Dual Visible-Light and NHC-Catalyzed Relay Trifunctionalization of Unactivated Alkenes

Jianquan Feng, ${ }^{\text {a }}$ Luning Li, ${ }^{a}$ Jingyi Wang, ${ }^{\text {a }}$ aoting, Ni, ${ }^{\text {a }}$ Zexuan Wei, ${ }^{a}$ Ding Du*a, Jie Feng, ${ }^{* a}$ State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China

Email:1020162519@cpu.edu.cn(J.Feng); ddmn9999@cpu.edu.cn (D. Du)

Supporting Information

Table of contents

1. General methods S2
2. General procedure for radical trifunctionalization of hexenenitriles S2
3. DFT calculations for activating energy -S3
4. DFT calculations for transition state- S20
5. Characterization of the products S41
6. Copies of NMR spectra S56

1. General methods

All reactions were carried out in dry glassware and were monitored by analytical thin layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 400 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz or 101 MHz for ${ }^{13} \mathrm{C}$ respectively. Chemical shifts (δ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl_{3} in $\left.\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}\right)$. The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for ESI^{+}.

2. General procedure for synthesis of sodium sulfinate

Sodium trifluoromethanesulfinate, Sodium difluoromethanesulfinate and Sodium fluoromethanesulfinate were commercially available. Other sodium sulfinates 3aa, 3ad and 3ae were synthesized according to the following procedures.

Iodoalkanes (1 mmol 1 equiv.) was dissolved into $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ in a round bottomed flask. The solid $\mathrm{NaHCO}_{3}(164 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(435 \mathrm{mg}, 2.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(2$ mL) was added to the reaction mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. When the reaction was finished (monitored via TLC). The reaction mixture was then extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$. The obtaining organic phase was dried over anhydrous MgSO_{4} and concentrated to afford solids. The solid was dried at $30-40^{\circ} \mathrm{C}$ in vacuum to yield the relative sodium sulfinate. The sodium sulfinate was used without any other purification.

The title compound was obtained according to the general condition ($178.0 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.53(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta-103.8,-104.8,-105.6,-106.6$.

1,1,2,2,3,3,4,4,5,5,5-undecafluoropentane-1-sulfinate sodium (3ad)
The title compound was obtained according to the general condition ($337.0 \mathrm{mg}, 95 \%$ yield, ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta-82.1,-123.0-123.5,-127.1,-130.8$.

tosylmethanesulfinate sodium(3ae). The title compound was obtained according to the general condition ($205 \mathrm{mg}, 85 \%$ yield) ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 146.2,136.9,130.1,126.9,46.2,18.77$

3. General procedure for radical trifunctionalization of hexenenitriles

To a reaction tube (5 mL) quipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added acid ($0.2 \mathrm{mmol}, 1.0$ equiv.), CDI ($0.2 \mathrm{mmol}, 1.0$ equiv.), DCE 1 mL . The mixture was stirred at room temperature for 2 hours. To another quartz tube (10 mL) equipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added NHCA ($9.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.), sodium sulfite 1 ($0.4 \mathrm{mmol}, 2.0$ equiv.). The mixture wa charged with the in-situ prepared acylazole via springe. Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (1 mL), hexenenitrile 3 ($0.2 \mathrm{mmol}, 1.0$ equiv.) were added under the protection of nitrogen. The reaction was stirred at Blue LEDs for 24 hours. The reaction mixture was concentrated under reduced
pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 20/1 to 15/1) to afford the desired products 4.

4. Procedure for reduction of product 4a to produce compound 5

To an oven-dried reaction tube (10 mL) equipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added $\mathbf{4 a}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(69.6 \mathrm{mg}, 0.4$ mmol, 2.0 equiv.). Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry THF (4 mL) was added, The reaction was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 10-12 hours. The reaction mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 15/1) to afford the desired product 5 in 83% yield.

5-(4-bromophenyl)-6-(4-chlorophenyl)-6-hydroxy-2-
(2,2,2-trifluoroethyl)hexanenitrile(5)The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=10 / 1, \mathrm{v} / \mathrm{v}$) as a white liquid ($76.0 \mathrm{mg}, 83 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 7.33-7.27 (m, 4H, two isomers), 7.21-7.08 (m, 2 H , two isomers), 7.07-6.97 (m, 2 H , two isomers), 4.75 (dd, $J=18.7,6.8 \mathrm{~Hz} 1 \mathrm{H}$, two isomers), $3.00-2.55$ (m, 2H, two isomers), 2.52-2.28 (m, 1H, two isomers), 2.20-2.11 (m, 2H, two isomers), 1.96-1.70 $(\mathrm{m}, 2 \mathrm{H}$, two isomers), $1.67-1.58(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.56-1.34(\mathrm{~m}, 2 \mathrm{H}$,two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5$ (overlap, two isomers), 138.4 \& 138.3 (two isomers), $133.7 \& 133.68$ (two isomers), $131.9 \& 131.78$ (two isomers), $130.6 \&$ 130.5 (overlap, two isomers), $128.6 \& 128.5$ (overlap, two isomers), $128.0 \& 127.90$ (overlap, two isomers), $130.4 \& 130.34$ (two isomers), $129.1 \& 129.0$ (two isomers), $126.67\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=282.6 \mathrm{~Hz}\right) \& 126.65\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=282.6 \mathrm{~Hz}\right.$) (two isomers), 121.3 \& 121.28 (overlap, two isomers), 52.9 \& 52.7 (two isomers), , 36.4 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}$) \& $36.1\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}\right.$) (two isomers), 36.3 \& 36.25 (overlap, two isomers), 30.1 \& 30.0 (overlap, two isomers), 29.72 (overlap, two isomers), $29.01 \& 28.93$ (two isomers), 26.29 (overlap, two isomers), 25.7 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$) \& 25.6 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0$ Hz) (two isomers), 22.72 (two isomers), 14.1 (two isomers). HRMS (ESI) calcd. for
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 460.0286,462.0265$; found: 460.0240, 462.0230 .

5. Procedure for hydrolysis of product 4a to produce compound 6

To a tube were added $\mathbf{4 a}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $1 \mathrm{mLHOAc}, 1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 1.5$ $\mathrm{mL} 98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction was stirred at $120^{\circ} \mathrm{C}$ for 24 hours. Quenching reaction of saturated sodium bicarbonate. The reaction mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}. After concentration, and dryness, the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 15/1) to afford the desired product 6 in the yield 75%.

5-5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanamide(6) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=5 / 1, \mathrm{v} / \mathrm{v})$ as a white soild $(67.0$ $\mathrm{mg}, 75 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) δ 8.02 (dd, $J=8.7,2.4 \mathrm{~Hz}$, two isomers), $7.57-7.42$ ($\mathrm{m}, 4 \mathrm{H}$, two isomers), 7.26 (dd, $J=8.5$, 2.4 Hz , two isomers), 4.84-4.78 ($\mathrm{m}, 1 \mathrm{H}$,two isomers), 2.67-2.49 ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 2.28-2.18 (m, 1 H , two isomers), 2.12-2.94 ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 1.81-1.69 (m, 2H, two isomers), $1.59-1.23$ ($\mathrm{m}, 2 \mathrm{H}$,two isomers). ${ }^{13} \mathrm{C}(75 \mathrm{MHz}$, DMSO-d6) $\delta 199.0$ \& 198.9 (two isomers), 179.6 \& 179.5 (overlap, two isomers), $139.2 \& 138.9$ (two isomers), 138.78 (two isomers), 138.74 (two isomers), $135.1 \& 134.9$ (overlap, two isomers), 135.0 (overlap, two isomers), $132.1 \& 132.08$ (overlap, two isomers), 130.9 \& 130.8 (two isomers), 129.78 \& 129.38 (two isomers), 124.69 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=266.6 \mathrm{~Hz}$), 120.6 (overlap, two isomers), 119.95 \& 119.87 (two isomers), $51.7 \& 51.6$ (overlap, two isomers), $42.79 \& 42.2$ (overlap, two isomers) 36.4 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=35.0 \mathrm{~Hz}$) (two isomers), 30.88 (overlap, two isomers), 30.19 (overlap, two isomers), 26.80 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=$ 3.3 Hz) HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 476.0235,478.0214$; found: 476.0240, 478.0220.

6. Procedure for synthesis of hydrazone 7

To an oven-dried reaction tube $(10 \mathrm{~mL})$ equipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added $4 \mathrm{a}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ and 3,5-Dimethylphenylhydrazine hydrochloride ($68 \mathrm{mg}, 0.42 \mathrm{mmol} 2.0$ equiv.), triethylamine ($40 \mathrm{mg}, 0.42 \mathrm{mmol} 2.0$ equiv.) and $\mathrm{EtOH}(4 \mathrm{~mL})$. Then, the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 8 hours. The reaction mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from $15 / 1$) to afford the desired product 7 in the yield of 80%.

6-(4-bromophenyl)-6-(4-chlorophenyl)-6-(2-(3,5-dimethylphenyl)hydrazineylidene)-2-(2,2,2trifluoroethyl)hexanenitrile (7) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a white solid $(57.0$ $\mathrm{mg}, 54 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (dd, $\mathrm{J}=8.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.48-7.40 (m, 4H, two isomers), 7.33(dd, $J=$ $8.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.04 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 6.82 ($\mathrm{s}, 1 \mathrm{H}$, two isomers), 3.11 (td, $J=12.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.91 (ddd, $\mathrm{J}=12.9,11.1,4.9 \mathrm{~Hz}$, 1 H , two isomers), $2.75-2.62(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.62-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.42 (d, $J=2.5 \mathrm{~Hz}, 3 \mathrm{H}$,two isomers), 2.33 (ddt, $J=19.4,9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}$,two isomers), 2.02 (d, $J=8.3 \mathrm{~Hz}, 3 \mathrm{H}$,two isomers), 1.68 (s, 1 H ,two isomers), $1.21-0.86$ ($\mathrm{m}, 2 \mathrm{H}$,two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 178.8$ \& 178.7 (two isomers), 154.7 \& 154.6 (overlap, two isomers), 139.4 \& 139.3 (two isomers), 139.2 (two isomers), 137.4 (two isomers), 137.0 (overlap, two isomers), 132.7 (overlap, two isomers), 132.6 (overlap, two isomers), $130.44 \& 130.34$ (two isomers), 130.16 (two isomers), 129.32 \& 129.15 (two isomers), $124.67\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right) \& 124.65\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right)$ (two isomers), 121.6 (overlap, two isomers), $119.95 \& 119.87$ (two isomers), 119.12 \& 119.00 (two isomers) 63.95 (overlap, two isomers), 36.4 (q, ${ }^{2} J_{\text {C-F }}=30.3 \mathrm{~Hz}$) \& $36.1\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}\right) \quad$ (two isomers), $36.3 \quad \& 36.25$ (overlap, two isomers), 28.92 (overlap, two isomers), 28.20 (overlap, two isomers), 26.57(two isomers), 26.29 (overlap, two isomers), $25.7\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$) (two isomers), $21.42 \& 21.40$ (two isomers), $17.27 \& 17.22$ (two isomers) HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{BrClF}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 576.1024,578.1004$; found: 576.1056, 578.1000.

7. Radical trapping experiment

To a reaction tube (5 mL) quipped with a Teflon® stir bar and fitted with a rubber septum were added acid ($0.2 \mathrm{mmol}, 1.0$ equiv.), CDI ($0.2 \mathrm{mmol}, 1.0$ equiv.), DCE 1 mL . The mixture was stirred at room temperature for 4 hours.

To another quartz tube (10 mL) equipped with a Teflon® stir bar and fitted with a rubber septum were added NHC-A ($9.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (130 mg , $0.4 \mathrm{mmol}, 2.0$ equiv.), sodium sulfite $\mathbf{1}$ ($0.4 \mathrm{mmol}, 2.0$ equiv.). The mixture wa charged with the in-situ prepared acylazole via springe. Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (1 mL), hexenenitrile 3 ($0.2 \mathrm{mmol}, 1.0$ equiv.) TEMPO (0.6 mmol 3 equiv.) were added under the protection of nitrogen. The reaction was stirred at Blue LEDs for 24 hours. The resulting crude material was tested by LC-MS. 2,2,6,6-tetramethyl-1(trifluoromethoxy)piperidine was tracked by LC-Ms. No product was observed.

8. DFT calculations for activating energy

R6
R7 R8
R9

Figure 1. Gibbs free energy activating energy of different radicals(kcal/mol)
We calculated different radical species additions with $\mathbf{S 1}$. All of the transition states are similar to ${ }^{2} \mathrm{TS} 1$ in Figure 1 and calculated in same level (PCMSMD(dichloroethane)-(U)M06-2X/def2TZVP).

Table 1. thermal correction to Gibbs free energy (G_{0}, hartree), single point energies (SP-E, hartree),sum of electronic and thermal free energies (Gc, hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies $\left(\Delta \mathrm{G}, \mathrm{kcal} \mathrm{mol}^{-1}\right)$ of various species with respect to S 1 for radical coupling and radical addition reactions at the PCM-

SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level. IF represents imaginary frequencies $\left(\mathrm{cm}^{-1}\right)$.

Species	G_{0}	SP-E	$\mathrm{G}_{\mathrm{c}}\left(\mathrm{G}_{0}+\mathrm{SP}-\mathrm{E}\right)$
S 1	0.164981	-3093.399738	-3093.234757
r1	0.012226	-1051.045626	-1051.0334
r2	-0.022492	-1418.635734	-1418.658226
r3	0.042326	-117.2025987	-117.1602727
r4	0.074065	-307.0364691	-306.9624041
r5	-0.013958	-337.5969545	-337.6109125
r6	-0.00539	-238.3350136	-238.3404036
r7	0.002373	-139.0726147	-139.0702417
r8	0.009325	-39.82216849	-39.81284349
r9	0.035355	-79.1358502	-79.1004952
r10	0.056325	-505.5379818	-505.4816568

Structure r1			

Structure r2				
cartesian coordinates of stationary point structure $[\AA]$	C Cl Cl Cl	$\begin{gathered} \hline-2.31160000 \\ -1.61650000 \\ -4.00260000 \\ -1.61560000 \end{gathered}$	$\begin{array}{r} 0.39770000 \\ 1.38060000 \\ 0.53710000 \\ -1.14930000 \end{array}$	$\begin{array}{r} \hline 0.17560000 \\ 1.39530000 \\ -0.06590000 \\ -0.06790000 \end{array}$

Structure r3				
cartesian coordinates	C	0.84920000	-0.19230000	-0.01620000
of stationary point	C	2.37160000	-0.19220000	-0.01620000
structure [Å]	C	1.61030000	1.05900000	-0.08690000
	H	0.32180000	-0.54230000	-0.90930000
	H	0.35550000	-0.45620000	0.92490000
	H	2.89900000	-0.54210000	-0.90930000
	H	2.86530000	-0.45600000	0.92480000
	H	1.61030000	1.85870000	-0.82570000

Structure r4				
cartesian coordinates of stationary point structure $[\AA]$	C	-0.08170000	0.89540000	-0.07930000
	O	1.11420000	0.73460000	0.05100000
	O	-0.65440000	2.10800000	-0.11240000
	C	0.22490000	3.22620000	0.01570000
	C	-0.61080000	4.48260000	-0.04440000
	H	0.96940000	3.18880000	-0.79370000
	H	0.77260000	3.14190000	0.96630000
	H	0.03430000	5.36570000	0.05090000
	H	-1.14800000	4.54450000	-1.00040000
	H	-1.34560000	4.49770000	0.77190000
	C	-1.04760000	-0.17960000	-0.21550000
	H	-2.10730000	0.03870000	-0.32980000
	H	-0.68220000	-1.20400000	-0.19990000

Structure r5				
cartesian coordinates	C	-2.25330000	0.47990000	0.03290000
of stationary point	F	-3.56210000	0.50110000	-0.00390000
structure $[\AA]$	F	-1.79700000	1.12510000	1.07700000
	F	-1.79720000	-0.74680000	-0.00380000

Structure r7				
		-1.80597000	1.35107100	-0.12419200
		-1.31026700	1.96901300	-0.87342400
		-2.87424700	1.41610900	0.08428500
cartesian coordinates	C	-1.27720100	0.13941500	0.03968000
of stationary point	H			
structure $[\AA]$	H			

Structure r9	\longrightarrow			
cartesian coordinates	C	-4.16024200	2.19606900	-0.18646600
of stationary point	H	-3.66098100	2.94112300	-0.80706700
structure [A]	H	-5.18632000	2.40158600	0.12083300
	C	-3.58196800	0.83517000	-0.02721200
	H	-2.48279400	0.85928300	0.00125700
	H	-3.93895200	0.34450900	0.89008400
	H	-3.85784900	0.16713800	-0.86605600

Structure r10				
cartesian coordinates of stationary point structure [Å]	C	-1.94267700	1.23214300	-0.08508700
	F	-1.28457600	0.66666000	-1.05372000
	F	-1.26462800	2.14272900	0.55151400
	C	-3.39675100	1.18019000	-0.06769000
	O	-4.03228900	0.46392400	-0.80431900
	O	-3.89640500	1.96497200	0.88160100
	C	-5.32302500	1.93396200	1.03470600
	C	-5.68498400	2.86542800	2.16512600
	H	-5.62984400	0.89746000	1.23670000
	H	-5.78374800	2.23864700	0.08395700
	H	-6.77324400	2.86703800	2.30822800
	H	-5.20993500	2.54188700	3.10075500
	H	-5.36067300	3.89030200	1.94099500

Table 2. thermal correction to Gibbs free energy (G_{0}, hartree), single point energies (SP-E, hartree), sum of electronic and thermal free energies (Gc, hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies $\left(\Delta \mathrm{G}, \mathrm{kcal} \mathrm{mol}^{-1}\right)$ of various species with respect to S 1 for radical coupling and radical addition reactions at the PCM-

SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level. IF represents imaginary frequencies $\left(\mathrm{cm}^{-1}\right)$.

Species	G_{0}	SP-E	$\mathrm{G}_{\mathrm{c}}\left(\mathrm{G}_{0}+\right.$ SP-E $)$	$\Delta \mathrm{G}$	IF
TS1-r1	0.195184	-4144.446762	-4144.251578	10.4	282.73 i
TS1-r2	0.161555	-4512.031559	-4511.870004	14.4	446.64 i
TS1-r3	0.224678	-3210.596043	-3210.371365	14.8	479.35 i
TS1-r4	0.257243	-3400.429793	-3400.17255	15.4	562.19 i
TS1-r5	0.167974	-3430.998087	-3430.830113	9.8	296.19 i
TS1-r6	0.177126	-3331.731329	-3331.554203	13.1	469.28 i
TS1-r7	0.18472	-3232.465663	-3232.280943	15.1	531.72 i
TS1-r8	0.192931	-3133.213832	-3133.020901	16.8	592.82 i
TS1-r9	0.219204	-3172.526101	-3172.306897	17.8	569.51 i
TS1-r10	0.240747	-3598.936076	-3598.695329	13.2	451.95 i

	Br	-4.46080000	0.89920000	0.41820000
	C	1.71490000	0.85140000	-0.13220000
	C	2.10370000	0.93550000	-1.62340000
	H	2.09780000	-0.09790000	0.27390000
	C	3.60760000	0.79810000	-1.86040000
	H	1.56590000	0.12900000	-2.14380000
	H	1.73540000	1.88990000	-2.03230000
	H	4.13190000	1.60430000	-1.31420000
	H	3.96980000	-0.15660000	-1.44730000
	C	3.97130000	0.89810000	-3.30850000
	C	4.74970000	0.00630000	-3.95490000
	H	3.63210000	1.79580000	-3.83810000
	H	4.97340000	0.11690000	-5.01910000
	C	2.37480000	1.92350000	0.62810000
	N	2.89700000	2.77920000	1.19910000
	H	5.03680000	-0.93580000	-3.47770000
	C	6.88230000	0.81500000	-3.27880000
	C	7.94500000	0.21730000	-4.17070000
	F	6.81230000	2.12850000	-3.33720000
	F	6.96260000	0.39660000	-2.02750000
	C	9.38590000	0.42080000	-3.64470000
	F	7.85210000	0.78130000	-5.38350000
	F	7.72940000	-1.10100000	-4.27690000
	C	10.48470000	0.15060000	-4.69460000
	F	9.51440000	1.68590000	-3.22690000
	F	9.58010000	-0.40210000	-2.61160000
	F	11.65830000	0.07120000	-4.09020000
	F	10.24390000	-0.99230000	-5.31970000
	F	10.52350000	1.12940000	-5.58150000

Structure TS1-r2				

	C	-2.02320000	2.00410000	0.02510000
	C	-2.64830000	0.76270000	-0.06560000
	H	-2.40690000	-1.38370000	-0.17240000
	H	0.06970000	-1.26470000	-0.08530000
	H	-0.14120000	3.03400000	0.14680000
	H	-2.61260000	2.92080000	0.06030000
	Br	-4.54200000	0.67490000	-0.13050000
	C	1.65150000	0.92940000	0.00790000
	C	2.18810000	1.00890000	-1.43710000
	H	2.03700000	0.00820000	0.47230000
	C	3.71450000	0.95510000	-1.51870000
	H	1.75200000	0.16360000	-1.99000000
	H	1.81150000	1.93290000	-1.90410000
	H	4.13360000	1.79980000	-0.94090000
	H	4.08610000	0.03040000	-1.04950000
	C	4.20580000	1.04690000	-2.92780000
	C	5.06890000	0.16780000	-3.49560000
	H	3.88600000	1.92400000	-3.50190000
	H	5.31740000	0.23940000	-4.55740000
	C	2.17470000	2.04660000	0.80840000
	N	2.59270000	2.93700000	1.41130000
	H	5.31590000	-0.77140000	-2.99060000
	C	7.15110000	0.91540000	-2.99040000
	Cl	7.25230000	2.50530000	-3.68170000
	Cl	7.22880000	0.89860000	-1.25420000
	Cl	8.19080000	-0.25270000	-3.75140000

Structure TS1-r3			

	H	0.03540000	-1.18430000	0.30090000
	H	-0.17570000	3.07820000	-0.30250000
	H	-2.63990000	2.93200000	-0.49590000
	Br	-4.56310000	0.67860000	-0.34930000
	C	1.61540000	1.00880000	0.06040000
	C	2.22810000	0.94990000	-1.35540000
	H	1.98250000	0.14510000	0.63650000
	C	3.75710000	0.91430000	-1.35780000
	H	1.83080000	0.04590000	-1.84100000
	H	1.86430000	1.81490000	-1.93290000
	H	4.13350000	1.81500000	-0.83910000
	H	4.10940000	0.04240000	-0.78320000
	C	4.31890000	0.86880000	-2.74610000
	C	5.17690000	-0.07860000	-3.19080000
	H	4.05100000	1.70080000	-3.40790000
	H	5.47330000	-0.11060000	-4.24200000
	C	2.08200000	2.20920000	0.77100000
	N	2.45450000	3.16250000	1.30350000
	H	5.36810000	-0.97720000	-2.59680000
	C	7.35240000	0.56610000	-2.74360000
	C	8.27540000	0.05870000	-3.77020000
	C	7.86520000	1.52080000	-3.73560000
	H	7.86940000	-0.55470000	-4.58270000
	H	9.29730000	-0.20580000	-3.47950000
	H	7.18560000	1.86680000	-4.52320000
	H	8.60590000	2.26470000	-3.42520000
	H	7.48070000	0.58040000	-1.66130000

| Structure TS1-r4 | | | |
| :--- | :---: | :---: | :---: | :---: |

Structure TS1-r5				
cartesian coordinates of stationary point structure $[\AA]$	C	-1.88620000	-0.42910000	-0.07230000
	C	-0.49610000	-0.34390000	-0.03930000
	C	0.14450000	0.89700000	0.03030000
	C	-0.62900000	2.06020000	0.06640000
	C	-2.02100000	1.99200000	0.03660000
	C	-2.63670000	0.74460000	-0.03450000
	H	-2.37840000	-1.40080000	-0.12280000
	H	0.09790000	-1.26020000	-0.06640000
	H	-0.14650000	3.03880000	0.12560000
	H	-2.61760000	2.90410000	0.06980000
	Br	-4.53020000	0.64070000	-0.07650000
	C	1.66220000	0.94800000	-0.01470000
	C	2.17900000	1.01760000	-1.46750000
	H	2.06140000	0.03460000	0.45340000
	C	3.70390000	0.97460000	-1.57160000
	H	1.74220000	0.16320000	-2.00570000
	H	1.78740000	1.93350000	-1.93840000
	H	4.12620000	1.82940000	-1.01310000
	H	4.08780000	0.05760000	-1.09680000
	C	4.17230000	1.04580000	-2.99180000
	C	4.96740000	0.12590000	-3.57330000
	H	3.87550000	1.93390000	-3.56150000
	H	5.24730000	0.20440000	-4.62670000
	C	2.18610000	2.07690000	0.76840000
	N	2.60440000	2.97620000	1.35760000
	H	5.21320000	-0.80850000	-3.05860000
	C	7.13170000	0.87330000	-2.91190000
	F	8.10160000	0.01480000	-3.15640000
	F	7.02170000	1.07560000	-1.61420000
	F	7.36520000	2.01250000	-3.52860000

Structure TS1-r6			$\underbrace{9}_{2.30}$	
cartesian coordinates of stationary point structure $[\AA]$	C	-1.85815500	-0.35214700	0.13600000
	C	-0.46841200	-0.25325300	0.13925500
	C	0.16216100	0.98589900	-0.00386200
	C	-0.62112200	2.13361300	-0.15242700
	C	-2.01235200	2.05183300	-0.15663400
	C	-2.61860700	0.80588600	-0.01328600
	H	-2.34490200	-1.32042800	0.25257500
	H	0.13084500	-1.15870400	0.25687800
	H	-0.14501200	3.11104400	-0.25884200
	H	-2.61886300	2.95043800	-0.26869800
	Br	-4.50993600	0.68454600	-0.01759000
	C	1.67849900	1.04520000	-0.07417000
	C	2.17839900	0.90630200	-1.52809500
	H	2.09431100	0.21482100	0.51824500
	C	3.70163900	0.87958500	-1.64899100
	H	1.75240100	-0.02513000	-1.92993600
	H	1.76085400	1.73361100	-2.12399000
	H	4.11215800	1.81166200	-1.21815400
	H	4.11344400	0.05021500	-1.05214500
	C	4.16079300	0.75925200	-3.06943900
	C	5.07501800	-0.14351600	-3.49155200
	H	3.79093300	1.51582100	-3.76998300
	H	5.34416100	-0.21691700	-4.54726900
	C	2.19450300	2.28407300	0.52932300
	N	2.60123600	3.26714300	0.97562000
	H	5.37711400	-0.97094400	-2.84288800
	C	7.03958100	0.88864900	-2.87666700
	H	7.94847700	0.45097800	-3.30929100
	F	6.84156600	2.15230200	-3.22044300
	F	6.96492900	0.76101200	-1.55724600

Structure TS1-r7				
cartesian coordinates of stationary point structure [\AA]	C	-1.86083800	-0.47511900	-0.07336200
	C	-0.47595900	-0.33607600	-0.01868200
	C	0.11599100	0.92897400	0.03902700
	C	-0.70166900	2.06205100	0.03856800
	C	-2.08925200	1.93997700	-0.01461500
	C	-2.65637900	0.66900400	-0.07043000
	H	-2.31741700	-1.46397900	-0.11321000
	H	0.15095000	-1.23038600	-0.01945500
	H	-0.25640800	3.05822600	0.08913200
	H	-2.72282100	2.82688800	-0.01047000
	Br	-4.54213500	0.49147400	-0.13733300
	C	1.63118600	1.03715800	0.02328500
	C	2.17778000	1.08237200	-1.42009700
	H	2.05334800	0.15334900	0.52743800
	C	3.70593900	1.09503400	-1.49423100
	H	1.78516300	0.19835100	-1.94429900
	H	1.76099400	1.96758000	-1.92672200
	H	4.08017600	1.97181100	-0.93528400
	H	4.10720200	0.20037900	-0.99081200
	C	4.20229200	1.14625500	-2.90731900
	C	5.02574700	0.21936500	-3.45740600
	H	3.91332600	2.02394400	-3.49580800
	H	5.26143300	0.24601600	-4.52314700
	C	2.09446900	2.20836200	0.78377400
	N	2.46168300	3.14121100	1.35479600
	H	5.21413400	-0.72707000	-2.94225600
	C	7.21770900	0.65823500	-3.04391700
	H	7.41876300	1.55443600	-3.63556400
	H	7.25676800	0.71550400	-1.95332200
	F	7.78867200	-0.44892500	-3.54088000

Structure TS1-r8				
cartesian coordinates of stationary point structure $[\AA]$	C	-1.90290800	-0.43520500	-0.10523000
	C	-0.51300500	-0.35236000	-0.06202900
	C	0.12878200	0.88563400	0.03555700
	C	-0.64367200	2.04882300	0.08760300
	C	-2.03536400	1.98298400	0.04731700
	C	-2.65266600	0.73807400	-0.04935900
	H	-2.39831700	-1.40342500	-0.17714300
	H	0.07853600	-1.26952900	-0.10342200
	H	-0.15908300	3.02432500	0.16984000
	H	-2.63358800	2.89292400	0.09313000
	Br	-4.54463800	0.63726500	-0.09944500
	C	1.64670100	0.93727900	0.00501200
	C	2.17849500	1.02542700	-1.44187500
	H	2.04068500	0.01696700	0.46455200
	C	3.70494600	0.99939400	-1.53459900
	H	1.75415600	0.17481500	-1.99594500
	H	1.78143500	1.94185500	-1.90719500
	H	4.10913300	1.84681600	-0.95066200
	H	4.08975300	0.07915600	-1.06546200
	C	4.19002300	1.08699600	-2.94940700
	C	5.05263000	0.20210400	-3.51254800
	H	3.87735600	1.96850300	-3.52010400
	H	5.28633600	0.25890900	-4.57693400
	C	2.16166800	2.05580700	0.81037600
	N	2.56866400	2.94844000	1.41757900
	H	5.26385000	-0.74812900	-3.01501100
	C	7.18098700	0.84385200	-3.01561000
	H	7.73519500	0.03487300	-3.49394800
	H	7.22424200	1.82145500	-3.49600500
	H	7.14256200	0.83657400	-1.92579100

Structure TS1-r9				
cartesian coordinates of stationary point structure $[\AA]$	C	-1.92699300	-0.43414800	-0.01695700
	C	-0.54406700	-0.29175400	0.07168500
	C	0.04852000	0.97422100	0.06014400
	C	-0.76635900	2.10456000	-0.04407000
	C	-2.15173600	1.97932600	-0.13260000
	C	-2.71958500	0.70743400	-0.11891300
	H	-2.38421500	-1.42348200	-0.00267100
	H	0.08047300	-1.18413900	0.15215900
	H	-0.32055300	3.10181000	-0.04847500
	H	-2.78307500	2.86451200	-0.20956700
	Br	-4.60269700	0.52626700	-0.23624500
	C	1.56347100	1.08326800	0.08145300
	C	2.14999600	1.04846000	-1.34654500
	H	1.97156000	0.23000100	0.64616200
	C	3.67943900	1.05954000	-1.38115200
	H	1.77144300	0.13608800	-1.83112900
	H	1.74688000	1.90324000	-1.91306700
	H	4.03840400	1.96512000	-0.85857300
	H	4.06712700	0.19414300	-0.81910200
	C	4.21492300	1.03447200	-2.78064600
	C	5.07284300	0.09023600	-3.24843700
	H	3.93878300	1.87601000	-3.42561300
	H	5.33306700	0.05635600	-4.30838200
	C	2.00418800	2.29637500	0.78784800
	N	2.35323900	3.26076100	1.31632800
	H	5.24061900	-0.82688700	-2.67617500
	C	7.21766500	0.64830700	-2.77936600
	H	7.26687000	1.60226900	-3.30966300
	H	7.12951300	0.73767000	-1.69356800
	C	8.00177900	-0.49946500	-3.32703500
	H	9.08716300	-0.36684200	-3.16631400
	H	7.72157900	-1.44811800	-2.84499300
	H	7.85113200	-0.61146600	-4.41128300

Structure TS1-r10				
cartesian coordinates of stationary point structure $[\AA]$	C	-1.84471200	-0.48682200	-0.16919200
	C	-0.45399500	-0.40870300	-0.14490500
	C	0.19201400	0.82178100	0.00445000
	C	-0.57628000	1.98230800	0.12821800
	C	-1.96849400	1.92084900	0.10800000
	C	-2.59043200	0.68339400	-0.04123500
	H	-2.34365300	-1.44934800	-0.28177800
	H	0.13439800	-1.32367900	-0.24171400
	H	-0.08793000	2.95155500	0.25203600
	H	-2.56364400	2.82817900	0.21014300
	Br	-4.48304000	0.58885400	-0.06365800
	C	1.70943800	0.87380900	-0.04691100
	C	2.21762200	1.05152900	-1.49365600
	H	2.10928100	-0.07298100	0.34915100
	C	3.74273000	1.02372800	-1.60563800
	H	1.78098600	0.23970600	-2.09409000
	H	1.82011300	1.99794900	-1.89336500
	H	4.16276000	1.82770500	-0.97409200
	H	4.13342200	0.07261000	-1.21106500
	C	4.21121100	1.22150900	-3.01254700
	C	5.07168800	0.38994600	-3.64899000
	H	3.88251500	2.13650600	-3.51709700
	H	5.32864600	0.54902200	-4.69899200
	C	2.23897100	1.94149100	0.81615400
	N	2.65815800	2.79625500	1.46777600
	H	5.32658000	-0.58160500	-3.21382500
	C	7.05245100	1.18471200	-2.93427000
	F	6.91791200	1.05184600	-1.63306500
	F	7.01696100	2.44514900	-3.30332900
	C	7.99897800	0.27184600	-3.59286800
	O	8.33149200	-0.78327300	-3.11046600
	O	8.31685100	0.70352400	-4.80842800
	C	9.13406100	-0.17478200	-5.59635700
	C	9.37242400	0.48993600	-6.92976500

	H	8.61234600	-1.13734100	-5.69959800
	H	10.07178500	-0.36075100	-5.05351400
	H	9.99823500	-0.15643800	-7.55855500
	H	8.42167300	0.66808700	-7.44962500
	H	9.88660400	1.45099300	-6.79643300

9. DFT calculations for transition state

All density functional theory (DFT) calculations were performed with the Gaussian 16 program package. ${ }^{1}$

Full geometry optimizations were operated to locate all of the stationary points, using (U)M06-2X density functional theory method ${ }^{2-3}$ with def2SVP ${ }^{4}$ basis for all atoms, and a polarized continuum model based on solute electron density (PCM) ${ }^{5-6}$ was employed to simulate the solvent effect of dichloroethane solvent in optimization. The spin-restricted DFT method was used for closed-shell species and the spin-unrestricted DFT method for radical species and open-shell singlet species (OSTS4, OSTS5) with the "guess (mix, always)" keyword. In the meantime, the stability of the density function theory (DFT) wave-function of the auxiliary Kohn-Sham determinant was examined. ${ }^{7}$ Harmonic vibrational frequency calculations were conducted to characterize all stationary point. Herein, minima have zero imaginary frequencies, and transition states have only one imaginary vibrational frequency. Intrinsic reaction coordinate (IRC) calculations ${ }^{8-9}$ were implemented to track minimum energy paths connecting each transition state structure to two corresponding minima. The single point energy calculations of all stationary points were performed at the (U)M06-2X/def2TZVP,SDD level using the PCM-SMD model with dichloroethane as solvent. This theoretical level is denoted as PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP// PCM(dichloroethane)-(U)M06-2X/def2SVP level.

Unless mentioned otherwise, the Gibbs free energy of formation (ΔG) are obtained at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP// PCM(dichloroethane)-(U)M06-2X/def2SVP level . All 3D graphs of molecules are performed by Pymol10. 3D-isosurfaces of TS1 are performed by Multiwfn and VMD.

Figure 1. Gibbs free energy profiles for the NHC-catalyzed CN migration.

Scheme 1 Schematic mechanism for the NHC-catalyzed CN migration. ${ }^{[a]}$

[a] The superscript prefixes ' 1 ', ' 2 ', ' 3 ', and 'OS' are used to indicate the singlet, doublet, triplet, and open-shell species, respectively. Geometries $\backslash{ }^{\text {of }}{ }^{\text {OS }} \mathrm{TS} 4$ and ${ }^{\text {OSTS5, are optimized in the }}$ open-shell singlet. Relative Gibbs free energies ($\Delta \mathrm{G}, \mathrm{kcal} \mathrm{mol}^{-1}$) are relative to species I at the PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level. DFT-Optimized geometries are provided in structure details section below.

Table 1. thermal correction to Gibbs free energy (G_{0}, hartree), single point energies (SP-E, hartree),sum of electronic and thermal free energies (Gc, hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies $\left(\Delta \mathrm{G}, \mathrm{kcal} \mathrm{mol}^{-1}\right)$ of various species with respect to S 1 for radical coupling and radical addition reactions at the PCM-

SMD(dichloroethane)-(U)M06-2X/def2TZVP//PCM(dichloroethane)-(U)M06-2X/def2SVP level. IF represents imaginary frequencies $\left(\mathrm{cm}^{-1}\right)$.

Species	G_{0}	SP-E	$\mathrm{G}_{\mathrm{c}}\left(\mathrm{G}_{0}+\mathrm{SP}-\mathrm{E}\right)$	$\Delta \mathrm{G}$	IF
S1	0.164981	-3093.399738	-3093.234757		
COMA	0.328199	-1512.513655	-1512.185456		
S5	0.536413	-4943.63076	-4943.094347	-39.7	
S7	0.53483	-4943.63621	-4943.10138	-44.1	
TS4	0.530408	-4943.579709	-4943.049301	-11.4	526.42 i
TS5	0.532509	-4943.602961	-4943.070452	-24.7	266.71 i
S2	0.172127	-3431.063105	-3430.890978	-28.4	
S4	0.174191	-3431.079798	-3430.905607	-37.6	
TS2	0.175915	-3431.048013	-3430.872098	-16.6	537.41 i
S3	0.179396	-3431.076483	-3430.897087	-32.3	

TS3	0.177088	-3431.055727	-3430.878639	-20.7	579.15 i
S6	0.259195	-4235.71271	-4235.453515	-64.0	
a2	0.055565	-804.516055	-804.46049		
S8	0.258887	-4235.71384	-4235.454953	-55.8	

Structure Details

Structure S1				
cartesian coordinates of stationary point structure $[\AA ̊]$	C	-1.58740000	-0.43030000	-0.08430000
	C	-0.20450000	-0.28850000	0.00480000
	C	0.38410000	0.97820000	0.05790000
	C	-0.43440000	2.11000000	0.01800000
	C	-1.81980000	1.98520000	-0.07000000
	C	-2.38390000	0.71250000	-0.12090000
	H	-2.04180000	-1.42040000	-0.12020000
	H	0.42320000	-1.18170000	0.03480000
	H	0.00840000	3.10760000	0.06450000
	H	-2.45420000	2.87100000	-0.09660000
	Br	-4.26700000	0.53160000	-0.23610000
	C	1.89900000	1.09020000	0.07980000
	C	2.48060000	1.13290000	-1.34950000
	H	2.31080000	0.20940000	0.59750000
	C	4.00930000	1.15430000	-1.38450000
	H	2.10590000	0.24430000	-1.87930000
	H	2.07070000	2.01350000	-1.86950000
	H	4.36720000	2.03890000	-0.83010000
	H	4.40650000	0.26550000	-0.86900000
	C	4.53440000	1.20520000	-2.78990000
	C	5.30250000	0.27140000	-3.34990000
	H	4.23840000	2.08010000	-3.38100000
	H	5.64900000	0.36190000	-4.38130000
	H	5.61480000	-0.61530000	-2.79060000
	C	2.33950000	2.26570000	0.84740000
	N	2.69020000	3.20180000	1.42340000

Structure a2			
		2.94330000	0.37490000

Structure COMA				

	H	0.26740000	-1.83310000	-0.96020000
	H	0.45150000	0.12200000	-2.40980000
	C	-3.14020000	3.85040000	-1.01130000
	C	-3.60410000	4.30720000	0.23200000
	C	-3.32720000	4.58470000	-2.19220000
	C	-4.35730000	5.48320000	0.25200000
	C	-4.06800000	5.76470000	-2.11680000
	C	-4.62380000	6.20900000	-0.91240000
	H	-4.74630000	5.84200000	1.20860000
	H	-4.24280000	6.33630000	-3.03180000
	C	-3.31360000	3.55950000	1.50550000
	H	-4.05630000	2.76580000	1.68250000
	H	-2.32340000	3.08390000	1.47190000
	H	-3.34510000	4.24410000	2.36250000
	C	-2.78730000	4.08260000	-3.50330000
	H	-1.68860000	4.11560000	-3.51430000
	H	-3.06890000	3.03110000	-3.67020000
	H	-3.16760000	4.68520000	-4.33700000
	C	-5.52210000	7.41640000	-0.87250000
	H	-6.57630000	7.09880000	-0.91370000
	H	-5.38630000	7.98610000	0.05670000
	H	-5.33850000	8.08320000	-1.72490000
	C	-4.34880000	0.93400000	-0.31060000
	O	-4.47480000	-0.18080000	0.25990000
	C	-5.51810000	1.84000000	-0.48990000
	C	-5.72530000	2.58820000	-1.65580000
	C	-6.45410000	1.94080000	0.54890000
	C	-6.78900000	3.47980000	-1.75690000
	H	-5.04070000	2.47760000	-2.49810000
	C	-7.52340000	2.82790000	0.46530000
	H	-6.31620000	1.32740000	1.44130000
	C	-7.66650000	3.60730000	-0.68240000
	H	-6.93610000	4.07680000	-2.65730000
	H	-8.23580000	2.92980000	1.28420000
	Cl	-8.96950000	4.76340000	-0.77840000

Structure S4				
cartesian coordinates of stationary point structure [\AA]	C	4.33390000	0.04890000	0.05210000
	C	3.33700000	-0.88780000	0.33630000
	C	2.00350000	-0.53220000	0.19520000
	C	1.62920000	0.76960000	-0.23330000
	C	2.67360000	1.69140000	-0.51300000
	C	4.00600000	1.34110000	-0.37370000
	H	3.60800000	-1.89100000	0.66620000
	H	1.23520000	-1.27330000	0.41910000
	H	2.41580000	2.69890000	-0.84550000
	H	4.79430000	2.06170000	-0.59270000
	C	0.27150000	1.15360000	-0.38190000
	H	0.06480000	2.17260000	-0.71910000
	C	-0.88030000	0.24520000	-0.10630000
	H	-0.81230000	-0.65250000	-0.74980000
	H	-0.82270000	-0.13640000	0.93070000
	C	-2.22630000	0.92900000	-0.31850000
	H	-2.30970000	1.28370000	-1.35800000
	H	-2.29740000	1.81470000	0.33070000
	C	-3.42770000	0.02500000	0.00180000
	H	-3.34520000	-0.31610000	1.04680000
	C	-4.74770000	0.78780000	-0.16120000
	H	-4.94710000	1.01890000	-1.21660000
	B	6.15380000	-0.43710000	0.24490000
	H	-4.67890000	1.73600000	0.38860000
	C	-5.94050000	0.05080000	0.38950000
	F	-6.17060000	-1.09590000	-0.25650000
	F	-7.04670000	0.78970000	0.29430000
	F	-5.77480000	-0.25520000	1.68140000
	C	-3.38840000	-1.18340000	-0.84050000
	N	-3.31730000	-2.11420000	-1.51790000

Structure S5			
cartesian coordinates			
of stationary point			
structure [Å]			
		-1.14540000	-0.31310000

	C	-4.05100000	1.10150000	-0.07570000
	O	-3.61480000	0.96950000	1.17750000
	C	-5.25910000	2.06070000	-0.21230000
	C	-5.74390000	2.55940000	-1.42600000
	C	-5.88880000	2.45950000	0.96830000
	C	-6.81190000	3.45360000	-1.46480000
	H	-5.25250000	2.30000000	-2.36500000
	C	-6.96430000	3.34610000	0.95310000
	H	-5.48500000	2.07260000	1.90450000
	C	-7.40860000	3.84330000	-0.26860000
	H	-7.16460000	3.86370000	-2.41150000
	H	-7.44610000	3.66510000	1.87770000
	Cl	-8.72140000	4.99440000	-0.30350000
	C	-4.43230000	-0.32390000	-0.67130000
	C	-5.46050000	-0.97470000	0.27750000
	C	-4.92590000	-0.46240000	-2.11800000
	H	-3.51350000	-0.92340000	-0.59830000
	C	-4.80750000	-1.74960000	1.41640000
	H	-6.11150000	-1.65390000	-0.29630000
	H	-6.11940000	-0.19840000	0.69780000
	H	-5.24730000	-1.50330000	-2.26910000
	H	-5.80160000	0.16600000	-2.33170000
	C	-3.90850000	-0.23160000	-3.20180000
	C	-5.82160000	-2.30100000	2.44020000
	H	-4.12610000	-1.06890000	1.94190000
	H	-4.21510000	-2.59190000	1.02150000
	F	-3.55260000	1.05940000	-3.34040000
	F	-2.77200000	-0.90870000	-2.97780000
	F	-4.36790000	-0.62300000	-4.39160000
	C	-5.11970000	-2.99630000	3.59420000
	H	-6.40010000	-1.45290000	2.84070000
	C	-6.79210000	-3.18800000	1.78080000
	C	-4.55980000	-2.21130000	4.60790000
	C	-4.95630000	-4.38230000	3.64290000
	N	-7.53220000	-3.88530000	1.23540000
	C	-3.85100000	-2.79390000	5.65480000
	H	-4.67820000	-1.12580000	4.58140000
	C	-4.24910000	-4.98190000	4.68510000
	H	-5.39020000	-5.01240000	2.86360000
	C	-3.70190000	-4.17990000	5.68250000
	H	-3.42110000	-2.17710000	6.44400000
	H	-4.12740000	-6.06460000	4.71900000
	Br	-2.73980000	-4.98440000	7.10460000

	N	-0.67150000	0.24970000	3.64940000
	C	-4.76750000	-1.40700000	-0.13560000
	H	-3.30310000	-2.84330000	0.50810000
	C	-4.28460000	0.91150000	0.39490000
	H	-2.44780000	1.27470000	1.45060000
	C	-5.11090000	-0.05700000	-0.17060000
	H	-5.42470000	-2.15520000	-0.57880000
	H	-4.56670000	1.96370000	0.36330000
	Br	-6.73160000	0.47140000	-0.99790000

	C	-7.95220000	3.24900000	-0.24390000
	Br	-5.74440000	-3.55040000	-5.76810000
	H	-7.90810000	3.18730000	2.46550000
	H	-6.18440000	3.57680000	2.66060000
	C	-7.38710000	5.20950000	2.09320000
	N	-8.88530000	3.20370000	-0.92080000
	F	-6.38480000	5.95460000	1.61300000
	F	-8.47790000	5.52360000	1.38700000
	F	-7.60360000	5.59950000	3.35100000

Structure S8				
cartesian coordinates of stationary point structure [\AA]	C	0.06360000	0.41670000	1.94230000
	O	-0.11170000	0.48360000	3.13880000
	C	0.03000000	1.66380000	1.10670000
	C	-0.46910000	2.82550000	1.71250000
	C	0.46170000	1.72070000	-0.22510000
	C	-0.55440000	4.01860000	1.00660000
	H	-0.79490000	2.77370000	2.75180000
	C	0.38740000	2.91160000	-0.94280000
	H	0.88250000	0.84340000	-0.71520000
	C	-0.12500000	4.04860000	-0.32110000
	H	-0.94860000	4.92200000	1.47140000
	H	0.72570000	2.96180000	-1.97720000
	Cl	-0.22940000	5.53310000	-1.21470000
	C	0.26740000	-0.95160000	1.28460000
	C	1.68500000	-1.09580000	0.75120000
	C	-0.84230000	-1.26720000	0.27470000
	C	1.96700000	-1.61980000	-0.51410000
	C	2.75640000	-0.70410000	1.56530000
	H	-0.71630000	-0.66610000	-0.63890000
	H	-0.74990000	-2.32260000	-0.02590000
	C	-2.23430000	-1.03080000	0.85160000
	C	3.28240000	-1.74650000	-0.96250000
	H	1.16180000	-1.93630000	-1.17780000
	C	4.07400000	-0.82100000	1.13290000

		$\begin{array}{r} \hline 2.55950000 \\ -2.36080000 \\ -2.37110000 \\ -3.36040000 \\ 4.32590000 \\ 3.48970000 \\ 4.89770000 \\ -3.25970000 \\ -4.73720000 \\ -3.20800000 \\ 6.11500000 \\ -4.94730000 \\ -4.75210000 \\ -5.86630000 \\ -3.04070000 \\ -5.97930000 \\ -7.03390000 \\ -5.69260000 \\ 0.16350000 \end{array}$	-0.30090000 0.02580000 -1.63160000 -1.40050000 -1.34320000 -2.15530000 -0.50970000 -2.46360000 -1.18430000 -0.62530000 -1.50670000 -0.11500000 -1.66640000 -1.78340000 0.00460000 -1.23060000 -1.62020000 -3.09690000 -1.65200000	$\begin{gathered} \hline 2.56170000 \\ 1.14100000 \\ 1.76360000 \\ -0.12820000 \\ -0.13500000 \\ -1.95150000 \\ 1.77530000 \\ -0.40090000 \\ 0.51020000 \\ -1.37230000 \\ -0.73820000 \\ 0.65000000 \\ 1.49690000 \\ -0.28680000 \\ -2.32390000 \\ -1.49810000 \\ 0.33570000 \\ -0.47230000 \\ 2.12840000 \end{gathered}$
Structure TS2				
cartesian coordinates of stationary point structure $[\AA]$	C C C C C C H H H H H C C C	-2.89540000 -1.52620000 -1.03670000 -1.94500000 -3.31890000 -3.78130000 -3.27100000 -0.83140000 -1.57860000 -4.02190000 0.44980000 1.22150000 1.04320000 0.62740000 2.97690000 2.56120000	-0.91560000 -0.73050000 0.35400000 1.25620000 1.08680000 -0.00070000 -1.76540000 -1.45220000 2.10710000 1.79240000 0.60990000 -0.66150000 1.36840000 1.21000000 -0.06880000 1.35400000	$\begin{gathered} -0.55170000 \\ -0.37710000 \\ 0.35790000 \\ 0.91810000 \\ 0.75190000 \\ 0.01510000 \\ -1.12160000 \\ -0.81210000 \\ 1.49630000 \\ 1.19470000 \\ 0.49010000 \\ 0.70870000 \\ -0.70470000 \\ 1.39780000 \\ -0.32030000 \\ -0.53740000 \end{gathered}$

	H	0.63130000	2.38510000	-0.74930000
	H	0.75960000	0.85040000	-1.63480000
	H	2.83650000	-0.73640000	-1.17760000
	H	2.85540000	1.97240000	0.32520000
	H	3.05520000	1.77750000	-1.42780000
	C	4.11300000	-0.43110000	0.58360000
	H	4.05140000	-1.49080000	0.87120000
	H	4.10530000	0.17480000	1.50170000
	C	5.45590000	-0.22090000	-0.07210000
	N	1.32970000	-1.74930000	1.14330000
	Br	5.64660000	-0.24480000	-0.21820000
	F	5.58720000	-0.95120000	-1.18460000
	F	6.46100000	-0.55380000	0.74090000

	C	2.72600000	1.31300000	0.54900000
	H	1.21180000	2.80110000	1.04590000
	H	1.02120000	2.04390000	-0.54650000
	H	2.45550000	-0.00690000	-1.12510000
	H	3.08050000	1.25830000	1.59090000
	H	3.42240000	1.95220000	-0.00760000
	C	3.91710000	-0.95880000	0.13890000
	H	3.76580000	-1.94090000	-0.32850000
	H	4.12820000	-1.12060000	1.20530000
	C	1.14960000	-0.35440000	-0.48180000
	N	-5.42250000	-0.32530000	-0.52520000
	Br	5.58160000	0.72210000	0.18730000
	F	4.93190000	0.03490000	-1.74350000
	F	6.15800000	-1.22800000	-0.50380000

Structure TS4			

	C	-3.26270000	4.01130000	-1.10720000
C	-3.25830000	4.60440000	0.16480000	
C	-4.13790000	4.41800000	-2.12210000	
C	-4.24170000	5.55640000	0.43760000	
C	-5.08710000	5.39200000	-1.80630000	
C	-5.18190000	5.94050000	-0.52390000	
H	-4.27040000	6.01390000	1.42980000	
H	-5.79020000	5.71040000	-2.58000000	
C	-2.23450000	4.23070000	1.20410000	
H	-2.50520000	3.30120000	1.72870000	
H	-1.24560000	4.07580000	0.74880000	
H	-2.14980000	5.02530000	1.95580000	
C	-4.10000000	3.78260000	-3.48440000	
H	-3.07470000	3.73200000	-3.87350000	
H	-4.47310000	2.74710000	-3.44480000	
H	-4.72660000	4.34390000	-4.18810000	
C	-6.28770000	6.89890000	-0.17170000	
H	-7.11530000	6.35220000	0.30780000	
H	-5.94390000	7.66430000	0.53690000	
H	-6.68720000	7.39760000	-1.06430000	
C	-3.11870000	1.15880000	0.37590000	
O	-2.52850000	0.44180000	1.22340000	
C	-4.48000000	1.69750000	0.63250000	
C	-5.36160000	2.09560000	-0.38270000	
C	-4.88860000	1.83710000	1.96630000	
C	-6.58300000	2.68740000	-0.08400000	
H	-5.08110000	1.93250000	-1.42540000	
H	-6.11370000	2.42120000	2.28420000	
H	-4.21110000	1.50270000	2.75470000	
C	-6.94240000	2.86030000	1.25310000	
H	-7.25550000	3.01390000	-0.87760000	
H	-6.42060000	2.55760000	3.32190000	
Cl	-8.45390000	3.63950000	1.63670000	
C	-3.86240000	-0.73990000	-1.28900000	
C	-5.13110000	-1.14780000	-0.59740000	
C	-3.99200000	-0.74830000	-2.78570000	
H	-2.93050000	-1.14210000	-0.87660000	
	-4.96110000	-1.58560000	0.85470000	
H	-5.61090000	-1.97040000	-1.16680000	
	-5.86240000	-0.31760000	-0.64680000	
	-4.17980000	-1.77790000	-3.14880000	
	-0.15240000	-3.116700000	-3.56540000	
	1.62640000			

	H	-4.28470000	-0.90560000	1.38980000
	H	-4.50500000	-2.58800000	0.89790000
	F	-2.64730000	1.07320000	-3.47360000
	F	-1.65300000	-0.80370000	-3.15380000
	F	-2.92550000	-0.53430000	-4.86640000
	C	-6.10730000	-2.06340000	3.06300000
	H	-6.70590000	-0.58580000	1.62810000
	C	-7.28190000	-2.45570000	0.93190000
	C	-5.97580000	-1.11260000	4.07780000
	C	-5.99520000	-3.41950000	3.38420000
	N	-8.02950000	-3.13420000	0.37290000
	C	-5.73420000	-1.50110000	5.39470000
	H	-6.06550000	-0.05130000	3.83840000
	C	-5.75640000	-3.82490000	4.69530000
	H	-6.10320000	-4.17620000	2.60340000
	C	-5.62630000	-2.85770000	5.69030000
	H	-5.63530000	-0.75500000	6.18310000
	H	-5.67420000	-4.88340000	4.94170000

Structure TS5				
cartesian coordinates of stationary point structure $[\AA]$	C	-3.96010000	-2.46780000	2.41040000
	C	-3.45620000	-3.84410000	2.90190000
	C	-2.83170000	-4.54360000	1.67010000
	C	-2.44260000	-3.37030000	0.83290000
	C	-2.76730000	-1.23500000	0.41490000
	H	-5.01730000	-2.48570000	2.10630000
	H	-3.82010000	-1.65160000	3.12430000
	H	-2.68100000	-3.69010000	3.66410000
	H	-1.97990000	-5.18760000	1.91450000
	N	-3.11170000	-2.25180000	1.23810000
	N	-1.66160000	-3.12850000	-0.16970000
	N	-1.84880000	-1.79250000	-0.42250000
	H	-4.26240000	-4.43220000	3.35280000
	H	-3.57020000	-5.14860000	1.12160000
	C	-0.93190000	-1.10160000	-1.27750000
	C	-0.04300000	-0.18010000	-0.70360000
	C	-0.97720000	-1.35090000	-2.65430000
	C	0.74000000	0.58220000	-1.57150000
	C	-0.16340000	-0.57180000	-3.47890000
	C	0.67050000	0.42350000	-2.95980000
	H	1.42510000	1.32170000	-1.14930000
	H	-0.20280000	-0.73130000	-4.55910000
	C	0.06990000	-0.01090000	0.78860000
	H	-0.70950000	0.65870000	1.18410000
	H	-0.02510000	-0.97520000	1.30820000
	H	1.04280000	0.42580000	1.04610000
	C	-1.90080000	-2.39650000	-3.21090000
	H	-1.49740000	-3.40600000	-3.03890000
	H	-2.88020000	-2.36090000	-2.71250000
	H	-2.04800000	-2.26010000	-4.28980000
	C	1.45550000	1.32940000	-3.87000000
	H	0.91700000	2.28090000	-4.00520000
	H	2.44020000	1.56660000	-3.44530000
	H	1.59720000	0.87950000	-4.86090000
	C	-3.23590000	0.13840000	0.61450000
	O	-3.64580000	0.42620000	1.76170000
	C	-2.91190000	1.19770000	-0.37700000
	C	-2.92420000	1.00260000	-1.76550000
	C	-2.57110000	2.46360000	0.12370000

	C	-2.55650000	2.02580000	-2.63310000
	H	-3.24220000	0.04050000	-2.17330000
	C	-2.20030000	3.49710000	-0.73150000
	H	-2.58180000	2.61670000	1.20460000
	C	-2.18680000	3.26380000	-2.10630000
	H	-2.55920000	1.87000000	-3.71220000
	H	-1.92220000	4.47670000	-0.34370000
	Cl	-1.70330000	4.54060000	-3.18690000
	C	-5.51650000	-0.64480000	-0.54010000
	C	-5.39540000	-1.73480000	-1.45640000
	C	-6.01010000	0.68500000	-1.02320000
	H	-5.63000000	-0.87580000	0.52210000
	C	-5.48090000	-1.54560000	-2.86410000
	C	-5.18600000	-3.06880000	-1.01110000
	C	-6.07690000	1.77580000	0.04590000
	H	-5.35570000	1.04180000	-1.83940000
	H	-7.00350000	0.56860000	-1.50110000
	C	-5.33140000	-2.60080000	-3.75520000
	H	-5.67410000	-0.55150000	-3.26860000
	C	-5.01750000	-4.12340000	-1.89490000
	H	-5.18650000	-3.27670000	0.05990000
	H	-7.01750000	1.70980000	0.61540000
	H	-5.25800000	1.65680000	0.76790000
	C	-5.95040000	3.17950000	-0.56930000
	C	-5.07940000	-3.88450000	-3.27140000
	H	-5.39780000	-2.42470000	-4.82950000
	H	-4.85040000	-5.13510000	-1.52240000
	C	-5.85680000	4.25990000	0.51070000
	H	-5.02080000	3.20820000	-1.16510000
	C	-7.05890000	3.41760000	-1.51020000
	Br	-4.81510000	-5.31480000	-4.48710000
	H	-6.78660000	4.33110000	1.09180000
	H	-5.04350000	3.98950000	1.19890000
	C	-5.53980000	5.63060000	-0.02750000
	N	-7.93930000	3.55390000	-2.24320000
	F	-4.43770000	5.62330000	-0.78820000
	F	-6.52840000	6.12060000	-0.78180000
	F	-5.33090000	6.49960000	0.96370000

5. Characterization of the products

5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4a) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=$ $20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($65 \mathrm{mg}, 72 \%$ yield, $d r=$ 1:1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (dd, $J=8.7,1.9$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 7.37 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.29 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.06 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.40 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.79 ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.56-2.21(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 1.61 (m, 2H, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.37$ \& 197.30 (two isomers), $140.33 \& 140.31$ (two isomers), 137.5 \& 137.3 (two isomers), $134.58 \& 134.55$ (two isomers), 132.9 (overlap, two isomers), 130.4 (overlap, two isomers), $130.1 \& 129.9$ (two isomers), 129.4 (overlap, two isomers), 126.74 ($\mathrm{q},{ }^{1} J_{\mathrm{C}}$ $\mathrm{F}=278.2 \mathrm{~Hz}) \& 126.72\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right.$) (two isomers), 123.0 (overlap, two isomers), $119.47 \& 119.46$ (two isomers), $52.76 \& 52.73$ (two isomers), 36.9 (q, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), $31.1 \& 30.8$ (two isomers), $30.1 \& 29.9$ (two isomers), $25.89\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right) \& 25.86\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=\right.$ 2.8 Hz) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.9$ (s, one isomer), $-65.0(\mathrm{~s}$, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-(4-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4b) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, v / v) as a yellow liquid ($58 \mathrm{mg}, 67 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.93$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.48-7.44$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.16 (dd, $J=8.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.10-7.06$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $4.50(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.84(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.60-2.25(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $2.13-1.95\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.79-1.63\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.73$ \& 196.66 (two isomers), 167.19 ($\mathrm{d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=257.1$ $\mathrm{Hz}) \& 167.17\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=256.9 \mathrm{~Hz}\right.$) (two isomers), 137.44 \& 137.40 (two isomers), 132.8 (overlap, two isomers), $131.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10.0 \mathrm{~Hz}\right.$) (overlap, two isomers), 129.76
\& 129.72 (two isomers), $126.51\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right) \& 126.48\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right)$ (two isomers), 121.9 (overlap, two isomers), 119.50 \& 119.48 (two isomers), 116.1 $\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right)$ (overlap, two isomers), 52.45 \& 52.41 (two isomers), $36.8\left(\mathrm{q},{ }^{2} J_{\mathrm{C}}\right.$ $\mathrm{F}=30.1 \mathrm{~Hz}) \quad \& 36.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$ (two isomers), 30.9 \& 30.7 (two isomers), 30.16 \& 29.97 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$) \& $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right.$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8$ (s, one isomer), -64.9 (s , one isomer), 104.0 (s , one isomers), -104.1 (s , one isomers). The reported data was in accordance with literature. ${ }^{11}$

5,6-bis(4-bromophenyl)-6-(4-Bromine)-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4c) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1$, v / v) as a yellow liquid ($68 \mathrm{mg}, 68 \%$ yield, $d r=1: 1$). 1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.78$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$ two isomers), 7.56 (d, $J=8.6 \mathrm{~Hz}$, 2 H two isomers), 7.47 (dd, $J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$ two isomers), 7.15 (dd, $J=8.6,1.82 \mathrm{H}$ two isomers), 4.49 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$ two isomers), 2.90 ($\mathrm{m}, 1 \mathrm{H}$ two isomers), 2.662.22 ($\mathrm{m}, 2 \mathrm{H}$ two isomers), 2.19-1.91 (m, 1H two isomers), $1.84-1.53$ ($\mathrm{m}, 2 \mathrm{H}$ two isomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4$ \& 197.3 (two isomers), 137.3 \& 137.3 (two isomers), $134.8 \& 134.78$ (two isomers), 132.8 (overlap, two isomers), 132.3 (overlap, two isomers), 130.7 (overlap, two isomers), 129.8 \& 129.7 (two isomers), $128.95 \& 128.93$ (two isomers), $127.04\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right) \& 127.08(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.8 \mathrm{~Hz}$) (two isomers), 123.0 (overlap, two isomers), $119.57 \& 119.55($ two isomers), 52.60 \& 52.56 (two isomers), $37.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ 29.8 Hz) (two isomers), 30.9 \& 30.6 (two isomers), $30.1 \& 29.9$ (two isomers), 25.8 $\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR (282 MHz , CDCl_{3}) $\delta-64.8$ (s , one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-oxo-6-(p-tolyl)-2-(2,2,2trifluoroethyl)hexanenitrile (4d) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($63 \mathrm{mg}, 70 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (dd, $J=8.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.46 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.25-7.11$ (m, 4H, two isomers), 4.54 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.90-2.81(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.56-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.35 (s, 3 H , two isomers), $2.35-2.16$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.20-1.95$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.82-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.85-1.63(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.96$ \& 197.89(two isomers), 144.59 \& 144.57 (two isomers), $137.89 \& 137.85$ (two isomers), $133.61 \& 133.58$ (two isomers), 132.53 (overlap, two isomers), 129.85 \& 129.80 (two isomers), 129.58 (overlap, two isomers), 128.96 (two isomers), $126.56\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 278.2 Hz) (two isomers), 121.7 (overlap, two isomers), 121.70 \& 119.56 (two isomers), 52.3 \& 52.2 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0\right.$ Hz) (two isomers), 31.0 \& 30.7 (two isomers), 30.3 \& 30.1 (two isomers), 25.8 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}$) \& 25.6 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}$ (two isomers), 21.8 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.9$ (s , one isomer), -65.0 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-(4-methoxyphenyl)-6-oxo-2-(2,2,2-

trifluoroethyl)hexanenitrile (4e) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1$, v/v) as a yellow colorless liquid ($68 \mathrm{mg}, 76 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.93$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.32-7.28$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.24-7.17$ (m, 4H, two isomers), $4.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.82(\mathrm{~m}$, 1 H , two isomers), $2.58-2.44$ (m, 1H, two isomers), $2.39-2.24$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.11-1.99(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.77-1.68(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.63-1.56(\mathrm{~m}$, 1 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6$
(two isomers), 163.7 (overlap, two isomers), 137.9 (two isomers), 132.4 (overlap, two isomers), 131.1 (overlap, two isomers) 129.6(two isomers), 128.9 \& 128.8 (two isomers), $126.8\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}\right) \& 123.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}\right.$) (two isomers), 121.5 (overlap, two isomers), 119.4 (two isomers), 55.5 (overlap, two isomers), $51.9 \& 52.8$ (two isomers), $36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30 \mathrm{~Hz}\right)$ (two isomers), 31.0 \& 30.6 (two isomers), 30.2 \& 30.0 (two isomers), 25.6 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}$) \& 25.5 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 64.8 (overlap, one isomers), -64.8 (s , one isomer), -64.9 (s , one isomer), -64.9 (s , one isomer).HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 454.0625,456.0604$; found: 454.0655, 456.0625

6-([1,1'-biphenyl]-4-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-
 trifluoroethyl)hexanenitrile (4f) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a yellow liquid (69 $\mathrm{mg}, 70 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.96$ (m, 2H, two isomers), 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.58 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.49-7.42$ (m, 4H, two isomers), $7.42-7.37$ (m, 1 H , two isomers), $7.23-7.17$ (m, 2 H , two isomers), 4.58 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.85$ (m, 1H, two isomers), $2.57-2.47$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.42-2.28$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.13-$ $2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.80-1.72(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.65-1.58(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9$ \& 196.8 (two isomers), 146.3 ($\mathrm{q},{ }^{3} J_{\mathrm{C}}$ $\mathrm{F}=2.8 \mathrm{~Hz}$) (overlap, two isomers), 137.7 \& 137.70 (two isomers), 134.79 \& 134.77 (two isomers), 132.9 (overlap, two isomers), 129.9 (overlap, two isomers), 129.8 (overlap, two isomers), 129.46 \& 129.31 (two isomers), 126.14 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}$) \& $126.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right.$) (two isomers), 119.5 (overlap, two isomers), $119.3(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=260.2 \mathrm{~Hz}$) (overlap, two isomers), 119.47 \& 119.46 (two isomers), 52.49 \& 52.44 (two isomers), $36.93\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right)$ (two isomers), 31.9 \& 30.7 (two isomers), 30.3 \& 30.0 (two isomers), 25.8 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9$ $\mathrm{Hz}) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8(\mathrm{~s}$, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature.

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-

(trifluoromethyl)phenyl)hexanenitrile (4g) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($49 \mathrm{mg}, 50 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.96(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 7.66 ($\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.32-7.28$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.19 (dd, $J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.53 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.96 $-2.82(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.60-2.46(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.15-2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.79-1.68(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.67-$ 1.61 (m, 1H, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.47$ \& 197.40 (two isomers), 138.75 \& 138.74 (two isomers), $136.34 \& 136.29$ (two isomers), 134.81 $\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right) \& 134.55\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right)$ (two isomers), 134.1 (overlap, two isomers), 129.8 (overlap, two isomers), 129.5 \& 129.4 (two isomers), 129.1 (overlap, two isomers), 125.9 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}$) (overlap, two isomers), $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1\right.$ $\mathrm{Hz}) \& 125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.0 \mathrm{~Hz}\right.$) (two isomers), $123.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.8 \mathrm{~Hz}\right)$ (overlap, two isomers), 119.47 \& 119.46 (two isomers), 52.8 (overlap, two isomers), 36.4 (q, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right.$) (two isomers), 30.8 \& 30.6 (two isomers), 30.0 \& 29.9 (two isomers), 25.7 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}$) (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.2$ (overlap, two isomers), -64.8 (s, one isomer), 64.9 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4(trifluoromethyl)phenyl)hexanenitrile (4h) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($49 \mathrm{mg}, 50 \%$ yield, $d r=1: 1$). 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.04(\mathrm{~m}$, 2 H , two isomers), 7.96 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.24-7.10$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 4.53 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.94(s, 3 H , two isomers) $2.90(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.66-2.24$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 2.20-1.93 (m, 1H, two isomers), 1.69 (m, 2 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8 \& 197.7$ (two isomers), 165.9
(overlap, two isomers), 139.1 (two isomers), 136.9 (overlap, two isomers), 136.8 (overlap, two isomers) 134.1(two isomers), $129.9 \& 129.7$ (two isomers), 128.6 (q, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}\right) \quad \& 121.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}\right)$ (two isomers), 119.5 (overlap, two isomers), 119.3 (two isomers), 52.8 \& 52.6 (overlap, two isomers), 41.9 \& 41.5 (two isomers), $36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30 \mathrm{~Hz}\right) \& 36.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30 \mathrm{~Hz}\right)$ (two isomers), 30.61 \& 30.69 (two isomers), 30.3 \& 30.1 (two isomers), 24.6 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -64.8 (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrF}_{3} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 504.0393$ found: 504.0386,

6-(3-bromophenyl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4i) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, v / v) as a yellow liquid ($61.1 \mathrm{mg}, 61 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.82-7.77(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.67-7.60$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $7.52-7.44$ (m, 2H, two isomers), $7.35-7.24$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.16 (dt, $J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.48(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.10-1.97(m, 1H, two isomers), $2.10-1.97(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.76-1.69\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers) $1.62-1.57\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.05$ \& 196.98 (two isomers), 137.85 \& 137.83 (two isomers), 137.04 \& 136.99 (two isomers), 136.4 (overlap, two isomers), 132.7 (overlap, two isomers), 131.8 (overlap, two isomers), 130.4 (overlap, two isomers), 129.79 \& 129.75 (two isomers), $127.3,125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right) \& 125.09(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}$) (two isomers), 123.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.4 (overlap, two isomers), $52.60 \& 52.57$ (two isomers), 36.4 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ $29.8 \mathrm{~Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right.$) (two isomers), 30.9 \& 30.6 (two isomers), 30.1 \& 29.9 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right) \quad \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right.$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8$ (s, one isomer), -64.9 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$
 trifluoroethyl)hexanenitrile (4j) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($54.7 \mathrm{mg}, 62 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.44$ (m, 4H, two isomers), 7.33 (t, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.23-7.12 (m, 2H, two isomers), 7.08 (dd, $\mathrm{J}=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.54(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.84 (s, 3 H , two isomers), 2.90 (m, 1H, two isomers), $2.65-2.20(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.69(\mathrm{~m}$, 1 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2$ \& 198.1 (two isomers), 160.0 (overlap, two isomers), 137.66 \& 137.60 (two isomers), $137.50 \& 137.47$ (two isomers), 132.5 (overlap, two isomers), $129.83 \& 129.77$ (two isomers), 125.15 (q, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right)$ (two isomers), 121.7 (overlap, two isomers), 121.3 (overlap, two isomers), 119.9 (overlap, two isomers), 119.51 \& 119.48 (two isomers), $113.34 \& 113.31$ (two isomers), 55.5 (overlap, two isomers), 52.54 \& 52.49 (two isomers), $36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 31.0 \& 30.7 (two isomers), $30.2 \& 30.0$ (two isomers), 25.8 ($\mathrm{q},{ }^{3} J_{\text {C-F }}$ $=2.9 \mathrm{~Hz})$ \& $25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 64.86 (s , one isomer), -64.92 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-(naphthalen-1-yl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile(4k)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($72 \mathrm{mg}, 51 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.97 (d, $J=8.2,1 \mathrm{H}$, two isomers), 7.97 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.80 ($\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.68-7.34$ ($\mathrm{m}, 6 \mathrm{H}$, two isomers), , 7.20 (dd, $J=8.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.59 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.00$2.88(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.66-2.05(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $1.88-1.63(\mathrm{~m}, 3 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \underset{552}{201.9}$ (two isomers), 136.81 (two isomers),
$135.6 \& 135.5$ (two isomers), 133.9 (overlap, two isomers), 133.0 (overlap, two isomers), 132.3 (overlap, two isomers), 130.4 (overlap, two isomers), 129.7 (two isomers), 128.5 (overlap, two isomers), 128.2 (overlap, two isomers), 127.3 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=$ 234 Hz , two isomers), 126.8 (overlap, two isomers), 125.3 (two isomers) $124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}}\right.$ $\mathrm{F}=234 \mathrm{~Hz}$, overlap, two isomers), 121.7 \& 119.3 (two isomers), 55.6 (overlap, two isomers), 36.5 (overlap, two isomers), $31.0 \& 30.6$ (two isomers), 30.5 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29$ $\mathrm{Hz}) \& 30.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29 \mathrm{~Hz}\right.$), 29.73 (overlap, two isomers) ($\left.\mathrm{q},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right) \quad 25.5(\mathrm{q}$, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8$ (s, one isomer), -64.8 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 474.0675,476.0655$; found: 474.0682, 476.0666.

5-(4-bromophenyl)-6-(naphthalen-2-yl)-6-0xo-2-(2,2,2trifluoroethyl)hexanenitrile (4I) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid (72 $\mathrm{mg}, 77 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.96 (dd, $J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.83 (dd, $J=8.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.56 (dt, $J=21.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.44 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.23 (dd, $J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.71 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.97-2.84$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.61 -2.47 (m, 1H, two isomers), $2.45-2.27$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.18-2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.84-1.73\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.71-1.64\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.36 \& 198.28$ (two isomers), 137.76 \& 137.70 (two isomers), 135.73 (overlap, two isomers), $133.59 \& 133.48$ (two isomers), 132.5 (overlap, two isomers), 132.4 (overlap, two isomers), 130.69 \& 130.68 (two isomers), 129.86 \& 129.82 (two isomers), 129.7 (overlap, two isomers), 128.8 (overlap, two isomers), 127.82 (overlap, two isomers), 126.55 (overlap, two isomers), 127.1 (overlap, two isomers), 125.16 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}$) \& $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right.$) (two isomers), 124.2 (overlap, two isomers), 121.8 (overlap, two isomers), $119.55 \&$
119.52 (two isomers), 52.46 \& 52.41 (two isomers), 36.5 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}$) \& 36.3 $\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}\right.$) (two isomers), $31.10 \& 30.8$ (two isomers), $30.3 \& 30.1$ (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8$ (s , one isomer), -64.9 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

(4-bromophenyl)-6-(furan-2-yl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4m) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=15 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($49 \mathrm{mg}, 61 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $7.48-7.40(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 7.26-7.10 (m, 3 H , two isomers), $6.52(\mathrm{dd}, J=3.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.90(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.55-2.28(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.20-1.92$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), 1.84 1.55 (m, 3H, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.33$ \& 187.30 (two isomers), $152.10 \& 152.09$ (two isomers), $146.96 \& 146.955$ (two isomers), 137.03 \& 136.96 (two isomers), 132.3 (overlap, two isomers), 130.0 \& 129.97 (two isomers), 126.13 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}$) \& $125.10\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right.$) (two isomers), 121.8 (overlap, two isomers), $121.0 \& 119.45$ (two isomers), $118.56 \& 118.53$ (two isomers), 112.7 (overlap, two isomers), 52.42 \& 52.38 (two isomers), 36.8 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ $30.0 \mathrm{~Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right.$ (two isomers), $30.1 \& 29.97$ (two isomers), 28.8 \& 29.6 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8$ (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-ox0-6-(thiophen-2-yl)-2-(2,2,2-

trifluoroethyl)hexanenitrile (4n) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=15 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($49 \mathrm{mg}, 60 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.63 \underset{\mathrm{~s} 54}{(\mathrm{~m}, 1 \mathrm{H}}$, two isomers), $7.64-7.63(\mathrm{~m}, 1 \mathrm{H}$, two
isomers), 7.48 (d,J= $8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.21 (dd, $J=8.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.10-7.08 (m, 1 H , two isomers), $4.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.93$2.84(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.57-2.26$ (m, 3H, two isomers), $2.13-1.99$ (m, 1H, two isomers), 1.79-1.72 (m, 2H, two isomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2$ \& 191.1 (two isomers), 143.24 \& 143.21 (two isomers), $137.55 \& 137.52$ (two isomers), $134.68 \& 134.65$ (two isomers), $132.94 \& 132.90$ (two isomers), 132.5 (overlap, two isomers), $129.8 \& 129.7$ (two isomers), 128.5 (overlap, two isomers), $125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.6 \mathrm{~Hz}\right) \& 125.08\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.6 \mathrm{~Hz}\right)$ (two isomers), 121.9 (overlap, two isomers), $119.5 \& 119.4$ (two isomers), 53.85 \& 53.79 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.8 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.7 \mathrm{~Hz}\right)$ (two isomers), 30.8 \& 30.5 (two isomers), 30.2 \& 29.9 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0\right.$ Hz) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-64.88 (s, one isomer), -64.95 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-6-ox0-6-(pyridin-3-yl)-2-(2,2,2-

 trifluoroethyl)hexanenitrile (40) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid (52 $\mathrm{mg}, 65 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 8.02 (dt, $J=7.9 \mathrm{~Hz}, 1.1 \mathrm{~Hz} 1 \mathrm{H}$, two isomers), 7.82 (td, $J=7.7 \mathrm{~Hz} 1.7 \mathrm{~Hz} 1 \mathrm{H}$, two isomers), $7.60-7.35$ ($\mathrm{m}, 3 \mathrm{H}$, two isomers), 7.33-7.22 ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 5.41 ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $3.01-2.86(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.61-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.68-1.68 (m, 3 H , two isomers), 1.83-1.58 (m, 3 H , two isomers), ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.9$ \& 199.8 (two isomers), 152.37 \& 152.31 (two isomers), 149.0 (overlap, two isomers), $137.20 \& 137.18$ (two isomers), 137.01 (overlap, two isomers), 132.0 (overlap, two isomers), $130.688 \& 130.65$ (two isomers), $127.57 \&$ 127.00 (two isomers), $125.15\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.7 \mathrm{~Hz}\right) \& 125.13\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.6 \mathrm{~Hz}\right)$ (two isomers), 122.99 \& 122.97 (two isomers), 121.4 (overlap, two isomers), 119.5 (overlap, two isomers), 49.48 \& 49.32 (two isomers), 36.55 ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.8 \mathrm{~Hz}$) \&$36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.7 \mathrm{~Hz}\right.$) (two isomers), 30.19 \& 30.15 (two isomers), 29.76 \& 29.71 (two isomers), $25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.9$ (s, one isomer), -64.9 (s , one isomer).The reported data was in accordance with literature. ${ }^{11}$

6-(benzo[b]thiophen-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl) hexanenitrile (4p) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($68.9 \mathrm{mg}, 65 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (d, $J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}$, two isomers), $7.83(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.54-7.46(\mathrm{~m}, 4 \mathrm{H}$, two isomers), 7.32-7.22 (m, 2H, two isomers), $4.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.97-$ $2.86(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.64-2.25(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $2.21-1.99(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.85-1.60$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.79 \&$ 192.72 (two isomers), 142.7 (overlap, two isomers), $142.57 \& 142.54$ (two isomers), 139.0 (overlap, two isomers), 137.35 \& 137.31 (two isomers), 132.6 (overlap, two isomers), 130.16 \& 130.11 (two isomers), 129.8 \& 129.7 (two isomers), 127.9 (overlap, two isomers), 126.5 (overlap, two isomers), 125.3 (overlap, two isomers), $125.13\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right) \& 125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right)$ (two isomers), 123.0 (overlap, two isomers), 122.1 (overlap, two isomers), $119.46 \& 119.43$ (two isomers), 53.79 \& 53.73 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 30.9 \& 30.5 (two isomers), $30.1 \& 29.9$ (two isomers), 25.8 ($\mathrm{q},{ }^{3} J_{\text {C-F }}$ $=3.0 \mathrm{~Hz}) \quad \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 64.8 (s , one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

(benzofuran-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4q) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid (48 mg, 52% yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.58-7.57$ ($\mathrm{m}, 5 \mathrm{H}$, two isomers), $7.38-7.24$ ($\mathrm{m}, 4 \mathrm{H}$, two isomers), 4.55 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.99-2.89(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.65-2.30(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $1.85-1.61\left(\mathrm{~m}, 3 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.32$ \& 189.29 (two isomers), 155.7 (overlap, two isomers), 151.87 \& 151.86 (two isomers), $136.8 \& 136.7$ (two isomers), 132.5 (overlap, two isomers), 130.06 \& 130.03 (two isomers), 129.0 (overlap, two isomers), 127.0 (overlap, two isomers), $125.14\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=279.3 \mathrm{~Hz}\right) \& 125.10\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right)$ (two isomers), 124.3 (overlap, two isomers), 123.8 (overlap, two isomers), 122.1 (overlap, two isomers), 119.43 \& 119.40 (two isomers), 52.9 \& 52.8 (two isomers), $36.6\left(q,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$) \& $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right.$ (two isomers), 30.6 \& 30.1 (two isomers), 29.9 \& 29.7 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-64.85 (s, one isomer), -64.92 (s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 464.0468$, 466.0448; found 464.0473, 466.0452.

5,6-bis(4-chlorophenyl)-6-oxo-2-(2,2,2-
trifluoroethyl)hexanenitrile (4r) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a colorless liquid $(62.8 \mathrm{mg}, 75 \%$ yield, $d r$ $=1: 1) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz} 2 \mathrm{H}$, two isomers), 7.39 ($\mathrm{d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.35-7.29$ (m, 2 H , two isomers), 7.21 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.51 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.94-2.83$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.63-2.24(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $2.40-2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.16-1.94(\mathrm{~m}$, 1 H , two isomers), $1.76-1.57$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.19 \& 197.13 (two isomers), 140.0 (overlap, two isomers), 136.8 (overlap, two isomers), 134.3 (overlap, two isomers), 133.8 (overlap, two isomers), 129.7 (overlap,
two isomers), 129.4 (overlap, two isomers), 129.1 (overlap, two isomers), 125.04 (q, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=261.0 \mathrm{~Hz}\right) \& 125.00\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=259.3 \mathrm{~Hz}\right)$ (two isomers), 119.5 (overlap, two isomers), 52.4 (overlap, two isomers), $36.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.6 \mathrm{~Hz}\right) \quad \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.2\right.$ Hz (t wo isomers), 30.9 \& 30.7 (two isomers), 30.1 \& 29.9 (two isomers), 25.7 (q, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right) \quad \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8$ (s, one isomer), -64.9 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-chlorophenyl)-6-oxo-5-(p-tolyl)-2-(2,2,2trifluoroethyl)hexanenitrile (4s) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($59.8 \mathrm{mg}, 70 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}$, 2 H , two isomers), 7.34 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.12 ($\mathrm{s}, 4 \mathrm{H}$, two isomers), 4.45 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.77(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.59-2.36(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 2.29 (s, 3 H , two isomers), $2.24-1.92$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $1.76-1.59$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8$ \& 197.6 (two isomers), 159.3 (overlap, two isomers), 139.8 (overlap, two isomers), 134.7 (overlap, two isomers), 130.7 (overlap, two isomers), $130.3 \& 130.2$ (two isomers), $129.3 \&$ 129.2 (two isomers), 129.15 (overlap, two isomers), 125.16 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}$) \& $125.14\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right.$) (two isomers), 119.7 (overlap, two isomers), 115.0 (overlap, two isomers), 55.5 (overlap, two isomers), 52.5 (overlap, two isomers), 36.7 (q, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ $30 \mathrm{~Hz}) \& 36.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29 \mathrm{~Hz}\right.$) (two isomers), 30.9 \& 30.7 (two isomers), 30.1 \& 30.0 (two isomers), 25.7 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}$) (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR (282 MHz , CDCl_{3}) $\delta-64.9$ (s, one isomer), -65.0 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

6-(4-chlorophenyl)-5-(4-methoxyphenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4t) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($58 \mathrm{mg}, 72 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}$, 2 H , two isomers), 7.37 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.17 (d, $J=8.2 \mathrm{~Hz} 2 \mathrm{H}$, two isomers), 6.86 (d, $J=8.2 \mathrm{~Hz} 2 \mathrm{H}$, two isomers), 4.46 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.78 (s, 3H, two isomers), $1.72-1.56$ (m, 2H, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.5 \& 197.4$ (two isomers), $139.56 \& 139.54$ (two isomers), 137.5 (overlap, two isomers), 135.14 \& 135.09 (two isomers), $134.55 \& 134.52$ (two isomers), 130.17 (overlap, two isomers), 130.13 (overlap, two isomers), 129.0 (overlap, two isomers), $127.87 \& 127.83$ (two isomers), $125.07\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right) \quad \& 125.04$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right)$ (two isomers), 115.9 (overlap, two isomers), 52.8 (overlap, two isomers), $36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$) (two isomers), 30.8 \& 30.5 (two isomers), 30.1 \& 29.9 (two isomers), 25.6 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$) (overlap, two isomers), 21.0 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.90$ (s, one isomer), -64.95 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-(tert-butyl)phenyl)-6-(4-chlorophenyl)-6-0xo-2-

 (2,2,2-trifluoroethyl)hexanenitrile (4u) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($50 \mathrm{mg}, 60 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2 H two isomers), $7.43-7.31$ ($\mathrm{m}, 4 \mathrm{H}$ two isomers), 7.18 ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.49(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.99-2.71(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.66-2.24$ (m, 4H, two isomers), $2.38-2.23(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.16-1.98(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.77-1.59\left(\mathrm{~m}, 2 \mathrm{H}\right.$, two isomers), $1.29\left(\mathrm{~s}, 9 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6$ \& 197.5 (two isomers), 150.7 (overlap, two isomers), 139.7 (overlap, two isomers), $135.07 \& 135.03$ (two isomers), $134.70 \& 134.68$ (twoisomers), 130.3 (overlap, two isomers), 129.3 (overlap, two isomers), 127.69 \& 127.65 (two isomers), 126.5 (overlap, two isomers), 125.18 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}$) \& 125.15 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}$) (two isomers), 119.6 (overlap, two isomers), $52.74 \&$ 52.72 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.8 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$) (two isomers), 34.6 (overlap, two isomers), 31.4 (overlap, two isomers), $31.0 \& 30.7$ (two isomers), 30.3 \& 30.1 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0\right.$ Hz) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.90$ (s , one isomer), -64.99 (s , one isomer).The reported data was in accordance with literature. ${ }^{11}$

6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-5-(3(trifluoromethyl)phenyl)hexanenitrile (4v) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($48 \mathrm{mg}, 65 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (dd, $J=8.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.54 (d, $\mathrm{J}=3.8 \mathrm{~Hz} 2 \mathrm{H}$, two isomers), 7.48 (d, J = 5.6 Hz 2H, two isomers), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.62(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 1 H , two isomers), $3.06-2.83(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.61-2.28(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.20-1.94\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.87-1.55\left(\mathrm{~m}, 2 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.0$ \& 196.9 (two isomers), 140.32 \& 140.30 (two isomers), $139.34 \& 139.29$ (two isomers), $134.28 \& 134.26$ (two isomers), 131.4 ($q,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ 32.8 Hz) (overlap, two isomers), 130.21 \& 130.20 (two isomers), 130.1 (overlap, two isomers), 129.3 (overlap, two isomers), $125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right) \& 125.08\left(\mathrm{q},{ }^{1} J_{\mathrm{C}}\right.$ $\mathrm{F}=278.2 \mathrm{~Hz}$) (two isomers), $124.8\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right)$ (overlap, two isomers), $123.9(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.6 \mathrm{~Hz}$) (overlap, two isomers), 119.45 \& 119.40 (two isomers), 52.7 (overlap, two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right.$) (two isomers), 31.2 \& 30.9 (two isomers), 30.2 \& 30.0 (two isomers), 25.8 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9$ $\mathrm{Hz}) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right.$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.63$ (s, one isomer), -62.64 (s, one isomer), -64.8 (s, one isomer), -64.9(s, one isomer).The reported data was in accordance with literature. ${ }^{11}$

(3-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile ($\mathbf{4 w}$) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a colorless liquid (52 $\mathrm{mg}, 66 \%$ yield, $d r=1: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers $), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $7.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.82$ $(\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.60-2.23(\mathrm{~m}, 3 \mathrm{H}$, two isomers $), 1.72-1.68(\mathrm{~m}, 3 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 196.9$ \& 196.9 (two isomers), 140.3 \& 140.23 (two isomers), $140.15 \& 140.1$ (two isomers), 135.4 (overlap, two isomers), $134.34 \& 134.31$ (two isomers), 130.8 (overlap, two isomers), 130.2 (overlap, two isomers), 129.20 (overlap, two isomers), 128.15 (overlap, two isomers), 128.2 (overlap, two isomers), 126.3 \& 126.2 (two isomers), $125.13\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right) \& 125.10$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right)$ (two isomers), $119.5 \& 119.4$ (two isomers), 52.72 \& 52.70 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), $31.0 \& 30.8$ (two isomers), $30.2 \& 30.0$ (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \quad \&$ $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-64.88(\mathrm{~s}$, one isomer), -64.94 (s, one isomer). The reported data was in accordance with literature. ${ }^{11}$

(4-chlorophenyl)-6-oxo-5-(m-tolyl)-2-(2,2,2trifluoroethyl)hexanenitrile (4x) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid $(50 \mathrm{mg}, 60 \%$ yield, $d r=1: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}$, 2 H , two isomers), $7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.07 (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers), $4.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.78(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.58-2.44(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.42-2.32(\mathrm{~m}$, 1 H , two isomers), $2.31(\mathrm{~s}, 3 \mathrm{H}$, two isomers), $2.30-2.19(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.12-$ $1.98\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.81-1.69\left(\mathrm{~m}, 2 \mathrm{H}\right.$, two isomers), ${ }^{13} \mathrm{C}$ NMR (101 MHz , S61
$\left.\mathrm{CDCl}_{3}\right) \delta 197.58 \& 197.51$ (two isomers), 139.72 \& 139.70 (two isomers), 139.37 (overlap, two isomers), 138.24 \& 138.18 (two isomers), $134.66 \& 134.64$ (two isomers), 130.3 (overlap, two isomers), 129.4 (overlap, two isomers), 128.7 (overlap, two isomers), 128.6 (overlap, two isomers), $128.56 \& 128.54$ (two isomers), 125.27 \& 125.21 (two isomers), $125.10\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.07\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right)$ (two isomers), $119.6 \& 119.5$ (two isomers), $53.26 \& 53.23$ (two isomers), 36.3 (q, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), 30.9 \& 30.6 (two isomers), 30.14 \& 30.11 (two isomers), 25.8 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$) \& 25.7 ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=$ 3.0 Hz) (two isomers), 21.5 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 64.93 (s, one isomer), -64.97(s, one isomer).The reported data was in accordance with literature. ${ }^{11}$

(2-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2trifluoroethyl)hexanenitrile (4y) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a colorless liquid ($53.6 \mathrm{mg}, 67 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.37 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.33 (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.17-6.91 (m, 3H, two isomers), 4.95(t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.94-2.75$ (m, 1 H , two isomers), $2.59-2.16(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $2.11-2.43(\mathrm{~m}, 3 \mathrm{H}$, two isomers), ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.36$ \& 197.2 (two isomers), 140.05 \& 140.03 (two isomers), $136.3 \& 136.2$ (two isomers), 134.2 (overlap, two isomers), 133.4 (overlap, two isomers), 130.42 \& 130.41 (two isomers), 130.1 (overlap, two isomers), $129.23 \& 129.20$ (two isomers), $128.7 \& 128.6$ (two isomers), 128.10 \& 128.08 (two isomers), $125.17\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}\right) \& 125.14\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right.$) (two isomers), 119.49 \& 119.45 (two isomers), $48.8 \& 48.7$ (two isomers), 36.5 ($\mathrm{q},{ }^{2} J_{\mathrm{C} \text {-F }}$ $=30.3 \mathrm{~Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), $30.4 \& 30.1$ (two isomers), 29.9 \& 29.8 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right.$) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.92$ (s, one isomer), -64.97 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

trifluoroethyl)hexanenitrile ($\mathbf{4 z} \mathbf{z}$) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a colorless liquid ($52 \mathrm{mg}, 67 \%$ yield, $d r=1: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.32-7.05 (m, 3H, two isomers), $6.95(\mathrm{ddd}, J=$ $7.6,3.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.70-4.59(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.92-2.84(\mathrm{~m}$, 1 H , two isomers), 2.61-2.24 (m, 5 H , two isomers), $2.10-1.60(\mathrm{~m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.3$ \& 198.2 (two isomers), 139.6 \& 139.5 (two isomers), 137.15 (overlap, two isomers), 137.08 (overlap, two isomers), $134.84 \&$ 134.78 (two isomers), 131.6 (overlap, two isomers), 129.94 \& 129.93 (two isomers), 129.0 (overlap, two isomers), 127.7 (overlap, two isomers), 127.3 (overlap, two isomers), 127.3 \& 127.2 (two isomers), $125.21\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.16(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}$) (two isomers), $119.7 \& 119.5$ (two isomers), $49.7 \& 49.4$ (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), 30.5 \& 30.4 (two isomers), $30.1 \& 29.9$ (two isomers), $26.0\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.7(\mathrm{q}$, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$) (two isomers), $19.88 \& 19.86$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-64.8(\mathrm{~s}$, one isomer), -64.9 (s , one isomer). The reported data was in accordance with literature. ${ }^{11}$

Ethyl-7-(4-bromophenyl)-8-(4-chlorophenyl)-4-cyano-2,2-difluoro-8-oxooctanoate (4aa) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($59 \mathrm{mg}, 58 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}$, $J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.47 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.39 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.21-7.11 (m, 2H, two isomers), 4.49 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.43-4.31$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.98-2.84(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.72-$ $1.91(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.79-1.68(\mathrm{~m}, 5 \mathrm{H}$, two isomers) 1.34 ($\mathrm{m}, 3 \mathrm{H}$, two isomers).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2$ \& 197.1 (two isomers), $163.1\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.0\right.$ $\mathrm{Hz})$ (overlap, two isomers), 140.03 \& 140.02 (two isomers), 137.36 \& 137.30 (two isomers), 134.40 \& 134.39 (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), $129.81 \& 129.78$ (two isomers), 129.2 (overlap, two isomers), 121.9 (overlap, two isomers), 120.1 (overlap, two isomers), 114.4 ($\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=254.1 \mathrm{~Hz}$) (overlap, two isomers), 63.8 (overlap, two isomers), 52.6 (overlap, two isomers), 36.8 $\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right) \& 36.7\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right.$) (two isomers), 30.9 \& 30.8 (two isomers), 30.6 \& 30.5 (two isomers), $25.09\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right) \quad \& 25.05\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0\right.$ Hz) (two isomers), 14.0 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.3$ (d, $J=36.8 \mathrm{~Hz}$, one isomer), $-104.71(\mathrm{~d}, J=36.1 \mathrm{~Hz}$, one isomer), $-105.72(\mathrm{~d}, J=15.3$ Hz , one isomer), $-106.45(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, one isomer). The reported data was in accordance with literature. ${ }^{11}$

5-(4-bromophenyl)-2-(2,2-difluoroethyl)-6-0xo-6-(p-tolyl)hexanenitrile (4ab) The

title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, v / v) as a yellow liquid ($41 \mathrm{mg}, 50 \%$ yield, $d r=1: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, 5 \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{dd}, J=8.3,1.8$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 7.45 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.25-7.14 (m, 4H, two isomers), 6.22-5.77 (m, 1 H , two isomers), $4.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.90$2.71(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.47-1.92(\mathrm{~m}, 5 \mathrm{H}$, two isomers), $1.81-1.52(\mathrm{~m}, 2 \mathrm{H}$, two isomers), ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8$ (two isomers), 144.4 (two isomers), 137.8 (overlap, two isomers), $133.50 \& 133.47$ (overlap, two isomers), 132.3 (overlap, two isomers), $129.74 \& 129.69$ (overlap, two isomers), 129.4 (two isomers), 128.8 (overlap, two isomers), 121.53 (overlap, two isomers), 114.7 (${ }^{1} J_{\mathrm{C}-\mathrm{F}}=232 \mathrm{~Hz}$, two isomers), 52.1 (overlap, two isomers), 36.3 (overlap, two isomers), $31.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=27 \mathrm{~Hz}\right) 25.3$ (two isomers). 21.6 (overlap, two isomers) ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.7$ (d, $J=49.6$ Hz , one isomer), -116.7 (d, $J=50.1 \mathrm{~Hz}$, one isomer), -117.1 ($\mathrm{d}, J=20.4 \mathrm{~Hz}$, one isomer), -118.1 (d, $J=20.9 \mathrm{~Hz}$, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrF}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 420.0770, 422.0749; found: 420.0750, 422.0660 .

5-(4-bromophenyl)-2-(2-fluoroethyl)-6-oxo-6-(p-
tolyl)hexanenitrile(4ac)The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid $(49 \mathrm{mg}, 62 \%$ yield, $d r=1: 1)^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.45 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.25-7.14 (m, 4H, two isomers, $4.68(\mathrm{td}, J=5.2$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.58-4.50 (m, 1H, two isomers), $2.91-2.73(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.47-2.24 (m, 4 H , two isomers), $2.15-1.82(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 1.77-1.51 ($\mathrm{m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0$ (overlap, two isomers) (two isomers), 144.3 (two isomers), 137.9 (overlap, two isomers), $133.60 \& 133.58$ (overlap, two isomers), 132.3 (overlap, two isomers), 129.7 (overlap, two isomers), 129.4 (two isomers), $128.8 \& 128.1$ (overlap, two isomers, $81.5\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}\right.$, two isomers) \& $79.87\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}\right.$, two isomers), $52.2 \& 52.1$ (overlap, two isomers), 31.2 (overlap, two isomers), 30.9 (overlap, two isomers), $30.1\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=36 \mathrm{~Hz}\right.$, two isomers)) \& $29.7\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=36 \mathrm{~Hz}\right.$, two isomers $), 28.1\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}\right.$, two isomers $)$ \& $27.9\left({ }^{3} J_{\mathrm{C}}\right.$ $\mathrm{F}=4 \mathrm{~Hz}$, two isomers), 21.6 (overlap, two isomers) ${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.0$ (s , one isomer), 15.8 (s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrFNO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 402.0869$; found: 402.0851.

(5-bromophenyl)-4-(4-chlorophenyl)-4-oxobutyl)-4,4,5,5,6,6,7,7,8,8,9,9,9tridecafluorononanenitrile (4ad) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$) as a yellow liquid ($59.4 \mathrm{mg}, 42 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86$ (dd, $J=8.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.40 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.16 (dd, $J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.06-2.95(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.62
$-2.50(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.42-2.28(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.14-2.04(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.81-1.74\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.70-1.65\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.12$ \& 197.06 (two isomers), 140.15 \& 140.13 (two isomers), $137.28 \& 137.24$ (two isomers), $134.35 \& 134.33$ (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), $129.8 \& 129.7$ (two isomers), 129.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.67 \& 119.66 (two isomers), 52.6 \& 52.5 (two isomers), 37.7 (overlap, two isomers), 31.0 \& 30.8 (two isomers), $30.7 \& 30.6$ (two isomers), 29.9 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.8(\mathrm{t}, J=7.3 \mathrm{~Hz}$,), $-113.1-113.7$ (m one isomer), -121.78 , (s, isomer), -122.85 (s , isomer), -126.14 (, one isomer). The reported data was in accordance with literature. ${ }^{11}$

7-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-

 (2-tosylethyl)hexanenitrile (4ae) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, v / v) as a yellow liquid ($78.0 \mathrm{mg}, 70 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.85 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.79 (dd, $J=8.3,2.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.45 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.39 (dd, $J=8.0,5.7 \mathrm{~Hz}, 4 \mathrm{H}$, two isomers), 7.14 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.32-3.11$ (m, 2H, two isomers), $2.90-2.75(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.48(\mathrm{~s}, 3 \mathrm{H}$, two isomers), $2.36-1.87$ ($\mathrm{m}, 3 \mathrm{H}$, two isomers), $1.72-1.45\left(\mathrm{~m}, 3 \mathrm{H}\right.$, two isomers), ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.21$ \& 197.19 (two isomers), 145.4 (overlap, two isomers), $140.0 \& 139.9$ (two isomers), 137.4 (overlap, two isomers), $135.79 \& 135.77$ (two isomers), $134.38 \&$ 134.36 (two isomers), 132.6 (overlap, two isomers), 130.3 (overlap, two isomers), 130.2 (overlap, two isomers), 129.81 \& 129.77 (two isomers), 129.1 (overlap, two isomers), $128.08 \& 128.07$ (two isomers), $121.84 \& 121.83$ (two isomers), 120.47 \& 120.46 (two isomers), 53.6 (overlap, two isomers), 52.42 \& 52.38 (two isomers), $31.05 \& 30.8$ (two isomers), $30.6 \& 30.5$ (two isomers), $30.1 \& 29.8$ (two isomers), $25.4 \& 25.2$ (two isomers), 21.8 (overlap, two isomers).The reported data was in accordance with literature. ${ }^{11}$

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl-4-(2-(4-bromophenyl)-5-cyano-7,7,7trifluoroheptanoyl)benzoate (4af) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a colorless liquid $(62.9 \mathrm{mg}, 52 \%$ yield, $\mathrm{dr}=$ 1:1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.96(\mathrm{~d}, J=$ 8.4 Hz, 2 H , two isomers), 7.57-7.41 (m, 2 H , two isomers), 7.18-7.13 (m, 2 H , two isomers), 4.94 (tdd, $J=10.8,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.00-2.81(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.58-2.45(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.43-$ $2.26(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.21-1.84(\mathrm{~m}, 2 \mathrm{H}$, two isomers $), 1.85-1.48(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.77-1.69(\mathrm{~m}, 5 \mathrm{H}$, two isomers), $1.20-1.07(\mathrm{~m}, 2 \mathrm{H}$, two isomers $), 0.92(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 6 \mathrm{H}$, two isomers), $0.78\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9 \& 197.8$ (two isomers), 165.0 (overlap, two isomers), $139.1 \&$ 139.0 (two isomers), $137.1 \& 137.0$ (two isomers), 134.9 (overlap, two isomers), 132.7 (overlap, two isomers), 130.0 (overlap, two isomers), $129.85 \& 129.81$ (two isomers), 128.68 \& 128.66 (two isomers), $125.13\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.0 \mathrm{~Hz}\right) \& 125.11(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1 \mathrm{~Hz}$) (two isomers), 122.0 (overlap, two isomers), $119.5 \& 119.4$ (two isomers), 75.68 (overlap, two isomers), 52.88 \& 52.83 (two isomers), $47.32 \&$ 47.31 (two isomers), 41.0 (overlap, two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3(\mathrm{q}$, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}$) (two isomers), 34.3 (overlap, two isomers), 31.6 (overlap, two isomers), $30.58 \& 30.54$ (two isomers), 30.1 (overlap, two isomers), 29.9 (overlap, two isomers), 26.7 \& 26.6 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \quad \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=\right.$ 2.8 Hz) (two isomers), $23.7 \& 23.6$ (two isomers), 22.1 (overlap, two isomers), 20.88 \& 20.84 (two isomers), 16.63 \& 16.60 (two isomers). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-64.8$ (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{BrF}_{3} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 606.1826,608.1805$; found: 606.1823, 608.1818 .

References

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.
2. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
3. Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
4. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
5. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
6. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.
7. R. Bauernschmitt, R. Ahlrichs, J. Chem. Phys. 1996, 104, 9047.
8. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
9. C. Gonzalez, H. B. Schlegel, J. Phys. Chem.1990, 94, 5523.
10. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
11. J.Wang, J.Feng and D. Du, Chem. Commun., 2023,59, 5395-5398.

7. Copies of NMR spectra

4a ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , Chloroform- d)

4a ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

4b ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- $-d$) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- d)

4b ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ (101 MHz , Chloroform- d)

[^0]4b ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

$4 \mathbf{c}^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- $-d$) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- d)

$$
\mathbf{4 c}{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \text { NMR (} 101 \mathrm{MHz} \text {, Chloroform- } d \text {) }
$$

$4 \mathbf{c}^{19}$ F NMR (282 MHz , Chloroform- d)

4d ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4d ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$4 \mathbf{d}^{19}$ F NMR (376 MHz , Chloroform- d)

$4 \mathbf{e}^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (75 MHz , Chloroform- d)

$$
4 \mathbf{e}^{19} \text { F NMR (} 282 \mathrm{MHz} \text {, Chloroform- } d \text {) }
$$

$\mathbf{4 f}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $)^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4f ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$4{ }^{19}$ F NMR (282 MHz , Chloroform- d)
-64.8546

4g ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$4 \mathbf{g}{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4g ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\left\{\begin{array}{l}-63.25 \\ -64.86 \\ -64.92\end{array}\right.$

4h ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR(75 MHz , Chloroform- d)

4h ${ }^{13} \mathrm{C}$ NMR(75 MHz , Chloroform- d)

4h ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\left\{\begin{array}{l}-64.8691 \\ -64.9216\end{array}\right.$

$4 \mathbf{i}^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4i ${ }^{19}$ F NMR (376 MHz , Chloroform- d)
$\left\{_{-64.9055}^{-64.8491}\right.$

4j ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$4 \mathrm{j}{ }^{19}$ F NMR (282 MHz , Chloroform- d)

4k ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d)

4k ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

[^1]$4{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d)/ ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d)

$41{ }^{19}$ F NMR (282 MHz , Chloroform- d)

4m ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d)

4m ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

4n ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d)

${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d)

4n ${ }^{19}$ F NMR (376 MHz , Chloroform- d)

$40^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d)

${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d)

40 ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$4 \mathbf{p}^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$4 \mathbf{p}^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4p ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\left\{\begin{array}{l}-64.8402 \\ -64.9017\end{array}\right.$

为

$4 \mathbf{q}^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}\{(101 \mathrm{MHz}$, Chloroform- d)

$\mathbf{4 q} \quad{ }^{13} \mathrm{C}(101 \mathrm{MHz}$, Chloroform- d)

$\mathbf{4 q}{ }^{19}$ F NMR (282 MHz , Chloroform- d)

2

$$
4 \mathbf{r}{ }^{1} \mathrm{H} \text { NMR }\left(300 \mathrm{MHz}, \text { Chloroform- } d \text {) } /{ }^{13} \mathrm{C}(101 \mathrm{MHz} \text {, Chloroform- } d \text {) }\right.
$$

$$
4 \mathbf{r}^{13} \mathrm{C} \text { (101 MHz, Chloroform- } d \text {) }
$$

$4{ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\left\{\begin{array}{l}-64.8701 \\ -64.9268\end{array}\right.$

 f1 (ppm)

4s ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, Chloroform- d)

4s ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

$4 \mathbf{t}^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$4 t{ }^{19}$ F NMR (376 MHz , Chloroform- d)

$4 \mathbf{u}{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

完名

4u ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\left.\begin{array}{l}8 \varepsilon 66^{\circ}+9^{-} \\ \text {ZI } \varepsilon 6^{\circ}+9^{-}\end{array}\right\}$

 fl (ppm)

4v ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4v ${ }^{19}$ F NMR (376 MHz , Chloroform- d)

\mid

4w ${ }^{1} \mathrm{H}$ NMR 400 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4w ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4w ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\chi_{-64.947}^{-64.88 \varepsilon}$

4x ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4x ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

が

4x ${ }^{19}$ F NMR (282 MHz , Chloroform- d) ${ }_{-64.9791}^{-64.9312}$

4y ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $)^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$$
\mathbf{4 y}{ }^{13} \mathrm{C} \text { NMR (101 MHz, Chloroform- } d \text {) }
$$

4y ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
$\left\{\begin{array}{l}-64.92 C \\ -64.977\end{array}\right.$

$\mathbf{4 z}{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- $-d$) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$$
\mathbf{4 z}^{13} \mathrm{C} \text { NMR (101 MHz, Chloroform- } d \text {) }
$$

$\mathbf{4 z}{ }^{19}$ F NMR (282 MHz , Chloroform- d)

4aa ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d)

4aa ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4aa ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

4ab ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $)^{13} \mathrm{C}(75 \mathrm{MHz}$, Chloroform- d)

4ab ${ }^{13} \mathrm{C}$ (75 MHz , Chloroform- d)

4ab ${ }^{19}$ F NMR (376 MHz , Chloroform- d)

4ac ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}(101 \mathrm{MHz}$, Chloroform- d)

4ad ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4ad ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4ad ${ }^{19}$ F NMR (282 MHz , Chloroform- d)

4ae ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4af ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4af ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

4af ${ }^{19}$ F NMR (282 MHz , Chloroform- d)
-64.8601
-64.9144

3ad ${ }^{19}$ F NMR (282 M , Deuterium oxide)

3aa ${ }^{1} \mathrm{H}$ NMR (300 MHz , Deuterium oxide) $/{ }^{19} \mathrm{~F}$ NMR (282 M , Deuterium oxide)

3aa ${ }^{19}$ F NMR (282M, Deuterium oxide)
 -103.8461
$\int_{-}^{-104.7923}$
-105.6209
-106.5652
Na^{+}

$$
\text { 3ae }{ }^{13} \mathrm{C} \text { NMR (} 101 \mathrm{MHz} \text {, Deuterium oxide) }
$$

$\underset{\sim}{2}$
$\stackrel{0}{1}$
-18.77

Na^{+}

$5{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$5{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$6{ }^{1} \mathrm{H}$ NMR (400 MHz , Dimethyl sulfoxide- $d 6$) $/{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, Dimethyl sulfoxide- $d 6$)

$6{ }^{13} \mathrm{C}$ (75 MHz, Dimethyl sulfoxide- $d 6$)

$7{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $/{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d)

$$
7{ }^{13} \mathrm{C} \text { NMR (101 MHz, Chloroform- } d \text {) }
$$

[^0]:

[^1]:

