	Н	3.87550000	1.93390000	-3.56150000
	Н	5.24730000	0.20440000	-4.62670000
	С	2.18610000	2.07690000	0.76840000
	Ν	2.60440000	2.97620000	1.35760000
	Н	5.21320000	-0.80850000	-3.05860000
	C	7.13170000	0.87330000	-2.91190000
	F	8.10160000	0.01480000	-3.15640000
	F	7.02170000	1.07560000	-1.61420000
	F	7.36520000	2.01250000	-3.52860000

Structure TS1-r6					
			2,30		
cartesian coordinates	С	-1.85815500	-0.35214700	0.13600000	
of stationary point	С	-0.46841200	-0.25325300	0.13925500	
structure [Å]	С	0.16216100	0.98589900	-0.00386200	
	С	-0.62112200	2.13361300	-0.15242700	
	С	-2.01235200	2.05183300	-0.15663400	
	С	-2.61860700	0.80588600	-0.01328600	
	Н	-2.34490200	-1.32042800	0.25257500	
	Н	0.13084500	-1.15870400	0.25687800	
	Н	-0.14501200	3.11104400	-0.25884200	
	Н	-2.61886300	2.95043800	-0.26869800	
	Br	-4.50993600	0.68454600	-0.01759000	
	С	1.67849900	1.04520000	-0.07417000	
	С	2.17839900	0.90630200	-1.52809500	
	Н	2.09431100	0.21482100	0.51824500	
	С	3.70163900	0.87958500	-1.64899100	
	Н	1.75240100	-0.02513000	-1.92993600	
	Н	1.76085400	1.73361100	-2.12399000	
	Н	4.11215800	1.81166200	-1.21815400	
	Н	4.11344400	0.05021500	-1.05214500	
	С	4.16079300	0.75925200	-3.06943900	
	С	5.07501800	-0.14351600	-3.49155200	
	Н	3.79093300	1.51582100	-3.76998300	
	Н	5.34416100	-0.21691700	-4.54726900	
	С	2.19450300	2.28407300	0.52932300	
	Ν	2.60123600	3.26714300	0.97562000	
	Н	5.37711400	-0.97094400	-2.84288800	
	С	7.03958100	0.88864900	-2.87666700	
	Н	7.94847700	0.45097800	-3.30929100	
	F	6.84156600	2.15230200	-3.22044300	
	F	6.96492900	0.76101200	-1.55724600	

Structure TS1-r7					
		•			
		2.27			
cartesian coordinates	С	-1.86083800	-0.47511900	-0.07336200	
of stationary point	С	-0.47595900	-0.33607600	-0.01868200	
structure [Å]	С	0.11599100	0.92897400	0.03902700	
	С	-0.70166900	2.06205100	0.03856800	
	С	-2.08925200	1.93997700	-0.01461500	
	С	-2.65637900	0.66900400	-0.07043000	
	Н	-2.31741700	-1.46397900	-0.11321000	
	Н	0.15095000	-1.23038600	-0.01945500	
	Н	-0.25640800	3.05822600	0.08913200	
	Н	-2.72282100	2.82688800	-0.01047000	
	Br	-4.54213500	0.49147400	-0.13733300	
	С	1.63118600	1.03715800	0.02328500	
	С	2.17778000	1.08237200	-1.42009700	
	Н	2.05334800	0.15334900	0.52743800	
	С	3.70593900	1.09503400	-1.49423100	
	Н	1.78516300	0.19835100	-1.94429900	
	Н	1.76099400	1.96758000	-1.92672200	
	Н	4.08017600	1.97181100	-0.93528400	
	Н	4.10720200	0.20037900	-0.99081200	
	С	4.20229200	1.14625500	-2.90731900	
	С	5.02574700	0.21936500	-3.45740600	
	Н	3.91332600	2.02394400	-3.49580800	
	Н	5.26143300	0.24601600	-4.52314700	
	С	2.09446900	2.20836200	0.78377400	
	Ν	2.46168300	3.14121100	1.35479600	
	Н	5.21413400	-0.72707000	-2.94225600	
	С	7.21770900	0.65823500	-3.04391700	
	Н	7.41876300	1.55443600	-3.63556400	
	Н	7.25676800	0.71550400	-1.95332200	
	F	7.78867200	-0.44892500	-3.54088000	

Structure TS1-r8					
		•			
	2,28				
cartesian coordinates	С	-1.90290800	-0.43520500	-0.10523000	
of stationary point	С	-0.51300500	-0.35236000	-0.06202900	
structure [Å]	С	0.12878200	0.88563400	0.03555700	
	С	-0.64367200	2.04882300	0.08760300	
	С	-2.03536400	1.98298400	0.04731700	
	С	-2.65266600	0.73807400	-0.04935900	
	Н	-2.39831700	-1.40342500	-0.17714300	
	Н	0.07853600	-1.26952900	-0.10342200	
	Н	-0.15908300	3.02432500	0.16984000	
	Н	-2.63358800	2.89292400	0.09313000	
	Br	-4.54463800	0.63726500	-0.09944500	
	С	1.64670100	0.93727900	0.00501200	
	С	2.17849500	1.02542700	-1.44187500	
	Н	2.04068500	0.01696700	0.46455200	
	С	3.70494600	0.99939400	-1.53459900	
	Н	1.75415600	0.17481500	-1.99594500	
	Н	1.78143500	1.94185500	-1.90719500	
	Н	4.10913300	1.84681600	-0.95066200	
	Н	4.08975300	0.07915600	-1.06546200	
	С	4.19002300	1.08699600	-2.94940700	
	С	5.05263000	0.20210400	-3.51254800	
	Н	3.87735600	1.96850300	-3.52010400	
	Н	5.28633600	0.25890900	-4.57693400	
	С	2.16166800	2.05580700	0.81037600	
	Ν	2.56866400	2.94844000	1.41757900	
	Н	5.26385000	-0.74812900	-3.01501100	
	С	7.18098700	0.84385200	-3.01561000	
	Н	7.73519500	0.03487300	-3.49394800	
	Н	7.22424200	1.82145500	-3.49600500	
	Н	7.14256200	0.83657400	-1.92579100	

Structure TS1-r9				
		?		
			2.27	
cartesian coordinates	С	-1.92699300	-0.43414800	-0.01695700
of stationary point	С	-0.54406700	-0.29175400	0.07168500
structure [Å]	С	0.04852000	0.97422100	0.06014400
	С	-0.76635900	2.10456000	-0.04407000
	С	-2.15173600	1.97932600	-0.13260000
	С	-2.71958500	0.70743400	-0.11891300
	Н	-2.38421500	-1.42348200	-0.00267100
	Н	0.08047300	-1.18413900	0.15215900
	Н	-0.32055300	3.10181000	-0.04847500
	Н	-2.78307500	2.86451200	-0.20956700
	Br	-4.60269700	0.52626700	-0.23624500
	С	1.56347100	1.08326800	0.08145300
	С	2.14999600	1.04846000	-1.34654500
	Н	1.97156000	0.23000100	0.64616200
	С	3.67943900	1.05954000	-1.38115200
	Н	1.77144300	0.13608800	-1.83112900
	Н	1.74688000	1.90324000	-1.91306700
	Н	4.03840400	1.96512000	-0.85857300
	Н	4.06712700	0.19414300	-0.81910200
	С	4.21492300	1.03447200	-2.78064600
	С	5.07284300	0.09023600	-3.24843700
	Н	3.93878300	1.87601000	-3.42561300
	Н	5.33306700	0.05635600	-4.30838200
	С	2.00418800	2.29637500	0.78784800
	Ν	2.35323900	3.26076100	1.31632800
	Н	5.24061900	-0.82688700	-2.67617500
	С	7.21766500	0.64830700	-2.77936600
	Н	7.26687000	1.60226900	-3.30966300
	Н	7.12951300	0.73767000	-1.69356800
	С	8.00177900	-0.49946500	-3.32703500
	Н	9.08716300	-0.36684200	-3.16631400
	Н	7.72157900	-1.44811800	-2.84499300
	Н	7.85113200	-0.61146600	-4.41128300

Structure TS1-r10				
			?	
			2.25	
			~ ~	1
cartesian coordinates	С	-1 84471200	-0 48682200	-0 16919200
of stationary point	C	-0.45399500	-0.40870300	-0.14490500
structure [Å]	C	0 19201400	0.82178100	0.00445000
	C C	-0 57628000	1 98230800	0.12821800
	C	-1.96849400	1.92084900	0.12821800
	C	2 50042200	0.68220400	0.1000000
		-2.39043200	1 44024800	-0.04123300
	п	-2.34303300	-1.44934600	-0.28177800
	П	0.13439800	-1.3236/900	-0.241/1400
	Н	-0.08/93000	2.95155500	0.25203600
	H	-2.56364400	2.8281/900	0.21014300
	Br	-4.48304000	0.58885400	-0.06365800
	С	1.70943800	0.87380900	-0.04691100
	С	2.21762200	1.05152900	-1.49365600
	Н	2.10928100	-0.07298100	0.34915100
	С	3.74273000	1.02372800	-1.60563800
	Н	1.78098600	0.23970600	-2.09409000
	Н	1.82011300	1.99794900	-1.89336500
	Н	4.16276000	1.82770500	-0.97409200
	Н	4.13342200	0.07261000	-1.21106500
	С	4.21121100	1.22150900	-3.01254700
	С	5.07168800	0.38994600	-3.64899000
	Н	3.88251500	2.13650600	-3.51709700
	Н	5.32864600	0.54902200	-4.69899200
	С	2.23897100	1.94149100	0.81615400
	Ν	2.65815800	2.79625500	1.46777600
	Н	5.32658000	-0.58160500	-3.21382500
	С	7.05245100	1.18471200	-2.93427000
	F	6.91791200	1.05184600	-1.63306500
	F	7.01696100	2.44514900	-3.30332900
	С	7.99897800	0.27184600	-3.59286800
	0	8.33149200	-0.78327300	-3.11046600
	0	8.31685100	0.70352400	-4.80842800
	C	9 13406100	-0 17478200	-5 59635700
	C	9.37242400	0.48993600	-6.92976500

Н	8.61234600	-1.13734100	-5.69959800
Н	10.07178500	-0.36075100	-5.05351400
Н	9.99823500	-0.15643800	-7.55855500
Н	8.42167300	0.66808700	-7.44962500
Н	9.88660400	1.45099300	-6.79643300

9. DFT calculations for transition state

All density functional theory (DFT) calculations were performed with the Gaussian 16 program package.¹

Full geometry optimizations were operated to locate all of the stationary points, using (U)M06-2X density functional theory method²⁻³ with def2SVP ⁴basis for all atoms, and a polarized continuum model based on solute electron density (PCM)⁵⁻⁶ was employed to simulate the solvent effect of dichloroethane solvent in optimization. The spin-restricted DFT method was used for closed-shell species and the spin-unrestricted DFT method for radical species and open-shell singlet species (OSTS4, OSTS5) with the "guess (mix, always)" keyword. In the meantime, the stability of the density function theory (DFT) wave-function of the auxiliary Kohn–Sham determinant was examined.⁷ Harmonic vibrational frequency calculations were conducted to characterize all stationary point. Herein, minima have zero imaginary frequencies, and transition states have only one imaginary vibrational frequency. Intrinsic reaction coordinate (IRC) calculations⁸⁻⁹ were implemented to track minimum energy paths connecting each transition state structure to two corresponding minima. The single point energy calculations of all stationary points were performed at the (U)M06-2X/def2TZVP,SDD level using the PCM-SMD model with dichloroethane as solvent. This theoretical level is denoted as PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP// PCM(dichloroethane)-(U)M06-2X/def2SVP level.

Unless mentioned otherwise, the Gibbs free energy of formation (Δ G) are obtained at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP// PCM(dichloroethane)-(U)M06-2X/def2SVP level. All 3D graphs of molecules are performed by Pymol10. 3D-isosurfaces of TS1 are performed by Multiwfn and VMD.

Figure 1. Gibbs free energy profiles for the NHC-catalyzed CN migration.

Scheme 1 Schematic mechanism for the NHC-catalyzed CN migration.^[a]

[a] The superscript prefixes '1', '2', '3', and 'OS' are used to indicate the singlet, doublet, triplet, and open-shell species, respectively. Geometries\ of ^{OS}TS4 and ^{OS}TS5, are optimized in the open-shell singlet. Relative Gibbs free energies (Δ G, kcal mol⁻¹) are relative to species I at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level. DFT-Optimized geometries are provided in structure details section below.

Table 1. thermal correction to Gibbs free energy (G_0 , hartree), single point energies (SP-E, hartree), sum of electronic and thermal free energies (Gc, hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies (ΔG , kcal mol⁻¹) of various species with respect to S1 for radical coupling and radical addition reactions at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level. IF represents imaginary frequencies (cm⁻¹).

Species	G_0	SP-E	$G_c(G_0+SP-E)$	ΔG	IF
S 1	0.164981	-3093.399738	-3093.234757		
COMA	0.328199	-1512.513655	-1512.185456		
S 5	0.536413	-4943.63076	-4943.094347	-39.7	
S 7	0.53483	-4943.63621	-4943.10138	-44.1	
TS4	0.530408	-4943.579709	-4943.049301	-11.4	526.42i
TS5	0.532509	-4943.602961	-4943.070452	-24.7	266.71i
S 2	0.172127	-3431.063105	-3430.890978	-28.4	
S 4	0.174191	-3431.079798	-3430.905607	-37.6	
TS2	0.175915	-3431.048013	-3430.872098	-16.6	537.41i
S 3	0.179396	-3431.076483	-3430.897087	-32.3	

TS3	0.177088	-3431.055727	-3430.878639	-20.7	579.15i
S 6	0.259195	-4235.71271	-4235.453515	-64.0	
a2	0.055565	-804.516055	-804.46049		
S 8	0.258887	-4235.71384	-4235.454953	-55.8	

Structure Details

Structure S1				
		-	2	
		\sim	\sim	
cartesian coordinates	C	-1 58740000	-0 43030000	-0.08430000
of stationary point	C	-0 20450000	-0 28850000	0.00480000
structure [Å]	C	0.38410000	0.97820000	0.05790000
	C	-0.43440000	2.11000000	0.01800000
	C	-1.81980000	1.98520000	-0.07000000
	C	-2.38390000	0.71250000	-0.12090000
	Н	-2.04180000	-1.42040000	-0.12020000
	Н	0.42320000	-1.18170000	0.03480000
	Н	0.00840000	3.10760000	0.06450000
	Н	-2.45420000	2.87100000	-0.09660000
	Br	-4.26700000	0.53160000	-0.23610000
	С	1.89900000	1.09020000	0.07980000
	С	2.48060000	1.13290000	-1.34950000
	Н	2.31080000	0.20940000	0.59750000
	С	4.00930000	1.15430000	-1.38450000
	Н	2.10590000	0.24430000	-1.87930000
	Н	2.07070000	2.01350000	-1.86950000
	Н	4.36720000	2.03890000	-0.83010000
	Н	4.40650000	0.26550000	-0.86900000
	С	4.53440000	1.20520000	-2.78990000
	С	5.30250000	0.27140000	-3.34990000
	Н	4.23840000	2.08010000	-3.38100000
	Н	5.64900000	0.36190000	-4.38130000
	Н	5.61480000	-0.61530000	-2.79060000
	С	2.33950000	2.26570000	0.84740000
	Ν	2.69020000	3.20180000	1.42340000

Structure a2				
		\bigcap		
cartesian coordinates	C	2 9/330000	0.37490000	0.00050000
of stationers point		2.94550000	0.37490000	0.00030000
of stationary point	0	3.76030000	-0.4 / /80000	-0.00030000
structure [A]	С	1.46830000	0.23590000	0.00010000
	С	0.88430000	-1.03980000	0.00010000
	С	0.66860000	1.38200000	-0.00020000
	С	-0.49840000	-1.16760000	0.00000000
	Н	1.52430000	-1.92350000	-0.00010000
	С	-0.71780000	1.26370000	0.00000000
	Н	1.14050000	2.36580000	0.00010000
	С	-1.28430000	-0.01110000	0.00010000
	Н	-0.97500000	-2.14770000	0.00010000
	Н	-1.35990000	2.14390000	-0.00010000
	Cl	-3.01160000	-0.16730000	0.00000000

Structure COMA				
cartesian coordinates	С	-1.68670000	-0.89660000	-0.56970000
of stationary point	С	-0.14190000	-0.90480000	-0.54700000
structure [Å]	С	0.30580000	0.34570000	-1.34250000
	С	-0.88490000	1.23750000	-1.18800000
	С	-3.04440000	1.35530000	-0.72230000
	Н	-2.10390000	-1.46360000	-1.41580000
	Н	-2.15100000	-1.25820000	0.35210000
	Н	0.20120000	-0.81610000	0.49260000
	Н	1.22730000	0.80060000	-0.96210000
	Ν	-1.95780000	0.52360000	-0.75180000
	Ν	-1.17000000	2.48170000	-1.39980000
	Ν	-2.51030000	2.57630000	-1.09180000

Н	0.26740000	-1.83310000	-0.96020000
Н	0.45150000	0.12200000	-2.40980000
С	-3.14020000	3.85040000	-1.01130000
С	-3.60410000	4.30720000	0.23200000
С	-3.32720000	4.58470000	-2.19220000
С	-4.35730000	5.48320000	0.25200000
С	-4.06800000	5.76470000	-2.11680000
С	-4.62380000	6.20900000	-0.91240000
Н	-4.74630000	5.84200000	1.20860000
Н	-4.24280000	6.33630000	-3.03180000
С	-3.31360000	3.55950000	1.50550000
Н	-4.05630000	2.76580000	1.68250000
Н	-2.32340000	3.08390000	1.47190000
Н	-3.34510000	4.24410000	2.36250000
С	-2.78730000	4.08260000	-3.50330000
Н	-1.68860000	4.11560000	-3.51430000
Н	-3.06890000	3.03110000	-3.67020000
Н	-3.16760000	4.68520000	-4.33700000
С	-5.52210000	7.41640000	-0.87250000
Н	-6.57630000	7.09880000	-0.91370000
Н	-5.38630000	7.98610000	0.05670000
Н	-5.33850000	8.08320000	-1.72490000
С	-4.34880000	0.93400000	-0.31060000
0	-4.47480000	-0.18080000	0.25990000
С	-5.51810000	1.84000000	-0.48990000
С	-5.72530000	2.58820000	-1.65580000
С	-6.45410000	1.94080000	0.54890000
С	-6.78900000	3.47980000	-1.75690000
Н	-5.04070000	2.47760000	-2.49810000
С	-7.52340000	2.82790000	0.46530000
Н	-6.31620000	1.32740000	1.44130000
С	-7.66650000	3.60730000	-0.68240000
Н	-6.93610000	4.07680000	-2.65730000
Н	-8.23580000	2.92980000	1.28420000
Cl	-8.96950000	4.76340000	-0.77840000

Structure S3					
		\sim			
cartesian coordinates	С	-2.69910000	-0.85020000	-0.58110000	
of stationary point	C	-1.35510000	-0.51100000	-0.45880000	
structure [Å]	C	-0.96050000	0.64420000	0.22810000	
	C	-1.94600000	1.45730000	0.79260000	
	С	-3.29890000	1.13470000	0.67920000	
	С	-3.66220000	-0.01880000	-0.00890000	
	Н	-2.99770000	-1.75300000	-1.11390000	
	Н	-0.60060000	-1.16640000	-0.90080000	
	Н	-1.65730000	2.36040000	1.33400000	
	Н	-4.06070000	1.77460000	1.12480000	
	C	0.49570000	1.02200000	0.31780000	
	C	1.43250000	-0.11200000	0.78590000	
	C	1.15000000	1.48080000	-0.99830000	
	Н	0.61240000	1.82420000	1.06420000	
	C	2.71950000	-0.07790000	-0.05600000	
	C	2.64580000	1.28660000	-0.75510000	
	Н	0.87460000	2.51210000	-1.25300000	
	Н	0.81410000	0.82840000	-1.82010000	
	Н	2.59750000	-0.87050000	-0.81410000	
	Н	3.02910000	2.06960000	-0.08100000	
	Н	3.24060000	1.31620000	-1.67650000	
	C	3.95820000	-0.37870000	0.77620000	
	Н	3.84810000	-1.34840000	1.28140000	
	Н	4.11030000	0.38900000	1.54860000	
	C	5.21370000	-0.44740000	-0.04990000	
	Ν	1.19890000	-0.91540000	1.70310000	
	Br	-5.49610000	-0.47410000	-0.16920000	
	F	5.53030000	0.73660000	-0.59080000	
	F	5.09740000	-1.31600000	-1.06160000	
	F	6.26120000	-0.83290000	0.68300000	

Structure S4				
		L.		
cartesian coordinates	С	4.33390000	0.04890000	0.05210000
of stationary point	С	3.33700000	-0.88780000	0.33630000
structure [Å]	С	2.00350000	-0.53220000	0.19520000
	С	1.62920000	0.76960000	-0.23330000
	С	2.67360000	1.69140000	-0.51300000
	С	4.00600000	1.34110000	-0.37370000
	Н	3.60800000	-1.89100000	0.66620000
	Н	1.23520000	-1.27330000	0.41910000
	Н	2.41580000	2.69890000	-0.84550000
	Н	4.79430000	2.06170000	-0.59270000
	С	0.27150000	1.15360000	-0.38190000
	Н	0.06480000	2.17260000	-0.71910000
	С	-0.88030000	0.24520000	-0.10630000
	Н	-0.81230000	-0.65250000	-0.74980000
	Н	-0.82270000	-0.13640000	0.93070000
	С	-2.22630000	0.92900000	-0.31850000
	Н	-2.30970000	1.28370000	-1.35800000
	Н	-2.29740000	1.81470000	0.33070000
	С	-3.42770000	0.02500000	0.00180000
	Н	-3.34520000	-0.31610000	1.04680000
	C	-4.74770000	0.78780000	-0.16120000
	Н	-4.94710000	1.01890000	-1.21660000
	Br	6.15380000	-0.43710000	0.24490000
	Н	-4.67890000	1.73600000	0.38860000
	C	-5.94050000	0.05080000	0.38950000
	F	-6.17060000	-1.09590000	-0.25650000
	F	-7.04670000	0.78970000	0.29430000
	F	-5.77480000	-0.25520000	1.68140000
	C	-3.38840000	-1.18340000	-0.84050000
	Ν	-3.31730000	-2.11420000	-1.51790000

Structure S5				
		1~		"P
			P (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/
			\sim	
			•	
cartesian coordinates	С	-1.14540000	-0.31310000	-0.36400000
of stationary point	С	0.37350000	-0.04250000	-0.28980000
structure [Å]	С	0.65510000	1.09060000	-1.30600000
	С	-0.65990000	1.79600000	-1.30780000
	С	-2.79810000	1.67070000	-0.81470000
	Н	-1.39540000	-1.10210000	-1.08420000
	Н	-1.61790000	-0.51840000	0.60320000
	Н	0.62910000	0.30550000	0.71980000
	Н	1.48110000	1.74810000	-1.01450000
	Ν	-1.64990000	0.97380000	-0.85590000
	Ν	-1.11380000	2.98270000	-1.55500000
	Ν	-2.44630000	2.89670000	-1.24950000
	Н	0.95510000	-0.94690000	-0.49720000
	Н	0.86290000	0.69660000	-2.31190000
	С	-3.22970000	4.10310000	-1.31620000
	С	-3.56300000	4.73060000	-0.10450000
	С	-3.60440000	4.61400000	-2.56170000
	С	-4.39800000	5.84390000	-0.16890000
	С	-4.41990000	5.75120000	-2.56970000
	С	-4.85700000	6.35350000	-1.39020000
	Н	-4.69680000	6.33120000	0.76270000
	Н	-4.73810000	6.16000000	-3.53210000
	С	-3.01440000	4.23160000	1.20470000
	Н	-3.23400000	3.16430000	1.37180000
	Н	-1.91860000	4.34850000	1.21910000
	Н	-3.43030000	4.81320000	2.03710000
	С	-3.21720000	3.96250000	-3.86230000
	Н	-2.30770000	3.35810000	-3.77050000
	Н	-4.02290000	3.30360000	-4.22090000
	Н	-3.05320000	4.72900000	-4.63100000
	С	-5.81980000	7.50990000	-1.41520000
	Н	-6.82940000	7.15740000	-1.15160000
	Н	-5.53810000	8.27910000	-0.68300000
	Н	-5.86880000	7.97110000	-2.40990000

С	-4.05100000	1.10150000	-0.07570000
0	-3.61480000	0.96950000	1.17750000
С	-5.25910000	2.06070000	-0.21230000
С	-5.74390000	2.55940000	-1.42600000
С	-5.88880000	2.45950000	0.96830000
С	-6.81190000	3.45360000	-1.46480000
Н	-5.25250000	2.30000000	-2.36500000
С	-6.96430000	3.34610000	0.95310000
Н	-5.48500000	2.07260000	1.90450000
С	-7.40860000	3.84330000	-0.26860000
Н	-7.16460000	3.86370000	-2.41150000
Н	-7.44610000	3.66510000	1.87770000
Cl	-8.72140000	4.99440000	-0.30350000
С	-4.43230000	-0.32390000	-0.67130000
С	-5.46050000	-0.97470000	0.27750000
С	-4.92590000	-0.46240000	-2.11800000
Н	-3.51350000	-0.92340000	-0.59830000
С	-4.80750000	-1.74960000	1.41640000
Н	-6.11150000	-1.65390000	-0.29630000
Н	-6.11940000	-0.19840000	0.69780000
Н	-5.24730000	-1.50330000	-2.26910000
Н	-5.80160000	0.16600000	-2.33170000
С	-3.90850000	-0.23160000	-3.20180000
С	-5.82160000	-2.30100000	2.44020000
Н	-4.12610000	-1.06890000	1.94190000
Н	-4.21510000	-2.59190000	1.02150000
F	-3.55260000	1.05940000	-3.34040000
F	-2.77200000	-0.90870000	-2.97780000
F	-4.36790000	-0.62300000	-4.39160000
С	-5.11970000	-2.99630000	3.59420000
Н	-6.40010000	-1.45290000	2.84070000
С	-6.79210000	-3.18800000	1.78080000
С	-4.55980000	-2.21130000	4.60790000
С	-4.95630000	-4.38230000	3.64290000
Ν	-7.53220000	-3.88530000	1.23540000
С	-3.85100000	-2.79390000	5.65480000
Н	-4.67820000	-1.12580000	4.58140000
С	-4.24910000	-4.98190000	4.68510000
Н	-5.39020000	-5.01240000	2.86360000
С	-3.70190000	-4.17990000	5.68250000
Н	-3.42110000	-2.17710000	6.44400000
Н	-4.12740000	-6.06460000	4.71900000
Br	-2.73980000	-4.98440000	7.10460000

Structure S6				
		٩		
		P		
		0		
cartesian coordinates	С	2.09650000	-0.70680000	-0.98730000
of stationary point	0	1.69310000	-0.92060000	-2.10880000
structure [Å]	С	2.52890000	0.68040000	-0.60610000
	С	2.66020000	1.61060000	-1.64740000
	С	2.77330000	1.09690000	0.70850000
	С	3.03540000	2.92270000	-1.39230000
	Н	2.46150000	1.28100000	-2.66730000
	С	3.14010000	2.41270000	0.98150000
	Н	2.67210000	0.41220000	1.54850000
	С	3.27090000	3.31330000	-0.07300000
	Н	3.14420000	3.64500000	-2.20110000
	Н	3.32270000	2.73990000	2.00450000
	Cl	3.73190000	4.95310000	0.25980000
	С	2.12790000	-1.86950000	0.01080000
	С	1.05760000	-1.74570000	1.11000000
	С	3.50870000	-2.15490000	0.60780000
	Н	1.85230000	-2.73220000	-0.61360000
	С	-0.28860000	-1.27210000	0.57370000
	Н	0.94260000	-2.73950000	1.57100000
	Н	1.39340000	-1.07630000	1.91590000
	Н	3.44050000	-3.01320000	1.29140000
	Н	3.91090000	-1.30800000	1.17940000
	С	4.53200000	-2.50460000	-0.43950000
	С	-1.40270000	-1.27460000	1.64100000
	Н	-0.61950000	-1.91910000	-0.25300000
	Н	-0.20910000	-0.25110000	0.16540000
	F	4.15740000	-3.55530000	-1.17600000
	F	5.71090000	-2.80340000	0.10900000
	F	4.73850000	-1.48790000	-1.28940000
	С	-2.73090000	-0.83170000	1.05120000
	Н	-1.51140000	-2.29760000	2.03430000
	С	-1.00960000	-0.42850000	2.77950000
	С	-3.57530000	-1.78610000	0.47750000
	С	-3.09440000	0.51650000	1.00280000

Ν	-0.67150000	0.24970000	3.64940000
С	-4.76750000	-1.40700000	-0.13560000
Н	-3.30310000	-2.84330000	0.50810000
С	-4.28460000	0.91150000	0.39490000
Н	-2.44780000	1.27470000	1.45060000
С	-5.11090000	-0.05700000	-0.17060000
Н	-5.42470000	-2.15520000	-0.57880000
Н	-4.56670000	1.96370000	0.36330000
Br	-6.73160000	0.47140000	-0.99790000

Structure S7				
		\checkmark		
				-
		C	4	
		•	•	
cartesian coordinates	С	-4.44740000	-1.88380000	2.01080000
of stationary point	С	-3.92020000	-2.79420000	3.14150000
structure [Å]	С	-2.94150000	-3.78720000	2.46840000
	С	-2.47660000	-2.97610000	1.30470000
	С	-2.87070000	-1.23110000	0.02210000
	Н	-5.37760000	-2.26710000	1.56780000
	Н	-4.57090000	-0.83110000	2.28900000
	Н	-3.37080000	-2.18160000	3.86840000
	Н	-2.11510000	-4.09740000	3.11670000
	Ν	-3.35970000	-1.97330000	1.03190000
	Ν	-1.44870000	-2.91850000	0.51940000
	Ν	-1.70340000	-1.83280000	-0.27490000
	Н	-4.73670000	-3.29960000	3.66780000
	Н	-3.45610000	-4.69000000	2.10730000
	С	-0.68840000	-1.43400000	-1.21170000
	С	0.11890000	-0.33570000	-0.88940000
	С	-0.55400000	-2.16520000	-2.39480000
	С	1.03560000	0.08050000	-1.85500000
	С	0.39260000	-1.71920000	-3.31980000
	С	1.17050000	-0.58300000	-3.08020000
	Н	1.65840000	0.95420000	-1.64650000
	Н	0.50420000	-2.25970000	-4.26280000
	С	0.00450000	0.34710000	0.44690000
	Н	-1.03350000	0.63390000	0.68070000
Н	0.34950000	-0.32990000	1.24490000	
----	-------------	-------------	-------------	
Н	0.63030000	1.24810000	0.46930000	
С	-1.43280000	-3.35420000	-2.67030000	
Н	-1.27490000	-4.14200000	-1.91950000	
Н	-2.49880000	-3.07730000	-2.62680000	
Н	-1.22630000	-3.76910000	-3.66420000	
С	2.10960000	-0.05000000	-4.12870000	
Н	1.66630000	0.83800000	-4.60630000	
Н	3.06700000	0.25830000	-3.68660000	
Н	2.30590000	-0.79540000	-4.90980000	
С	-3.49000000	0.17420000	-0.30300000	
0	-3.35800000	0.82700000	0.84410000	
С	-2.75870000	0.84960000	-1.48940000	
С	-2.53810000	0.25570000	-2.73780000	
С	-2.28040000	2.14390000	-1.27760000	
С	-1.83740000	0.92170000	-3.74050000	
Н	-2.87760000	-0.76180000	-2.93550000	
С	-1.58110000	2.83190000	-2.26880000	
Н	-2.44950000	2.58400000	-0.29440000	
С	-1.35820000	2.20530000	-3.49080000	
Н	-1.64390000	0.44130000	-4.70010000	
Н	-1.19780000	3.83770000	-2.09470000	
Cl	-0.43890000	3.03030000	-4.72620000	
С	-5.03180000	-0.04410000	-0.68930000	
С	-5.26660000	-0.88170000	-1.92530000	
С	-5.74410000	1.31630000	-0.73240000	
Н	-5.45490000	-0.60110000	0.15890000	
С	-5.52120000	-0.30680000	-3.17850000	
С	-5.19340000	-2.27950000	-1.85230000	
С	-6.12520000	1.83990000	0.64870000	
Н	-5.10420000	2.05790000	-1.24090000	
Н	-6.65710000	1.21990000	-1.34150000	
С	-5.66630000	-1.08890000	-4.32230000	
Н	-5.58560000	0.77770000	-3.27710000	
С	-5.33500000	-3.08140000	-2.98430000	
Н	-5.02870000	-2.76530000	-0.88760000	
Н	-6.83390000	1.14650000	1.13220000	
Н	-5.21790000	1.87930000	1.26420000	
С	-6.75200000	3.24330000	0.61090000	
С	-5.56140000	-2.47430000	-4.21680000	
Н	-5.85420000	-0.62360000	-5.29010000	
Н	-5.27290000	-4.16710000	-2.90690000	
С	-7.06610000	3.74010000	2.02670000	
Н	-6.03040000	3.93590000	0.14720000	

С	-7.95220000	3.24900000	-0.24390000
Br	-5.74440000	-3.55040000	-5.76810000
Н	-7.90810000	3.18730000	2.46550000
Н	-6.18440000	3.57680000	2.66060000
С	-7.38710000	5.20950000	2.09320000
Ν	-8.88530000	3.20370000	-0.92080000
F	-6.38480000	5.95460000	1.61300000
F	-8.47790000	5.52360000	1.38700000
F	-7.60360000	5.59950000	3.35100000

Structure S8				
cartesian coordinates	С	0.06360000	0.41670000	1.94230000
of stationary point	0	-0.11170000	0.48360000	3.13880000
structure [Å]	С	0.03000000	1.66380000	1.10670000
	С	-0.46910000	2.82550000	1.71250000
	С	0.46170000	1.72070000	-0.22510000
	С	-0.55440000	4.01860000	1.00660000
	Н	-0.79490000	2.77370000	2.75180000
	С	0.38740000	2.91160000	-0.94280000
	Н	0.88250000	0.84340000	-0.71520000
	С	-0.12500000	4.04860000	-0.32110000
	Н	-0.94860000	4.92200000	1.47140000
	Н	0.72570000	2.96180000	-1.97720000
	Cl	-0.22940000	5.53310000	-1.21470000
	С	0.26740000	-0.95160000	1.28460000
	С	1.68500000	-1.09580000	0.75120000
	С	-0.84230000	-1.26720000	0.27470000
	С	1.96700000	-1.61980000	-0.51410000
	С	2.75640000	-0.70410000	1.56530000
	Н	-0.71630000	-0.66610000	-0.63890000
	Н	-0.74990000	-2.32260000	-0.02590000
	С	-2.23430000	-1.03080000	0.85160000
	С	3.28240000	-1.74650000	-0.96250000
	Н	1.16180000	-1.93630000	-1.17780000
	С	4.07400000	-0.82100000	1.13290000

	Н	2.55950000	-0.30090000	2.56170000	
	Н	-2.36080000	0.02580000	1.14100000	
	Н	-2.37110000	-1.63160000	1.76360000	
	С	-3.36040000	-1.40050000	-0.12820000	
	С	4.32590000	-1.34320000	-0.13500000	
	Н	3.48970000	-2.15530000	-1.95150000	
	Н	4.89770000	-0.50970000	1.77530000	
	Н	-3.25970000	-2.46360000	-0.40090000	
	С	-4.73720000	-1.18430000	0.51020000	
	С	-3.20800000	-0.62530000	-1.37230000	
	Br	6.11500000	-1.50670000	-0.73820000	
	Н	-4.94730000	-0.11500000	0.65000000	
	Н	-4.75210000	-1.66640000	1.49690000	
	С	-5.86630000	-1.78340000	-0.28680000	
	Ν	-3.04070000	0.00460000	-2.32390000	
	F	-5.97930000	-1.23060000	-1.49810000	
	F	-7.03390000	-1.62020000	0.33570000	
	F	-5.69260000	-3.09690000	-0.47230000	
	Н	0.16350000	-1.65200000	2.12840000	
			_		
			2.12		
cartesian coordinates	C	-2.89540000	-0.91560000	-0.55170000	
cartesian coordinates of stationary point	C C	-2.89540000 -1.52620000	-0.91560000 -0.73050000	-0.55170000 -0.37710000	
cartesian coordinates of stationary point structure [Å]	C C C	-2.89540000 -1.52620000 -1.03670000	-0.91560000 -0.73050000 0.35400000	-0.55170000 -0.37710000 0.35790000	
cartesian coordinates of stationary point structure [Å]	C C C C C	-2.89540000 -1.52620000 -1.03670000 -1.94500000	-0.91560000 -0.73050000 0.35400000 1.25620000	-0.55170000 -0.37710000 0.35790000 0.91810000	
cartesian coordinates of stationary point structure [Å]	C C C C C C	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000	
cartesian coordinates of stationary point structure [Å]	C C C C C C C C	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000	
cartesian coordinates of stationary point structure [Å]	C C C C C C H	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000	
cartesian coordinates of stationary point structure [Å]	С С С С С С Н Н	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000 -0.83140000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000 -0.81210000	
cartesian coordinates of stationary point structure [Å]	С С С С С С Н Н Н Н	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000 -0.83140000 -1.57860000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000 -0.81210000 1.49630000	
cartesian coordinates of stationary point structure [Å]	С С С С С С Н Н Н Н Н	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.27100000 -3.27100000 -0.83140000 -1.57860000 -4.02190000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000 -0.81210000 1.49630000 1.19470000	
cartesian coordinates of stationary point structure [Å]	С С С С С С Н Н Н Н Н Н С	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000 -0.83140000 -1.57860000 -4.02190000 0.44980000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000 0.60990000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.01510000 -1.12160000 -0.81210000 1.49630000 1.19470000 0.49010000	
cartesian coordinates of stationary point structure [Å]	С С С С С С С Н Н Н Н Н Н Н С С	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.27100000 -3.27100000 -0.83140000 -1.57860000 -4.02190000 0.44980000 1.22150000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000 0.60990000 -0.66150000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000 -0.81210000 1.49630000 1.19470000 0.49010000 0.70870000	
cartesian coordinates of stationary point structure [Å]	С С С С С С С Н Н Н Н Н Н Н Н С С С С	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000 -0.83140000 -1.57860000 -4.02190000 0.44980000 1.22150000 1.04320000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000 0.60990000 -0.66150000 1.36840000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.01510000 -1.12160000 -0.81210000 1.49630000 1.19470000 0.49010000 0.70870000 -0.70470000	
cartesian coordinates of stationary point structure [Å]	С С С С С С С Н Н Н Н Н Н С С С С Н Н	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.27100000 -3.27100000 -0.83140000 -1.57860000 -4.02190000 0.44980000 1.22150000 1.04320000 0.62740000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000 0.60990000 -0.66150000 1.36840000 1.21000000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000 -0.81210000 1.49630000 1.19470000 0.49010000 0.70870000 -0.70470000 1.39780000	
cartesian coordinates of stationary point structure [Å]	С С С С С С С Н Н Н Н Н Н Н С С С Ц С С Н Н Н С С С С	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000 -0.83140000 -1.57860000 -4.02190000 0.44980000 1.22150000 1.04320000 0.62740000 2.97690000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000 0.60990000 -0.66150000 1.36840000 1.21000000 -0.06880000	-0.55170000 -0.37710000 0.35790000 0.91810000 0.75190000 0.01510000 -1.12160000 -0.81210000 1.49630000 1.19470000 0.70870000 0.70870000 -0.70470000 1.39780000 -0.32030000	

Н	0.63130000	2.38510000	-0.74930000
Н	0.75960000	0.85040000	-1.63480000
Н	2.83650000	-0.73640000	-1.17760000
Н	2.85540000	1.97240000	0.32520000
Н	3.05520000	1.77750000	-1.42780000
С	4.11300000	-0.43110000	0.58360000
Н	4.05140000	-1.49080000	0.87120000
Н	4.10530000	0.17480000	1.50170000
С	5.45590000	-0.22090000	-0.07210000
Ν	1.32970000	-1.74930000	1.14330000
Br	-5.64660000	-0.24480000	-0.21820000
F	5.64020000	1.05900000	-0.42330000
F	5.58720000	-0.95120000	-1.18460000
F	6.46100000	-0.55380000	0.74090000

Structure TS3		2,0		
cartesian coordinates	С	-2.85700000	0.88390000	-0.82710000
of stationary point	С	-1.54110000	1.14980000	-0.46080000
structure [Å]	С	-0.98420000	0.59300000	0.70570000
	С	-1.79610000	-0.25230000	1.48820000
	С	-3.10880000	-0.53020000	1.13110000
	С	-3.63210000	0.04370000	-0.02890000
	Н	-3.27860000	1.32720000	-1.72930000
	Н	-0.94960000	1.80960000	-1.09570000
	Н	-1.37800000	-0.70540000	2.38920000
	Н	-3.72460000	-1.18680000	1.74570000
	С	0.39790000	0.81240000	1.11200000
	С	1.48730000	-0.81910000	0.53930000
	С	1.29680000	1.84800000	0.49920000
	Н	0.58480000	0.62900000	2.17600000
	С	2.67010000	-0.09390000	-0.04670000

С	2.72600000	1.31300000	0.54900000
Н	1.21180000	2.80110000	1.04590000
Н	1.02120000	2.04390000	-0.54650000
Н	2.45550000	-0.00690000	-1.12510000
Н	3.08050000	1.25830000	1.59090000
Н	3.42240000	1.95220000	-0.00760000
С	3.91710000	-0.95880000	0.13890000
Н	3.76580000	-1.94090000	-0.32850000
Н	4.12820000	-1.12060000	1.20530000
С	5.14960000	-0.35440000	-0.48180000
Ν	1.00750000	-1.86400000	0.81350000
Br	-5.42250000	-0.32530000	-0.52520000
F	5.58160000	0.72210000	0.18730000
F	4.93190000	0.03490000	-1.74350000
F	6.15800000	-1.22800000	-0.50380000

Structure TS4				
			2.53	
cartesian coordinates	С	-0.22510000	0.11660000	-0.65260000
of stationary point	С	1.12960000	0.54720000	-1.26120000
structure [Å]	С	0.79640000	1.55220000	-2.39010000
	С	-0.50770000	2.10090000	-1.91430000
	С	-2.28640000	1.75190000	-0.66740000
	Н	-0.62420000	-0.79520000	-1.11430000
	Н	-0.21280000	-0.00840000	0.43350000
	Н	1.72650000	1.05260000	-0.49010000
	Н	1.55850000	2.32580000	-2.53320000
	Ν	-1.07220000	1.25580000	-1.00580000
	Ν	-1.25020000	3.13580000	-2.14220000
	Ν	-2.35600000	2.93130000	-1.35290000
	Н	1.70270000	-0.31310000	-1.62340000
	Н	0.63260000	1.04290000	-3.35200000

С	-3.26270000	4.01130000	-1.10720000
С	-3.25830000	4.60440000	0.16480000
С	-4.13790000	4.41800000	-2.12210000
С	-4.24170000	5.55640000	0.43760000
С	-5.08710000	5.39200000	-1.80630000
С	-5.18190000	5.94050000	-0.52390000
Н	-4.27040000	6.01390000	1.42980000
Н	-5.79020000	5.71040000	-2.58000000
С	-2.23450000	4.23070000	1.20410000
Н	-2.50520000	3.30120000	1.72870000
Н	-1.24560000	4.07580000	0.74880000
Н	-2.14980000	5.02530000	1.95580000
С	-4.10000000	3.78260000	-3.48440000
Н	-3.07470000	3.73200000	-3.87350000
Н	-4.47310000	2.74710000	-3.44480000
Н	-4.72660000	4.34390000	-4.18810000
С	-6.28770000	6.89890000	-0.17170000
Н	-7.11530000	6.35220000	0.30780000
Н	-5.94390000	7.66430000	0.53690000
Н	-6.68720000	7.39760000	-1.06430000
С	-3.11870000	1.15880000	0.37590000
0	-2.52850000	0.44180000	1.22340000
С	-4.48000000	1.69750000	0.63250000
С	-5.36160000	2.09560000	-0.38270000
С	-4.88860000	1.83710000	1.96630000
С	-6.58300000	2.68740000	-0.08400000
Н	-5.08110000	1.93250000	-1.42540000
С	-6.11370000	2.42120000	2.28420000
Н	-4.21110000	1.50270000	2.75470000
С	-6.94240000	2.86030000	1.25310000
Н	-7.25550000	3.01390000	-0.87760000
Н	-6.42060000	2.55760000	3.32190000
Cl	-8.45390000	3.63950000	1.63670000
С	-3.86240000	-0.73990000	-1.28900000
С	-5.13110000	-1.14780000	-0.59740000
С	-3.99200000	-0.74830000	-2.78570000
Н	-2.93050000	-1.14210000	-0.87660000
С	-4.96110000	-1.58560000	0.85470000
Н	-5.61090000	-1.97040000	-1.16680000
Н	-5.86240000	-0.31760000	-0.64680000
Н	-4.17980000	-1.77790000	-3.14880000
Н	-4.85880000	-0.15240000	-3.11670000
С	-2.80720000	-0.25460000	-3.56540000
С	-6.29650000	-1.61030000	1.62640000

Н	-4.28470000	-0.90560000	1.38980000
Н	-4.50500000	-2.58800000	0.89790000
F	-2.64730000	1.07320000	-3.47360000
F	-1.65300000	-0.80370000	-3.15380000
F	-2.92550000	-0.53430000	-4.86640000
С	-6.10730000	-2.06340000	3.06300000
Н	-6.70590000	-0.58580000	1.62810000
С	-7.28190000	-2.45570000	0.93190000
С	-5.97580000	-1.11260000	4.07780000
С	-5.99520000	-3.41950000	3.38420000
Ν	-8.02950000	-3.13420000	0.37290000
С	-5.73420000	-1.50110000	5.39470000
Н	-6.06550000	-0.05130000	3.83840000
С	-5.75640000	-3.82490000	4.69530000
Н	-6.10320000	-4.17620000	2.60340000
С	-5.62630000	-2.85770000	5.69030000
Н	-5.63530000	-0.75500000	6.18310000
Н	-5.67420000	-4.88340000	4.94170000

Structure TS5				
			•	
		2.5	57	
		6		
cartesian coordinates	С	-3.96010000	-2.46780000	2.41040000
of stationary point	С	-3.45620000	-3.84410000	2.90190000
structure [Å]	С	-2.83170000	-4.54360000	1.67010000
	С	-2.44260000	-3.37030000	0.83290000
	С	-2.76730000	-1.23500000	0.41490000
	Н	-5.01730000	-2.48570000	2.10630000
	Н	-3.82010000	-1.65160000	3.12430000
	Н	-2.68100000	-3.69010000	3.66410000
	Н	-1.97990000	-5.18760000	1.91450000
	Ν	-3.11170000	-2.25180000	1.23810000
	Ν	-1.66160000	-3.12850000	-0.16970000
	Ν	-1.84880000	-1.79250000	-0.42250000
	Н	-4.26240000	-4.43220000	3.35280000
	Н	-3.57020000	-5.14860000	1.12160000
	С	-0.93190000	-1.10160000	-1.27750000
	С	-0.04300000	-0.18010000	-0.70360000
	С	-0.97720000	-1.35090000	-2.65430000
	С	0.74000000	0.58220000	-1.57150000
	С	-0.16340000	-0.57180000	-3.47890000
	С	0.67050000	0.42350000	-2.95980000
	Н	1.42510000	1.32170000	-1.14930000
	Н	-0.20280000	-0.73130000	-4.55910000
	С	0.06990000	-0.01090000	0.78860000
	Н	-0.70950000	0.65870000	1.18410000
	Н	-0.02510000	-0.97520000	1.30820000
	Н	1.04280000	0.42580000	1.04610000
	С	-1.90080000	-2.39650000	-3.21090000
	Н	-1.49740000	-3.40600000	-3.03890000
	Н	-2.88020000	-2.36090000	-2.71250000
	Н	-2.04800000	-2.26010000	-4.28980000
	С	1.45550000	1.32940000	-3.87000000
	Н	0.91700000	2.28090000	-4.00520000
	Н	2.44020000	1.56660000	-3.44530000
	Н	1.59720000	0.87950000	-4.86090000
	С	-3.23590000	0.13840000	0.61450000
	0	-3.64580000	0.42620000	1.76170000
	С	-2.91190000	1.19770000	-0.37700000
	С	-2.92420000	1.00260000	-1.76550000
	С	-2.57110000	2.46360000	0.12370000

С	-2.55650000	2.02580000	-2.63310000
Н	-3.24220000	0.04050000	-2.17330000
С	-2.20030000	3.49710000	-0.73150000
Н	-2.58180000	2.61670000	1.20460000
С	-2.18680000	3.26380000	-2.10630000
Н	-2.55920000	1.87000000	-3.71220000
Н	-1.92220000	4.47670000	-0.34370000
Cl	-1.70330000	4.54060000	-3.18690000
С	-5.51650000	-0.64480000	-0.54010000
С	-5.39540000	-1.73480000	-1.45640000
С	-6.01010000	0.68500000	-1.02320000
Н	-5.63000000	-0.87580000	0.52210000
С	-5.48090000	-1.54560000	-2.86410000
С	-5.18600000	-3.06880000	-1.01110000
С	-6.07690000	1.77580000	0.04590000
Н	-5.35570000	1.04180000	-1.83940000
Н	-7.00350000	0.56860000	-1.50110000
С	-5.33140000	-2.60080000	-3.75520000
Н	-5.67410000	-0.55150000	-3.26860000
С	-5.01750000	-4.12340000	-1.89490000
Н	-5.18650000	-3.27670000	0.05990000
Н	-7.01750000	1.70980000	0.61540000
Н	-5.25800000	1.65680000	0.76790000
С	-5.95040000	3.17950000	-0.56930000
С	-5.07940000	-3.88450000	-3.27140000
Н	-5.39780000	-2.42470000	-4.82950000
Н	-4.85040000	-5.13510000	-1.52240000
С	-5.85680000	4.25990000	0.51070000
Н	-5.02080000	3.20820000	-1.16510000
С	-7.05890000	3.41760000	-1.51020000
Br	-4.81510000	-5.31480000	-4.48710000
Н	-6.78660000	4.33110000	1.09180000
Н	-5.04350000	3.98950000	1.19890000
С	-5.53980000	5.63060000	-0.02750000
Ν	-7.93930000	3.55390000	-2.24320000
F	-4.43770000	5.62330000	-0.78820000
F	-6.52840000	6.12060000	-0.78180000
F	-5.33090000	6.49960000	0.96370000

5. Characterization of the products

5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4a) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (65 mg, 72% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (dd, J = 8.7, 1.9

Hz, 2H, two isomers), 7.37 (d, J = 8.0 Hz, 2H, two isomers), 7.29 (d, J = 8.4 Hz, 2H, two isomers), 7.06 (d, J = 7.9 Hz, 2H, two isomers), 4.40 (t, J = 7.1 Hz, 1H, two isomers), 2.79 (m, 1H, two isomers), 2.56 – 2.21 (m, 3H, two isomers), 1.96 (m, 1H, two isomers), 1.61 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.37 & 197.30 (two isomers), 140.33 & 140.31 (two isomers), 137.5 & 137.3 (two isomers), 134.58 & 134.55 (two isomers), 132.9 (overlap, two isomers), 130.4 (overlap, two isomers), 130.1 & 129.9 (two isomers), 129.4 (overlap, two isomers), 126.74 (q, ¹*J*_{C-F} = 278.2 Hz) & 126.72 (q, ¹*J*_{C-F} = 278.3 Hz) (two isomers), 123.0 (overlap, two isomers), 119.47 & 119.46 (two isomers), 52.76 & 52.73 (two isomers), 36.9 (q, ²*J*_{C-F} = 30.0 Hz) & 36.5 (q, ²*J*_{C-F} = 30.0 Hz) (two isomers), 31.1 & 30.8 (two isomers), 30.1 & 29.9 (two isomers), 25.89 (q, ³*J*_{C-F} = 2.7 Hz) & 25.86 (q, ³*J*_{C-F} = 2.8 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-bromophenyl)-6-(4-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4b) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (58 mg, 67% yield, dr = 1:1). ¹H NMR

(400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H, two isomers), 7.48 – 7.44 (m, 2H, two isomers), 7.16 (dd, J = 8.4, 1.9 Hz, 2H, two isomers), 7.10 – 7.06 (m, 2H, two isomers), 4.50 (t, J = 7.2 Hz, 1H, two isomers), 2.95 – 2.84 (m, 1H, two isomers), 2.60 – 2.25 (m, 3H, two isomers), 2.13 – 1.95 (m, 1H, two isomers), 1.79 – 1.63 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 196.73 & 196.66 (two isomers), 167.19 (d, ¹ $J_{C-F} = 257.1$ Hz) & 167.17 (d, ¹ $J_{C-F} = 256.9$ Hz) (two isomers), 137.44 & 137.40 (two isomers), 132.8 (overlap, two isomers), 131.5 (d, ³ $J_{C-F} = 10.0$ Hz) (overlap, two isomers), 129.76

& 129.72 (two isomers), 126.51 (q, ${}^{1}J_{C-F} = 278.6 \text{ Hz}$) & 126.48 (q, ${}^{1}J_{C-F} = 278.2 \text{ Hz}$) (two isomers), 121.9 (overlap, two isomers), 119.50 & 119.48 (two isomers), 116.1 (q, ${}^{2}J_{C-F} = 22.0 \text{ Hz}$) (overlap, two isomers), 52.45 & 52.41 (two isomers), 36.8 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.7 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) (two isomers), 30.9 & 30.7 (two isomers), 30.16 & 29.97 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) & 25.7 (q, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) (two isomers). ${}^{19}\text{F}$ NMR (376 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer), -104.0 (s, one isomers), -104.1 (s, one isomers). The reported data was in accordance with literature. 11

5,6-bis(4-bromophenyl)-6-(4-Bromine)-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4c) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (68 mg, 68% yield, dr = 1:1). 1H NMR

(300 MHz, CDCl3) δ 7.78 (dd, J = 8.6, 1.8 Hz, 2H two isomers), 7.56 (d, J = 8.6 Hz, 2H two isomers), 7.47 (dd, J = 8.6, 1.8 Hz, 2H two isomers), 7.15 (dd, J = 8.6, 1.8 2H two isomers), 4.49 (t, J = 7.1 Hz, 1H two isomers), 2.90 (m, 1H two isomers), 2.66–2.22 (m, 2H two isomers), 2.19–1.91 (m, 1H two isomers), 1.84 – 1.53 (m, 2H two isomers).¹³C NMR (75 MHz, CDCl₃) δ 197.4 & 197.3 (two isomers), 137.3 & 137.3 (two isomers), 134.8 & 134.78 (two isomers), 132.8 (overlap, two isomers), 132.3 (overlap, two isomers), 130.7 (overlap, two isomers), 129.8 & 129.7 (two isomers), 128.95 & 128.93 (two isomers), 127.04 (q, ${}^{1}J_{C-F} = 275.5$ Hz) & 127.08 (q, ${}^{1}J_{C-F} = 275.8$ Hz) (two isomers), 123.0 (overlap, two isomers), 119.57 & 119.55(two isomers), 52.60 & 52.56 (two isomers), 37.4 (q, ${}^{2}J_{C-F} = 29.9$ Hz) & 36.3 (q, ${}^{2}J_{C-F} = 29.8$ Hz) (two isomers), 30.9 & 30.6 (two isomers), 30.1 & 29.9 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 3.1$ Hz) & 25.7 (q, ${}^{3}J_{C-F} = 3.0$ Hz) (two isomers). ¹⁹F NMR (282MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-bromophenyl)-6-oxo-6-(p-tolyl)-2-(2,2,2-

trifluoroethyl)hexanenitrile (4d) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (63 mg, 70 %

yield, *dr* =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.81 (dd, *J* = 8.3, 1.8 Hz, 2H, two isomers), 7.46 (d, *J* = 8.4 Hz, 2H, two isomers), 7.25 – 7.11 (m, 4H, two isomers), 4.54 (t, *J* = 7.2 Hz, 1H, two isomers), 2.90 – 2.81 (m, 1H, two isomers), 2.56 – 2.45 (m, 1H, two isomers), 2.35 (s, 3H, two isomers), 2.35 – 2.16 (m, 2H, two isomers), 2.20 – 1.95 (m, 1H, two isomers), 1.82 – 1.69 (m, 1H, two isomers), 1.85-1.63 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.96 & 197.89(two isomers), 144.59 & 144.57 (two isomers), 137.89 & 137.85 (two isomers), 133.61 & 133.58 (two isomers), 132.53 (overlap, two isomers), 129.85 & 129.80 (two isomers), 129.58 (overlap, two isomers), 128.96 (two isomers), 126.56 (q, ¹*J*_{C-F} = 278.2 Hz) & 125.12 (q, ¹*J*_{C-F} = 278.2 Hz) (two isomers), 121.7 (overlap, two isomers), 121.70 & 119.56 (two isomers), 52.3 & 52.2 (two isomers), 36.4 (q, ²*J*_{C-F} = 30.2 Hz) & 36.3 (q, ²*J*_{C-F} = 30.0 Hz) (two isomers), 31.0 & 30.7 (two isomers), 30.3 & 30.1 (two isomers), 25.8 (q, ³*J*_{C-F} = 2.9 Hz) & 25.6 (q, ³*J*_{C-F} = 2.9 Hz) (two isomers), 12.70 (s, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-bromophenyl)-6-(4-methoxyphenyl)-6-oxo-2-(2,2,2-

trifluoroethyl)hexanenitrile (4e) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow colorless liquid (68 mg, 76% yield, dr = 1:1). ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.99 - 7.93 \text{ (m, 2H, two isomers)}, 7.32 - 7.28 \text{ (m, 2H, two isomers)}, 7.24 - 7.17 \text{ (m, 4H, two isomers)}, 4.50 \text{ (t, } J = 7.1 \text{ Hz}, 1\text{ H, two isomers)}, 2.95 - 2.82 \text{ (m, 1H, two isomers)}, 2.58 - 2.44 \text{ (m, 1H, two isomers)}, 2.39 - 2.24 \text{ (m, 2H, two isomers)}, 2.11 - 1.99 \text{ (m, 1H, two isomers)}, 1.77 - 1.68 \text{ (m, 1H, two isomers)}, 1.63 - 1.56 \text{ (m, 1H, two isomers)}.$ ¹³C NMR (75 MHz, CDCl₃), ¹³C NMR (75 MHz, CDCl₃) δ 196.6

(two isomers), 163.7 (overlap, two isomers), 137.9 (two isomers), 132.4 (overlap, two isomers), 131.1 (overlap, two isomers) 129.6(two isomers), 128.9 & 128.8 (two isomers), 126.8 (q, ${}^{1}J_{C-F} = 258$ Hz) & 123.4 (q, ${}^{1}J_{C-F} = 258$ Hz) (two isomers), 121.5 (overlap, two isomers), 119.4 (two isomers), 55.5 (overlap, two isomers), 51.9 & 52.8 (two isomers), $36.5 (q, {}^{2}J_{C-F} = 30 \text{ Hz}) \& 36.3 (q, {}^{2}J_{C-F} = 30 \text{ Hz}) (two isomers), 31.0 \&$ 30.6 (two isomers), 30.2 & 30.0 (two isomers), 25.6 (q, ${}^{3}J_{C-F} = 12$ Hz) & 25.5 (q, ${}^{3}J_{C-F} = 12$ Hz) (two isomers). ${}^{19}F$ NMR (282 MHz, CDCl₃) δ -64.8 (overlap, one isomers), -64.8 (s, one isomer), -64.9 (s, one isomer), -64.9 (s, one isomer).HRMS (ESI) calcd. for C₂₁H₂₀BrF₃NO₂ [M+H]⁺: 454.0625, 456.0604; found: 454.0655, 456.0625

trifluoroethyl)hexanenitrile (4f) The title compound was

6-([1,1'-biphenyl]-4-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-

obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (69 mg, 70% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H, two isomers), 7.63 (d, J = 8.4 Hz, 2H, two isomers), 7.58 (d, J = 7.1 Hz, 2H, two isomers), 7.49 - 7.42 (m, 4H, two isomers), 7.42 - 7.37 (m, 1H, two isomers), 7.23 - 7.17 (m, 2H, two isomers), 4.58 (t, J = 7.1 Hz, 1H, two isomers), 2.95 – 2.85 (m, 1H, two isomers), 2.57 – 2.47 (m, 1H, two isomers), 2.42 – 2.28 (m, 2H, two isomers), 2.13 – 2.00 (m, 1H, two isomers), 1.80 - 1.72 (m, 1H, two isomers), 1.65 - 1.58 (m, 1H, two isomers),isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.9 & 196.8 (two isomers), 146.3 (q, ³J_C- $_{\rm F}$ = 2.8 Hz) (overlap, two isomers), 137.7 & 137.70 (two isomers), 134.79 & 134.77 (two isomers), 132.9 (overlap, two isomers), 129.9 (overlap, two isomers), 129.8 (overlap, two isomers), 129.46 & 129.31(two isomers), 126.14 (q, ${}^{1}J_{C-F} = 278.3 \text{ Hz}$) & 126.11 (q, ${}^{1}J_{C-F} = 278.6$ Hz) (two isomers), 119.5 (overlap, two isomers), 119.3 (q, ${}^{1}J_{C-F} = 260.2 \text{ Hz}$) (overlap, two isomers), 119.47 & 119.46 (two isomers), 52.49 & 52.44 (two isomers), 36.93 (q, ${}^{2}J_{C-F} = 30.0$ Hz) & 36.7 (q, ${}^{2}J_{C-F} = 30.2$ Hz) (two isomers), 31.9 & 30.7 (two isomers), 30.3 & 30.0 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.7 (q, ${}^{3}J_{C-F} = 2.9$ Hz) (two isomers). ${}^{19}F$ NMR (282 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. 11

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-

(trifluoromethyl)phenyl)hexanenitrile (4g) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow

liquid (49 mg, 50 %yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H, two isomers), 7.66 (d, J = 8.2 Hz, 2H, two isomers), 7.32 – 7.28 (m, 2H, two isomers), 7.19 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 4.53 (t, J = 7.2 Hz, 1H, two isomers), 2.96 -2.82 (m, 1H, two isomers), 2.60 - 2.46 (m, 1H, two isomers), 2.40 - 2.25 (m, 2H, two isomers), 2.15 – 2.00 (m, 1H, two isomers), 1.79 – 1.68 (m, 1H, two isomers), 1.67 – 1.61 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.47 & 197.40 (two isomers), 138.75 & 138.74 (two isomers), 136.34 & 136.29 (two isomers), 134.81 $(q, {}^{2}J_{C-F} = 32 \text{ Hz}) \& 134.55 (q, {}^{2}J_{C-F} = 32 \text{ Hz})$ (two isomers), 134.1 (overlap, two isomers), 129.8 (overlap, two isomers), 129.5 & 129.4 (two isomers), 129.1 (overlap, two isomers), 125.9 (q, ${}^{3}J_{C-F} = 3.7 \text{ Hz}$) (overlap, two isomers), 125.12 (q, ${}^{1}J_{C-F} = 278.1$ Hz) & 125.09 (q, ${}^{1}J_{C-F} = 278.0 \text{ Hz}$) (two isomers), 123.5 (q, ${}^{1}J_{C-F} = 273.8 \text{ Hz}$) (overlap, two isomers), 119.47 & 119.46 (two isomers), 52.8 (overlap, two isomers), 36.4 (q, $^{2}J_{C-F} = 30.0$ Hz) & 36.3 (q, $^{2}J_{C-F} = 30.1$ Hz) (two isomers), 30.8 & 30.6 (two isomers), 30.0 & 29.9 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 3.4 \text{ Hz}$) (overlap, two isomers). 19 F NMR (282 MHz, CDCl₃) δ -63.2 (overlap, two isomers), -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature.¹¹

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-(trifluoromethyl)phenyl)hexanenitrile (4h) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow

liquid (49 mg, 50 % yield, dr = 1:1). 1H NMR (300 MHz, CDCl₃) δ 8.10 – 8.04 (m, 2H, two isomers), 7.96 (d, J = 8.2 Hz, 2H, two isomers), 7.24-7.10 (m, 2H, two isomers), 4.53 (t, J = 7.2 Hz, 1H, two isomers), 3.94(s, 3H, two isomers) 2.90 (m, 1H, two isomers), 2.66 – 2.24 (m, 2H, two isomers), 2.20-1.93 (m, 1H, two isomers), 1.69 (m, 2H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 197.8 & 197.7 (two isomers), 165.9

(overlap, two isomers), 139.1 (two isomers), 136.9 (overlap, two isomers), 136.8 (overlap, two isomers) 134.1(two isomers), 129.9 & 129.7 (two isomers), 128.6 (q, ${}^{1}J_{C-F} = 258$ Hz) & 121.4 (q, ${}^{1}J_{C-F} = 258$ Hz) (two isomers), 119.5 (overlap, two isomers), 119.3 (two isomers), 52.8 & 52.6 (overlap, two isomers), 41.9 & 41.5 (two isomers), 36.2 (q, ${}^{2}J_{C-F} = 30$ Hz) & 36.0 (q, ${}^{2}J_{C-F} = 30$ Hz) (two isomers), 30.61 & 30.69 (two isomers), 30.3 & 30.1 (two isomers), 24.6 (q, ${}^{3}J_{C-F} = 12$ Hz) (two isomers).¹⁹F NMR (282 MHz, CDCl₃) -64.8 (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for C₂₂H₁₉BrF₃NNaO₃ [M+H]⁺: 504.0393 found: 504.0386,

6-(3-bromophenyl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4i) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (61.1 mg, 61% yield, dr = 1:1). ¹H

NMR (300 MHz, CDCl₃) δ 8.06 (q, J = 1.6 Hz, 1H, two isomers), 7.82 – 7.77 (m, 1H, two isomers), 7.67 – 7.60 (m, 1H, two isomers), 7.52 – 7.44 (m, 2H, two isomers), 7.35–7.24 (m, 2H, two isomers), 7.16 (dt, J = 6.6, 1.8 Hz, 2H, two isomers), 4.48 (t, J = 7.2 Hz, 1H, two isomers), 2.10 – 1.97 (m, 1H, two isomers), 2.10 – 1.97 (m, 1H, two isomers), 1.76 – 1.69(m, 1 H, two isomers)1.62 – 1.57 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.05 & 196.98 (two isomers), 137.85 & 137.83 (two isomers), 137.04 & 136.99 (two isomers), 136.4 (overlap, two isomers), 132.7 (overlap, two isomers), 131.8 (overlap, two isomers), 130.4 (overlap, two isomers), 129.79 & 129.75 (two isomers), 127.3, 125.12 (q, ¹ $_{JC-F} = 278.6$ Hz) & 125.09 (q, ¹ $_{JC-F} = 278.2$ Hz) (two isomers), 123.2 (overlap, two isomers), 36.4 (q, ² $_{JC-F} = 29.8$ Hz) & 36.3 (q, ² $_{JC-F} = 30.2$ Hz) (two isomers), 30.9 & 30.6 (two isomers), 30.1 & 29.9 (two isomers), 25.8 (q, ³ $_{JC-F} = 3.1$ Hz) & 25.7 (q, ³ $_{JC-F} = 2.9$ Hz) (two isomers), 25.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ¹¹

O Br CF₃

5-(4-bromophenyl)-6-oxo-6-(m-tolyl)-2-(2,2,2trifluoroethyl)hexanenitrile (4j) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid

(54.7 mg, 62% yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.44 (m, 4H, two isomers), 7.33 (t, J =8.0 Hz, 1H, two isomers), 7.23-7.12 (m, 2H, two isomers), 7.08 (dd, J = 8.2, 2.6 Hz, 1H, two isomers), 4.54 (t, J = 7.2 Hz, 1H, two isomers), 3.84 (s, 3H, two isomers), 2.90 (m, 1H, two isomers), 2.65 – 2.20 (m, 2H, two isomers), 1.69(m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.2 & 198.1 (two isomers), 160.0 (overlap, two isomers), 137.66 & 137.60 (two isomers), 137.50 & 137.47 (two isomers), 132.5 (overlap, two isomers), 129.83 & 129.77 (two isomers), 125.15 (q, ¹*J*_{C-F} = 278.2 Hz) & 125.12 (q, ¹*J*_{C-F} = 278.3 Hz) (two isomers), 121.7 (overlap, two isomers), 113.34 & 113.31 (two isomers), 55.5 (overlap, two isomers), 52.54 & 52.49 (two isomers), 36.5 (q, ²*J*_{C-F} = 30.1 Hz) & 36.3 (q, ²*J*_{C-F} = 30.1 Hz) (two isomers), 31.0 & 30.7 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ³*J*_{C-F} = 2.9 Hz) & 25.6 (q, ³*J*_{C-F} = 2.8 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.86 (s, one isomer), -64.92 (s, one isomer).

5-(4-bromophenyl)-6-(naphthalen-1-yl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile(4k)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as

a yellow liquid (72 mg, 51% yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 8.39 (t, J = 7.7 Hz, 1H, two isomers), 7.97 (d, J = 8.2, 1H, two isomers), 7.97 (d, J = 8.0 Hz, 1H, two isomers), 7.80 (d, J = 7.3Hz, 1H, two isomers), 7.68-7.34 (m, 6H, two isomers), , 7.20 (dd, J = 8.5, 2.4 Hz, 2H, two isomers), 4.59 (t, J = 7.3 Hz, 1H, two isomers), 3.00–2.88 (m, 1H, two isomers), 2.66 – 2.05 (m, 3H, two isomers), 1.88-1.63 (m, 3H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 201.9 (two isomers), 136.81 (two isomers),

135.6 & 135.5 (two isomers), 133.9 (overlap, two isomers), 133.0 (overlap, two isomers), 132.3 (overlap, two isomers), 130.4 (overlap, two isomers), 129.7 (two isomers), 128.5 (overlap, two isomers), 128.2 (overlap, two isomers), 127.3 (q, ${}^{1}J_{C-F}$ = 234 Hz, two isomers), 126.8 (overlap, two isomers), 125.3 (two isomers) 124.2(q, ${}^{1}J_{C-F}$ = 234 Hz, overlap, two isomers), 121.7 & 119.3 (two isomers), 55.6 (overlap, two isomers), 36.5 (overlap, two isomers), 31.0 & 30.6 (two isomers), 30.5 (q, ${}^{2}J_{C-F}$ = 29 Hz) & 30.0 (q, ${}^{2}J_{C-F}$ = 29 Hz), 29.73 (overlap, two isomers) (q, ${}^{4}J_{C-F}$ = 3 Hz) 25.5 (q, ${}^{3}J_{C-F}$ = 7 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.8 (s, one isomer). HRMS (ESI) calcd. for C₂₄H₂₀BrF₃NO [M+H]⁺: 474.0675, 476.0655; found: 474.0682, 476.0666.

5-(4-bromophenyl)-6-(naphthalen-2-yl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (41) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (72

mg, 77% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 4.2 Hz, 1H, two isomers), 7.96 (dd, J = 8.6, 1.5 Hz, 1H, two isomers), 7.91 (d, J = 8.0 Hz, 1H, two isomers), 7.83 (dd, J = 8.4, 3.2 Hz, 2H, two isomers), 7.56 (dt, J = 21.4, 6.9 Hz, 2H, two isomers), 7.44 (d, J = 8.4 Hz, 2H, two isomers), 7.23 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 4.71 (t, J = 7.2 Hz, 1H, two isomers), 2.97 – 2.84 (m, 1H, two isomers), 2.61 – 2.47 (m, 1H, two isomers), 2.45 – 2.27 (m, 2H, two isomers), 2.18 – 2.00 (m, 1H, two isomers), 1.84 – 1.73 (m, 1H, two isomers), 1.71 – 1.64 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.36 & 198.28 (two isomers), 137.76 & 137.70 (two isomers), 135.73 (overlap, two isomers), 133.59 & 133.48 (two isomers), 132.5 (overlap, two isomers), 129.86 & 129.82 (two isomers), 129.7(overlap, two isomers), 127.1 (overlap, two isomers), 125.16 (q, ¹*J*_{C-F} = 278.3 Hz) & 125.12 (q, ¹*J*_{C-F} = 278.3 Hz) (two isomers), 124.2 (overlap, two isomers), 121.8 (overlap, two isomers), 119.55 &

119.52 (two isomers), 52.46 & 52.41 (two isomers), 36.5 (q, ${}^{2}J_{C-F}$ = 30.1 Hz) & 36.3 (q, ${}^{2}J_{C-F}$ = 29.9 Hz) (two isomers), 31.10 & 30.8 (two isomers), 30.3 & 30.1 (two isomers), 25.8 (q, ${}^{3}J_{C-F}$ = 2.9 Hz) & 25.7 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ¹¹

(4-bromophenyl)-6-(furan-2-yl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4m) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 15/1, v/v) as a yellow liquid

(49 mg, 61% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.57 (m,1H, two isomers), 7.48 – 7.40 (m, 2H, two isomers), 7.26-7.10 (m, 3H, two isomers), 6.52 (dd, J = 3.6, 1.7 Hz, 1H, two isomers), 4.39 (t, J = 7.4 Hz, 1H, two isomers), 2.90 (m, 1H, two isomers), 2.55 – 2.28 (m, 2H, two isomers), 2.20 – 1.92 (m, 1H, two isomers), 1.84 – 1.55 (m, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 187.33 & 187.30 (two isomers), 152.10 & 152.09 (two isomers), 146.96 & 146.955 (two isomers), 137.03 & 136.96 (two isomers), 132.3 (overlap, two isomers), 130.0 & 129.97 (two isomers), 126.13 (q, ¹*J*_{C-F} = 278.5 Hz) & 125.10 (q, ¹*J*_{C-F} = 278.4 Hz) (two isomers), 121.8 (overlap, two isomers), 52.42 & 52.38 (two isomers), 36.8 (q, ²*J*_{C-F} = 30.0 Hz) & 36.3 (q, ²*J*_{C-F} = 30.1 Hz) (two isomers), 30.1 & 29.97 (two isomers), 28.8 & 29.6 (two isomers), 25.7 (q, ³*J*_{C-F} = 3.0 Hz) & 25.6 (q, ³*J*_{C-F} = 3.0 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-bromophenyl)-6-oxo-6-(thiophen-2-yl)-2-(2,2,2-

trifluoroethyl)hexanenitrile(4n) The title compound was obtained according to the general condition (eluent:

petroleum ether / acetone = 15/1, v/v) as a yellow liquid (49 mg, 60% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.63 (m, 1H, two isomers), 7.64 – 7.63 (m, 1H, two isomers), 7.48 (d,J= 8.4 Hz, 2H, two isomers), 7.21 (dd, J = 8.5, 2.2 Hz, 2H, two isomers), 7.10-7.08 (m, 1H, two isomers), 4.37 (t, J = 7.3 Hz, 1H, two isomers), 2.93-2.84 (m, 1H, two isomers), 2.57 – 2.26 (m, 3H, two isomers), 2.13 – 1.99 (m, 1H, two isomers), 1.79-1.72 (m, 2H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 191.2 & 191.1 (two isomers), 143.24 & 143.21 (two isomers), 137.55 & 137.52 (two isomers), 134.68 & 134.65 (two isomers), 132.94 & 132.90 (two isomers), 132.5 (overlap, two isomers), 129.8 & 129.7 (two isomers), 128.5 (overlap, two isomers), 129.8 & 129.7 (two isomers), 128.5 (overlap, two isomers), 121.9 (overlap, two isomers), 119.5 & 119.4 (two isomers), 53.85 & 53.79 (two isomers), 36.4 (q, ²J_{C-F}= 29.8 Hz) & 36.2 (q, ²J_{C-F}= 29.7 Hz) (two isomers), 30.8 & 30.5 (two isomers), 30.2 & 29.9 (two isomers), 25.7 (q, ³J_{C-F}= 2.9 Hz) & 25.6 (q, ³J_{C-F}= 3.0 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.88 (s, one isomer), -64.95 (s, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-bromophenyl)-6-oxo-6-(pyridin-3-yl)-2-(2,2,2trifluoroethyl)hexanenitrile (40) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (52

mg, 65% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 8.67 (d, J = 4.4 Hz, 1H, two isomers), 8.02 (dt, J = 7.9 Hz, 1.1 Hz 1H, two isomers), 7.82 (td, J = 7.7 Hz 1.7 Hz 1H, two isomers), 7.60 – 7.35 (m, 3H, two isomers), 7.33-7.22 (m, 2H, two isomers), 5.41 (m, 1H, two isomers), 3.01 – 2.86 (m, 1H, two isomers), 2.61 – 2.45 (m, 1H, two isomers), 2.68-1.68 (m, 3H, two isomers), 1.83-1.58 (m, 3H, two isomers), ¹³C NMR (75 MHz, CDCl₃) δ 199.9 & 199.8 (two isomers), 152.37 & 152.31 (two isomers), 149.0 (overlap, two isomers), 137.20 & 137.18 (two isomers), 137.01 (overlap, two isomers), 132.0 (overlap, two isomers), 130.688 & 130.65 (two isomers), 127.57 & 127.00 (two isomers), 125.15 (q, ¹*J*_{C-F} = 275.7 Hz) & 125.13 (q, ¹*J*_{C-F} = 275.6 Hz) (two isomers), 122.99 & 122.97 (two isomers), 121.4 (overlap, two isomers), 119.5 (overlap, two isomers), 49.48 & 49.32 (two isomers), 36.55 (q, ²*J*_{C-F} = 29.8 Hz) &

36.3 (q, ${}^{2}J_{C-F}$ = 29.7 Hz) (two isomers), 30.19 & 30.15 (two isomers), 29.76 & 29.71 (two isomers), 25.6 (q, ${}^{3}J_{C-F}$ = 2.9 Hz) & 25.5 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) (two isomers). ¹⁹F NMR (282MHz, CDCl₃) δ -64.9 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ¹¹

6-(benzo[b]thiophen-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl) hexanenitrile (4p) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless

liquid (68.9 mg, 65 % yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, J = 4.4Hz, 1H, two isomers), 7.83 (t, J = 7Hz, 2H, two isomers), 7.54 – 7.46 (m, 4H, two isomers), 7.32-7.22 (m, 2H, two isomers), 4.52 (t, J = 7.3 Hz, 1H, two isomers), 2.97 – 2.86 (m, 1H, two isomers), 2.64 -2.25 (m, 3H, two isomers), 2.21 - 1.99 (m, 1H, two isomers), 1.85 – 1.60 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 192.79 & 192.72 (two isomers), 142.7 (overlap, two isomers), 142.57 & 142.54 (two isomers), 139.0 (overlap, two isomers), 137.35 & 137.31 (two isomers), 132.6 (overlap, two isomers), 130.16 & 130.11 (two isomers), 129.8 & 129.7 (two isomers), 127.9 (overlap, two isomers), 126.5 (overlap, two isomers), 125.3 (overlap, two isomers), 125.13 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz}$) & 125.09 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz}$) (two isomers), 123.0 (overlap, two isomers), 122.1 (overlap, two isomers), 119.46 & 119.43 (two isomers), 53.79 & 53.73 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) (two isomers), 30.9 & 30.5 (two isomers), 30.1 & 29.9 (two isomers), 25.8 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) & 25.6 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) (two isomers).¹⁹F NMR (282 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature.¹¹

(benzofuran-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4q) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid

(48 mg, 52% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 7.9 Hz, 1H, two isomers), 7.58-7.57 (m, 5H, two isomers), 7.38 – 7.24 (m, 4H, two isomers), 4.55 (t, J = 7.4 Hz, 1H, two isomers), 2.99 – 2.89 (m, 1H, two isomers), 2.65 – 2.30 (m, 3H, two isomers), 1.85 – 1.61 (m, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 189.32 & 189.29 (two isomers), 155.7 (overlap, two isomers), 151.87 & 151.86 (two isomers), 136.8 & 136.7 (two isomers), 132.5 (overlap, two isomers), 130.06 & 130.03 (two isomers), 129.0 (overlap, two isomers), 127.0 (overlap, two isomers), 125.14 (q, ¹*J*_{C-F} = 279.3 Hz) & 125.10 (q, ¹*J*_{C-F} = 278.2 Hz) (two isomers), 124.3 (overlap, two isomers), 52.9 & 52.8 (two isomers), 36.6 (q, ²*J*_{C-F} = 30.0 Hz) & 36.4 (q, ²*J*_{C-F} = 30.2 Hz) (two isomers), 30.6 & 30.1 (two isomers), 29.9 & 29.7 (two isomers), 25.7 (q, ³*J*_{C-F} = 3.1 Hz) & 25.6 (q, ³*J*_{C-F} = 3.0 Hz) (two isomers).¹⁹F NMR (282MHz, CDCl₃) δ -64.85 (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for C₂₂H₁₈BrF₃NO₂ [M+H]⁺: 464.0468, 466.0448; found 464.0473, 466.0452.

5,6-bis(4-chlorophenyl)-6-oxo-2-(2,2,2-

trifluoroethyl)hexanenitrile (4r) The title compound was

obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (62.8 mg, 75% yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.1 Hz 2H, two isomers), 7.39 (d, J = 8.2 Hz, 2H, two isomers), 7.35 – 7.29 (m, 2H, two isomers), 7.21 (d, J = 8.1 Hz, 2H, two isomers), 4.51 (t, J = 7.3 Hz, 1H, two isomers), 2.94 – 2.83 (m, 1H, two isomers), 2.63 – 2.24 (m, 3H, two isomers), 2.40 – 2.25 (m, 2H, two isomers), 2.16 – 1.94 (m, 1H, two isomers), 1.76 – 1.57 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.19 & 197.13 (two isomers), 140.0 (overlap, two isomers), 136.8 (overlap, two isomers), 134.3 (overlap, two isomers), 133.8 (overlap, two isomers), 129.7 (overlap, 557) two isomers), 129.4 (overlap, two isomers), 129.1 (overlap, two isomers), 125.04 (q, ${}^{1}J_{C-F} = 261.0 \text{ Hz}$) & 125.00 (q, ${}^{1}J_{C-F} = 259.3 \text{ Hz}$) (two isomers), 119.5 (overlap, two isomers), 52.4 (overlap, two isomers), 36.6 (q, ${}^{2}J_{C-F} = 29.6 \text{ Hz}$) & 36.2(q, ${}^{2}J_{C-F} = 29.2 \text{ Hz}$) (two isomers), 30.9 & 30.7 (two isomers), 30.1 & 29.9 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 1.7 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} = 1.9 \text{ Hz}$) (two isomers). ${}^{19}\text{F}$ NMR (282 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. 11

5-(4-chlorophenyl)-6-oxo-5-(p-tolyl)-2-(2,2,2-

trifluoroethyl)hexanenitrile (4s) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid

(59.8 mg, 70% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.86 (dd, J = 8.7, 1.8 Hz, 2H, two isomers), 7.34 (d, J = 8.4 Hz, 2H, two isomers), 7.12 (s, 4H, two isomers), 4.45 (t, J = 7.1 Hz, 1H, two isomers), 2.95 – 2.77 (m, 1H, two isomers), 2.59 – 2.36 (m, 2H, two isomers), 2.29 (s, 3H, two isomers), 2.24 – 1.92 (m, 2H, two isomers), 1.76 – 1.59 (m, 2H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 197.8 & 197.6 (two isomers), 159.3 (overlap, two isomers), 139.8 (overlap, two isomers), 134.7 (overlap, two isomers), 130.7 (overlap, two isomers), 130.3 & 130.2 (two isomers), 129.3 & 129.2 (two isomers), 129.15 (overlap, two isomers), 125.16 (q, ¹ $J_{C-F} = 276$ Hz) & 125.14 (q, ¹ $J_{C-F} = 276$ Hz) (two isomers), 55.5 (overlap, two isomers), 52.5(overlap, two isomers), 36.7 (q, ² $J_{C-F} = 30$ Hz) & 36.0 (q, ² $J_{C-F} = 29$ Hz) (two isomers), 30.9 & 30.7 (two isomers), 30.1 & 30.0 (two isomers), 25.7 (q, ³ $J_{C-F} = 3.2$ Hz) (overlap, two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). The reported data was in accordance with literature. ¹¹

6-(4-chlorophenyl)-5-(4-methoxyphenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4t) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid

(58 mg, 72% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.88 (dd, J = 8.5, 1.8 Hz, 2H, two isomers), 7.37 (d, J = 8.2 Hz, 2H, two isomers), 7.17 (d, J = 8.2 Hz 2H, two isomers), 6.86 (d, J = 8.2 Hz 2H, two isomers), 4.46 (t, J = 7.2 Hz, 1H, two isomers), 3.78 (s, 3H, two isomers), 1.72 – 1.56 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 & 197.4 (two isomers), 139.56 & 139.54 (two isomers), 137.5 (overlap, two isomers), 135.14 & 135.09 (two isomers), 134.55 & 134.52 (two isomers), 130.17 (overlap, two isomers), 130.13(overlap, two isomers), 127.87 & 127.83 (two isomers), 125.07 (q, ¹ $J_{C-F} = 276$ Hz) & 125.04 (q, ¹ $J_{C-F} = 276$ Hz) (two isomers), 115.9 (overlap, two isomers), 52.8 (overlap, two isomers), 36.3 (q, ² $J_{C-F} = 30.0$ Hz) & 36.2 (q, ² $J_{C-F} = 30.0$ Hz) (two isomers), 30.8 & 30.5 (two isomers), 30.1 & 29.9 (two isomers), 25.6 (q, ³ $J_{C-F} = 3.0$ Hz) (overlap, two isomers), 21.0 (overlap, two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.90 (s, one isomer), -64.95 (s, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-(tert-butyl)phenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile (4u) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless

liquid (50 mg, 60% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.2Hz, 2H two isomers), 7.43 – 7.31 (m, 4H two isomers), 7.18 (d, J = 8.3Hz, 2H, two isomers), 4.49(t, J = 7.2 Hz, 1H, two isomers), 2.99 – 2.71 (m, 1H, two isomers), 2.66 – 2.24 (m, 4H, two isomers), 2.38 – 2.23 (m, 2H, two isomers), 2.16 – 1.98 (m, 1H, two isomers), 1.77 – 1.59 (m, 2H, two isomers), 1.29 (s, 9H, two isomers).¹³C NMR (101 MHz, CDCl₃) δ 197.6 & 197.5 (two isomers), 150.7 (overlap, two isomers), 139.7 (overlap, two isomers), 135.07 & 135.03 (two isomers), 134.70 & 134.68 (two

isomers), 130.3 (overlap, two isomers), 129.3 (overlap, two isomers), 127.69 & 127.65 (two isomers), 126.5 (overlap, two isomers), 125.18 (q, ${}^{1}J_{C-F} = 278.3 \text{ Hz}$) & 125.15 (q, ${}^{1}J_{C-F} = 278.3 \text{ Hz}$) (two isomers), 119.6 (overlap, two isomers), 52.74 & 52.72 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.8 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) (two isomers), 34.6 (overlap, two isomers), 31.4 (overlap, two isomers), 31.0 & 30.7 (two isomers), 30.3 & 30.1 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.90 (s, one isomer), -64.99 (s, one isomer). The reported data was in accordance with literature. ¹¹

6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-5-(3-(trifluoromethyl)phenyl)hexanenitrile (4v) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v)

as a colorless liquid (48 mg, 65% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 8.6, 2.0 Hz, 2H, two isomers), 7.54 (d, J = 3.8 Hz 2H, two isomers), 7.48 (d, J = 3.8 Hz 2H, two5.6 Hz 2H, two isomers), 7.41 (d, J = 8.4 Hz, 2H, two isomers), 4.62 (t, J = 7.1 Hz, 1H, two isomers), 3.06 – 2.83 (m, 1H, two isomers), 2.61 – 2.28(m, 2H, two isomers), 2.20 – 1.94 (m, 1H, two isomers), 1.87 – 1.55 (m, 2H, two isomers).¹³C NMR (101 MHz, CDCl₃) δ 197.0 & 196.9 (two isomers), 140.32 & 140.30 (two isomers), 139.34 & 139.29 (two isomers), 134.28 & 134.26 (two isomers), 131.4 (q, ${}^{2}J_{C-F} =$ 32.8 Hz) (overlap, two isomers), 130.21 & 130.20 (two isomers), 130.1 (overlap, two isomers), 129.3 (overlap, two isomers), 125.11 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz})$ & 125.08 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz})$ $_{\rm F}$ = 278.2 Hz) (two isomers), 124.8 (q, $^{3}J_{\rm C-F}$ = 3.6 Hz) (overlap, two isomers), 123.9 (q, ${}^{1}J_{C-F} = 273.6$ Hz) (overlap, two isomers), 119.45 & 119.40 (two isomers), 52.7 (overlap, two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.2$ Hz) & 36.3 (q, ${}^{2}J_{C-F} = 30.1$ Hz) (two isomers), 31.2 & 30.9 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.7 (q, ${}^{3}J_{C-F} = 3.1$ Hz) (two isomers). ${}^{19}F$ NMR (282 MHz, CDCl₃) δ -62.63 (s, one isomer), -62.64 (s, one isomer), -64.8 (s, one isomer), -64.9(s, one isomer). The reported data was in accordance with literature.¹¹

(3-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4w) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (52

mg, 66% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.86 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 7.38 (d, J = 8.4 Hz, 2H, two isomers), 7.27 – 7.22 (m, 3H, two isomers), 7.14 (d, J = 6.9 Hz, 1H, two isomers), 4.50 (t, J = 7.2 Hz, 1H, two isomers), 2.95 – 2.82 (m, 1H, two isomers), 2.60 - 2.23 (m, 3H, two isomers), 1.72 - 1.68 (m, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) & 196.9 & 196.9 (two isomers), 140.3 & 140.23 (two isomers), 140.15 & 140.1 (two isomers), 135.4 (overlap, two isomers), 134.34 & 134.31 (two isomers), 130.8 (overlap, two isomers), 130.2 (overlap, two isomers), 129.20 (overlap, two isomers), 128.15 (overlap, two isomers), 128.2 (overlap, two isomers), 126.3 & 126.2 (two isomers), 125.13 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz}$) & 125.10 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz}$) (two isomers), 119.5 & 119.4 (two isomers), 52.72 & 52.70 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) (two isomers), 31.0 & 30.8 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.7 (q, ${}^{3}J_{C-F} = 2.9$ Hz) (two isomers). ${}^{19}F$ NMR (282 MHz, CDCl₃) δ -64.88 (s, one isomer), -64.94 (s, one isomer). The reported data was in accordance with literature. ¹¹

(4-chlorophenyl)-6-oxo-5-(m-tolyl)-2-(2,2,2-

trifluoroethyl)hexanenitrile (4x) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid

(50 mg, 60% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.90 (dd, J = 8.6, 1.7 Hz,2H, two isomers), 7.38 (d, J = 8.4 Hz, 2H, two isomers), 7.24 (t, J = 7.8 Hz, 1H, two isomers), 7.07 (d, J = 8.0 Hz, 3H, two isomers), 4.46 (t, J = 7.0 Hz, 1H, two isomers), 2.93 - 2.78 (m, 1H, two isomers), 2.58 - 2.44 (m, 1H, two isomers), 2.42 - 2.32 (m, 1H, two isomers), 2.31 (s, 3H, two isomers), 2.30 – 2.19 (m, 1H, two isomers), 2.12 – 1.98 (m, 1H, two isomers), 1.81 – 1.69 (m, 2H, two isomers), ¹³C NMR (101 MHz,

CDCl₃) δ 197.58 & 197.51 (two isomers), 139.72 & 139.70 (two isomers), 139.37 (overlap, two isomers), 138.24 & 138.18 (two isomers), 134.66 & 134.64 (two isomers), 130.3 (overlap, two isomers), 129.4 (overlap, two isomers), 128.7 (overlap, two isomers), 128.6 (overlap, two isomers), 128.56 & 128.54 (two isomers), 125.27 & 125.21 (two isomers), 125.10 (q, ${}^{1}J_{C-F} = 278.2 \text{ Hz}$) & 125.07 (q, ${}^{1}J_{C-F} = 278.3 \text{ Hz}$) (two isomers), 119.6 & 119.5 (two isomers), 53.26 & 53.23(two isomers), 36.3 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) & 36.2 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) (two isomers), 30.14 & 30.11 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) & 25.7 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) (two isomers), 21.5 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ - 64.93 (s, one isomer), -64.97(s, one isomer). The reported data was in accordance with literature. ¹¹

(2-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4y) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid

(53.6 mg, 67% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 2H, two isomers), 7.37 (d, J = 7.2 Hz, 1H, two isomers), 7.33 (d, J = 6 Hz, 2H, two isomers), 7.17-6.91 (m, 3H, two isomers), 4.95(t, J = 6.8 Hz, 1H, two isomers), 2.94 – 2.75 (m, 1H, two isomers), 2.59 – 2.16 (m, 3H, two isomers), 2.11 – 2.43 (m, 3H, two isomers), ¹³C NMR (101 MHz, CDCl₃) δ 197.36 & 197.2 (two isomers), 140.05 & 140.03 (two isomers), 136.3 & 136.2 (two isomers), 134.2 (overlap, two isomers), 133.4 (overlap, two isomers), 130.42 & 130.41 (two isomers), 130.1 (overlap, two isomers), 129.23 & 129.20 (two isomers), 128.7 & 128.6 (two isomers), 128.10 & 128.08 (two isomers), 125.17 (q, ¹J_{C-F} = 278.5 Hz) & 125.14 (q, ¹J_{C-F} = 278.6 Hz) (two isomers), 119.49 & 119.45 (two isomers), 48.8 & 48.7 (two isomers), 36.5 (q, ²J_{C-F} = 30.3 Hz) & 36.3 (q, ²J_{C-F} = 30.1 Hz) (two isomers), 30.4 & 30.1 (two isomers), 29.9 & 29.8 (two isomers), 25.8 (q, ³J_{C-F} = 3.0 Hz) & 25.7 (q, ³J_{C-F} = 2.9 Hz) (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.92 (s, one isomer), -64.97 (s, one isomer). The reported data was in accordance with literature. ¹¹

(4-chlorophenyl)-6-oxo-5-(o-tolyl)-2-(2,2,2-

trifluoroethyl)hexanenitrile (4z) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (52 mg, 67%)

yield, *dr* = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 2H, two isomers), 7.35 (d, *J* = 8.5 Hz, 2H, two isomers), 7.32-7.05 (m, 3H, two isomers), 6.95 (ddd, *J* = 7.6, 3.7, 1.5 Hz, 1H, two isomers), 4.70 – 4.59 (m, 1H, two isomers), 2.92 – 2.84 (m, 1H, two isomers), 2.61-2.24 (m, 5H, two isomers), 2.10 – 1.60(m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.3 & 198.2 (two isomers), 139.6 & 139.5 (two isomers), 137.15 (overlap, two isomers), 137.08 (overlap, two isomers), 134.84 & 134.78 (two isomers), 131.6 (overlap, two isomers), 129.94 & 129.93 (two isomers), 129.0 (overlap, two isomers), 127.7 (overlap, two isomers), 127.3 (overlap, two isomers), 127.3 & 127.2 (two isomers), 125.21 (q, ¹*J*_{C-F} = 278.2 Hz) & 125.16 (q, ¹*J*_{C-F} = 278.2 Hz) (two isomers), 119.7 & 119.5 (two isomers), 49.7 & 49.4 (two isomers), 36.4 (q, ²*J*_{C-F} = 30.0 Hz) & 36.2 (q, ²*J*_{C-F} = 30.0 Hz) (two isomers), 30.5 & 30.4 (two isomers), 30.1 & 29.9 (two isomers), 26.0 (q, ³*J*_{C-F} = 3.0 Hz) & 25.7 (q, ³*J*_{C-F} = 3.0 Hz) (two isomers), 19.88 & 19.86(two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ¹¹

Ethyl-7-(4-bromophenyl)-8-(4-chlorophenyl)-4cyano-2,2-difluoro-8-oxooctanoate (4aa) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v)

as a yellow liquid (59 mg, 58% yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.86 (dd, J = 8.6, 1.8 Hz, 2H, two isomers), 7.47 (d, J = 8.3 Hz, 2H, two isomers), 7.39 (d, J = 8.4 Hz, 2H, two isomers), 7.21-7.11 (m, 2H, two isomers), 4.49 (t, J = 7.2 Hz, 1H, two isomers), 4.43 – 4.31 (m, 2H, two isomers), 2.98 – 2.84 (m, 1H, two isomers), 2.72 – 1.91(m, 1H, two isomers), 1.79-1.68(m, 5H, two isomers) 1.34 (m, 3H, two isomers).

¹³C NMR (101 MHz, CDCl₃) δ 197.2 & 197.1 (two isomers), 163.1 (t, ${}^{2}J_{C-F} = 32.0$ Hz) (overlap, two isomers), 140.03 & 140.02 (two isomers), 137.36 & 137.30 (two isomers), 134.40 & 134.39 (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), 129.81 & 129.78 (two isomers), 129.2 (overlap, two isomers), 121.9 (overlap, two isomers), 120.1 (overlap, two isomers), 114.4 (t, ${}^{1}J_{C-F} = 254.1$ Hz) (overlap, two isomers), 63.8 (overlap, two isomers), 52.6 (overlap, two isomers), 36.8 (t, ${}^{2}J_{C-F} = 24.1$ Hz) & 36.7 (t, ${}^{2}J_{C-F} = 24.4$ Hz) (two isomers), 30.9 & 30.8 (two isomers), 30.6 & 30.5 (two isomers), 25.09 (t, ${}^{3}J_{C-F} = 8.7$ Hz) & 25.05 (t, ${}^{3}J_{C-F} = 8.0$ Hz) (two isomers), 14.0 (overlap, two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -104.3 (d, J = 36.8 Hz, one isomer), -104.71 (d, J = 36.1 Hz, one isomer), -105.72 (d, J = 15.3 Hz, one isomer), -106.45 (d, J = 14.6 Hz, one isomer). The reported data was in accordance with literature. ¹¹

5-(4-bromophenyl)-2-(2,2-difluoroethyl)-6-oxo-6-(p-tolyl)hexanenitrile (4ab) The

title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (41 mg, 50% yield, dr =1:1). ¹H NMR (300 MHz, 5CDCl₃) δ 7.84 (dd, J = 8.3, 1.8

Hz, 2H, two isomers), 7.45(d, J = 8.4 Hz, 2H, two isomers), 7.25-7.14 (m, 4H, two isomers), 6.22-5.77 (m, 1H, two isomers), 4.54 (t, J = 7.2 Hz, 1H, two isomers), 2.90-2.71 (m, 1H, two isomers), 2.47 – 1.92 (m, 5H, two isomers), 1.81-1.52 (m, 2H, two isomers), ¹³C NMR (75 MHz, CDCl₃) δ 197.8 (two isomers), 144.4 (two isomers), 137.8 (overlap, two isomers), 133.50 & 133.47 (overlap, two isomers), 132.3 (overlap, two isomers), 129.74 & 129.69 (overlap, two isomers), 129.4 (two isomers), 128.8 (overlap, two isomers), 121.53(overlap, two isomers), 114.7 (${}^{1}J_{C-F} = 232$ Hz, two isomers), 52.1 (overlap, two isomers), 36.3 (overlap, two isomers), 31.0 (q, ${}^{2}J_{C-F} = 27$ Hz) 25.3 (two isomers). 21.6 (overlap, two isomers), ¹⁹F NMR (282 MHz, CDCl₃) δ -115.7 (d, J = 49.6 Hz, one isomer), -116.7 (d, J = 50.1 Hz, one isomer), -117.1 (d, J = 20.4 Hz, one isomer), -118.1 (d, J = 20.9 Hz, one isomer). HRMS (ESI) calcd. for C₂₁H₂₁BrF₂NO [M+H]⁺: 420.0770, 422.0749; found: 420.0750, 422.0660.

5-(4-bromophenyl)-2-(2-fluoroethyl)-6-oxo-6-(p-

tolyl)hexanenitrile(4ac)The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid(49 mg, 62%) yield, dr = 1:1) ¹H NMR (300 MHz, CDCl₃) δ 7.84 (dd, J = 8.3, 1.8 Hz, 2H, two isomers), 7.45 (d, J = 8.4 Hz, 2H, two isomers), 7.25-7.14 (m, 4H, two isomers, 4.68 (td, J = 5.2, 1.8 Hz, 1H, two isomers), 4.58-4.50 (m, 1H, two isomers), 2.91 - 2.73 (m, 1H, two isomers), 2.47-2.24 (m, 4H, two isomers), 2.15-1.82 (m, 2H, two isomers), 1.77-1.51 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.0 (overlap, two isomers) (two isomers), 144.3 (two isomers), 137.9 (overlap, two isomers), 133.60 & 133.58 (overlap, two isomers), 132.3 (overlap, two isomers), 129.7 (overlap, two isomers), 129.4 (two isomers), 128.8 & 128.1 (overlap, two isomers, 81.5 (${}^{1}J_{C-F} = 258$ Hz,two isomers) & 79.87(${}^{1}J_{C-F}$ = 258 Hz, two isomers), 52.2 & 52.1(overlap, two isomers), 31.2 (overlap, two isomers), 30.9 (overlap, two isomers), 30.1 (${}^{2}J_{C-F} = 36$ Hz, two isomers)) & 29.7 (${}^{2}J_{C-F}$ = 36 Hz, two isomers), 28.1(q, ${}^{3}J_{C-F}$ = 15 Hz, two isomers)) & 27.9 (${}^{3}J_{C-F}$ $_{\rm F}$ = 4Hz, two isomers), 21.6 (overlap, two isomers)¹⁹F NMR (282 MHz, CDCl₃) δ 16.0 (s, one isomer), 15.8 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₂BrFNO [M+H]⁺:402.0869; found: 402.0851.

(5-bromophenyl)-4-(4-chlorophenyl)-4oxobutyl)-4,4,5,5,6,6,7,7,8,8,9,9,9-

The

title

tridecafluorononanenitrile (4ad)

compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (59.4 mg, 42%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 8.7, 2.4 Hz, 2H, two isomers), 7.48 (d, *J* = 8.3 Hz, 2H, two isomers), 7.40 (d, *J* = 8.5 Hz, 2H, two isomers), 7.16 (dd, *J* = 8.4, 2.0 Hz, 2H, two isomers), 4.50 (t, *J* = 7.2 Hz, 1H, two isomers), 3.06 – 2.95 (m, 1H, two isomers), 2.62

-2.50 (m, 1H, two isomers), 2.42 - 2.28 (m, 2H, two isomers), 2.14 - 2.04 (m, 1H, two isomers), 1.81 - 1.74 (m, 1H, two isomers), 1.70 - 1.65 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.12 & 197.06 (two isomers), 140.15 & 140.13 (two isomers), 137.28 & 137.24 (two isomers), 134.35 & 134.33 (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), 129.8 & 129.7 (two isomers), 129.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.67 & 119.66 (two isomers), 52.6 & 52.5 (two isomers), 37.7 (overlap, two isomers), 31.0 & 30.8 (two isomers), 30.7 & 30.6 (two isomers), 29.9 (overlap, two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -80.8 (t, J = 7.3 Hz,), -113.1 – -113.7 (m one isomer), -121.78, (s, isomer), -122.85 (s , isomer), -126.14 (, one isomer). The reported data was in accordance with literature. ¹¹

7-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2-tosylethyl)hexanenitrile (4ae) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1,

v/v) as a yellow liquid (78.0 mg, 70%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H, two isomers), 7.79 (dd, J = 8.3, 2.4 Hz, 2H, two isomers), 7.45 (d, J = 8.1 Hz, 2H, two isomers), 7.39 (dd, J = 8.0, 5.7 Hz, 4H, two isomers), 7.14 (d, J = 8.3 Hz, 2H, two isomers), 4.48 (t, J = 7.2 Hz, 1H, two isomers), 3.32 – 3.11 (m, 2H, two isomers), 2.90 – 2.75 (m, 1H, two isomers), 2.48 (s, 3H, two isomers), 2.36 – 1.87 (m, 3H, two isomers), 1.72 – 1.45 (m, 3H, two isomers), 1³C NMR (101 MHz, CDCl₃) δ 197.21 & 197.19 (two isomers), 145.4 (overlap, two isomers), 140.0 & 139.9 (two isomers), 137.4 (overlap, two isomers), 135.79 & 135.77 (two isomers), 134.38 & 134.36 (two isomers), 129.81 & 129.77 (two isomers), 129.1 (overlap, two isomers), 120.47 & 120.46 (two isomers), 53.6 (overlap, two isomers), 52.42 & 52.38 (two isomers), 31.05 & 30.8 (two isomers), 30.6 & 30.5 (two isomers), 30.1 & 29.8 (two isomers), 25.4 & 25.2 (two isomers), 21.8 (overlap, two isomers).

The reported data was in accordance with literature.¹¹

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl-4-(2-(4bromophenyl)-5-cyano-7,7,7-

trifluoroheptanoyl)benzoate (4af) The title compound was obtained according to the general condition (eluent:

petroleum ether / acetone = 20/1, v/v) as a colorless liquid (62.9 mg, 52% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 2H, two isomers), 7.96 (d, J = 8.4 Hz, 2H, two isomers), 7.57-7.41 (m, 2H, two isomers), 7.18-7.13 (m, 2H, two isomers), 4.94 (tdd, J = 10.8, 4.2, 1.8 Hz, 1H, two isomers), 4.55 (t, J = 7.1 Hz, 1H, two isomers), 3.00 – 2.81 (m, 1H, two isomers), 2.58 – 2.45 (m, 2H, two isomers), 2.43 – 2.26 (m, 2H, two isomers), 2.21 - 1.84 (m, 2H, two isomers), 1.85 - 1.48 (m, 2H, two isomers), 1.77 - 1.69 (m, 5H, two isomers), 1.20 - 1.07 (m, 2H, two isomers), 0.92 (t, J = 6.2 Hz, 6H, two isomers), 0.78 (d, J = 6.9 Hz, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.9 & 197.8 (two isomers), 165.0 (overlap, two isomers), 139.1 & 139.0 (two isomers), 137.1 & 137.0 (two isomers), 134.9 (overlap, two isomers), 132.7 (overlap, two isomers), 130.0 (overlap, two isomers), 129.85 & 129.81 (two isomers), 128.68 & 128.66 (two isomers), 125.13 (q, ${}^{1}J_{C-F} = 278.0 \text{ Hz}$) & 125.11 (q, ${}^{1}J_{C-F} = 278.1 \text{ Hz}$) (two isomers), 122.0 (overlap, two isomers), 119.5 & 119.4 (two isomers), 75.68 (overlap, two isomers), 52.88 & 52.83 (two isomers), 47.32 & 47.31 (two isomers), 41.0 (overlap, two isomers), 36.4 (q, ${}^{2}J_{C-F}$ = 30.0 Hz) & 36.3 (q, ${}^{2}J_{C-F} = 29.9$ Hz) (two isomers), 34.3 (overlap, two isomers), 31.6 (overlap, two isomers), 30.58 & 30.54 (two isomers), 30.1 (overlap, two isomers), 29.9 (overlap, two isomers), 26.7 & 26.6 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 2.9 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} =$ 2.8 Hz) (two isomers), 23.7 & 23.6 (two isomers), 22.1 (overlap, two isomers), 20.88 & 20.84 (two isomers), 16.63 & 16.60 (two isomers).¹⁹F NMR (376 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for C₃₁H₃₆BrF₃NO₃ [M+H]⁺: 606.1826, 608.1805; found: 606.1823, 608.1818.

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.

- 2. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 3. Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- 4. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 5. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
- 6. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.
- 7. R. Bauernschmitt, R. Ahlrichs, J. Chem. Phys. 1996, 104, 9047.
- 8. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- 9. C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
- 10. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
- 11. J.Wang, J.Feng and D. Du, Chem. Commun., 2023,59, 5395-5398.

7. Copies of NMR spectra

4a ¹H NMR (300 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4a¹⁹F NMR (282 MHz, Chloroform-d)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4b ¹⁹F NMR (282 MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

4c¹⁹F NMR (282 MHz, Chloroform-*d*)

4d¹⁹F NMR (376 MHz, Chloroform-d)

`

4e¹⁹F NMR (282 MHz, Chloroform-d)

4f¹⁹F NMR (282 MHz, Chloroform-*d*)

4g ¹H NMR (300 MHz, Chloroform-*d*)/¹³C NMR (101 MHz, Chloroform-*d*)

4g¹⁹F NMR (282 MHz, Chloroform-d)

4h ¹⁹F NMR (282 MHz, Chloroform-*d*)

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 f1 (ppm)

4i¹H NMR (300 MHz, Chloroform-*d*)/¹³C NMR (101 MHz, Chloroform-*d*)

4i¹⁹F NMR (376 MHz, Chloroform-d)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4j ¹H NMR (300 MHz, Chloroform-*d*)/¹³C NMR (101 MHz, Chloroform-*d*)

4j¹⁹F NMR (282 MHz, Chloroform-d)

4k¹⁹F NMR (282 MHz, Chloroform-d)

 $\frac{1}{70}$ fl (ppm)

4l¹⁹F NMR (282 MHz, Chloroform-*d*)

¹³C NMR (101 MHz, Chloroform-d)

4m¹⁹F NMR (282 MHz, Chloroform-*d*)

 $\left< \frac{-64.9032}{-64.9701} \right.$

-10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 fl (ppm)

4n¹⁹F NMR (376 MHz, Chloroform-*d*)

¹³C NMR (75 MHz, Chloroform-d)

40¹⁹F NMR (282 MHz, Chloroform-d)

4p¹⁹F NMR (282 MHz, Chloroform-*d*)

4q¹⁹F NMR (282 MHz, Chloroform-*d*)

4r¹⁹F NMR (282 MHz, Chloroform-*d*)

S105

4s¹⁹F NMR (282 MHz, Chloroform-*d*)

S107

4t¹⁹F NMR (376 MHz, Chloroform-d)

-48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 fl (ppm)

4u¹⁹F NMR (282MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹³C NMR (101 MHz, Chloroform-*d*)

4v¹⁹F NMR (376 MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

S113

4w¹⁹F NMR (282 MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

4x¹⁹F NMR (282 MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

4y¹⁹F NMR (282MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

4z¹³C NMR (101 MHz, Chloroform-*d*)

4z¹⁹F NMR (282 MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

4aa¹H NMR (400 MHz, Chloroform-d)

4aa¹⁹F NMR (282 MHz, Chloroform-d)

-

4ab ¹³C (75 MHz, Chloroform-d)

4ab¹⁹F NMR (376 MHz, Chloroform-d)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4ac ¹⁹F NMR (282 MHz, Chloroform-d)

17.0 16.9 16.8 16.7 16.6 16.5 16.4 16.3 16.2 16.1 16.0 15.9 15.8 15.7 15.6 15.5 15.4 15.3 15.2 15.1 15.0 14.9 fl (ppm)

4ad¹H NMR (300 MHz, Chloroform-*d*)/¹³C NMR (101 MHz, Chloroform-*d*) 7.8859 -7.8793 7.8728 7.8576 7.4108 7.8500 7.4956 7.4895 7.4661 7.3840 2.2601 -2.2470 -2.0723 1.7704 1.7552 1.7297 1.7134 1.6720

4ad ¹³C NMR (101 MHz, Chloroform-d)

110 100 f1 (ppm) 20 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30

4ad ¹⁹F NMR (282 MHz, Chloroform-d)

-80.7592 -80.7853 -80.8116	[-113.1239 [-113.3596	-113.4004 -113.4379	-113.4709	^L -113.5123 ^L -113.5496					121.7879	122.8561	-123.3989	L-126.1275	
----------------------------------	--------------------------	------------------------	-----------	--	--	--	--	--	----------	----------	-----------	------------	--

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

4af ¹H NMR (300 MHz, Chloroform-*d*)/¹³C NMR (101 MHz, Chloroform-*d*)

197.92

197.92

197.92

197.92

197.92

197.92

197.93

197.92

197.92

197.92

197.93

197.92

197.92

197.92

197.92

197.92

197.92

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

197.95

19

4af ¹⁹F NMR (282MHz, Chloroform-*d*)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3aa ¹H NMR (300 MHz, Deuterium oxide)/¹⁹F NMR (282M, Deuterium oxide)

5¹³C NMR (101 MHz, Chloroform-*d*)

6¹³C (75 MHz, Dimethyl sulfoxide-d6)

