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Abstract
Aim: This study was undertaken to explore the relationship between metabolic syndrome (MetS) and atherosclerosis-

related mitochondrial DNA (mtDNA) mutations, since MetS shares conventional and genetic risk factors with 

atherosclerosis.

Methods: The study involved 220 participants; the carotid ultrasonography followed by intima-media thickness (cIMT) 

measurement was used for quantitative diagnostics of carotid atherosclerosis. The diagnosis of MetS was set according 

to International Diabetes Federation criteria (IDF-2009). The level of mtDNA heteroplasmy in leukocytes was determined 

by qPCR. The severity of MetS was estimated on combination of serum HDL cholesterol, triglycerides and fasting glucose, 

systolic and diastolic blood pressure, and waist circumference measurements.

Results: MetS was present in 44 study participants. Ten mtDNA mutations were tested, and m.3336T>C and m.652delG 

heteroplasmy levels correlated with the clusterization of MetS symptoms, in particular the cardiovascular and metabolic 

risk factors, of triglyceride and fasting glucose levels. The other mtDNA mutations each only correlated with one symptom 

(i.e., m.652delG and m.12315G>A-with triglycerides; m.3256C>T, m.1555A>G, and m.15059G>A-with systolic blood 



pressure; m.14846G>A-with fasting glucose). There was no correlation between integral severity of MetS and cIMT.

Conclusion: In this study, the MetS phenotype was not explained directly by atherosclerosis-related mtDNA variants. It 

is possible to hypothesize that mtDNA-related mechanisms in atherosclerosis and MetS may be different, in spite of the 

similarity of several phenotypic characteristics.
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INTRODUCTION
Excessive body mass, obesity, metabolic syndrome (MetS) and Type 2 diabetes are metabolic disturbances 
affecting the population, often occurring in parallel with atherosclerosis development, contributing 
to morbidity. All of these pathologies are characterized by excessive deposition of body fat and health 
impairment. Cardiovascular and metabolic diseases are in part of genetic, in part of behavioral origin. 
Genetic inf luences are either hereditary or due to somatic (acquired) mutations. Pathogenic mutations 
can occur either in the nuclear DNA or in the mitochondrial DNA (mtDNA). A number of genome-wide 
association studies (GWAS) have been carried out in order to discover genes related to metabolic diseases[1-4]. 
However, commercially available GWAS arrays used in such studies rarely cover mitochondrial variants 
in the population very well. Therefore, the role of mitochondrial genes in metabolic diseases has been less 
well studied, even though the mitochondria play the definitive role in energy production and metabolism, 
and in the development of oxidative stress. Despite the ever increasing prevalence and high heritability of 
atherosclerosis and metabolic diseases, as well as intensive and long research efforts, the causal genes remain 
poorly known. Mitochondria are the center of energy metabolism in the human body; therefore, variations 
of their genes and function are expected to inf luence metabolism and reactive oxygen species (ROS) 
production. 

Epidemiological and clinical studies have revealed a clustering of conventional cardiovascular risk 
factors including obesity, MetS, Type 2 diabetes mellitus, atherosclerosis, and coronary artery disease. 
Each conventional risk factor alone increases the risk of clinical manifestations of atherosclerosis with 
the combination of several risk factors exacerbating clinical sequelae. This is also true in the setting 
of MetS, with multiple risk factors resulting in heightened risk of atherosclerotic disease together with 
cardiometabolic abnormalities. MetS is also generally defined in clinical studies and clinical practice as a 
cluster of risk factors associated with Type 2 diabetes mellitus and cardiovascular disease[5-10]. It is further 
generally recognized that conventional risk factors possess a significant genetic component, but the evidence 
of the role of genetic factors in risk factor clustering in individuals remains uncertain[11].

It has recently been shown that several mutations of mtDNA are associated with atherosclerosis. Namely, 
heteroplasmic mutations m.652delG, m.1555A>G, m.3336T>C, m.3256C>T, m.5178C>A, m.12315G>A, 
m.13513G>A, m.14459G>A, m.14846G>A, and m.15059G>A were found in atherosclerotic plaques of human 
aortic intima, and there were significant differences in the heteroplasmy level between unaffected and 
atherosclerotic tissues. These mutations occurred in mitochondrial genes MT-RNR1 (rRNA 12S); MT-TL1 
and MT-TL2 (tRNA-Leu); MT-ND1, MT-ND2, MT-ND5, and MT-ND6 (subunits 1, 2, 5 and 6, of NADH 
dehydrogenase, respectively), and MT-CYB (cytochrome b)[12-15]. Further, most of these mutations were 
found to be associated with the severity of carotid atherosclerosis and, with lesser extent, the presence of 
coronary heart disease[16-20].

Since MetS shares common risk factors with atherosclerosis and, moreover, is considered itself as the 
independent risk factor for atherosclerosis, this study was performed to test the hypothesis that MetS and 
atherosclerosis-related heteroplasmic mtDNA mutations are associated.

Page 2 of 10                                                  Sobenin et al. Vessel Plus 2019;3:14  I  http://dx.doi.org/10.20517/2574-1209.2018.63



METHODS
Patients
This study was kept in accordance with the Helsinki Declaration of 1975 as revised in 1983, 2008 and 2013, 
and was approved by the local ethics committee. The study participants were recruited from the visitors’ 
flow at municipal outpatient clinics, who have passed a routine screening for cardiovascular risk factors. In 
total, 220 study participants were recruited (97 men, 123 women) with a mean age of 65.1 years (SD 9.4). The 
written informed consent was obtained from all participants prior to inclusion in the study.

MetS diagnostics
For identification of patients with clustered risk factors and MetS, IDF 2009 criteria were used[10]. In brief, 
waist circumference > 94 cm in men and > 88 cm in women, triglycerides ≥ 150 mg/dL or drug treatment for 
elevated triglycerides, HDL cholesterol ≤ 40 mg/dL in men and ≤ 50 mg/dL in women, or drug treatment for 
reduced HDL cholesterol, systolic blood pressure ≥ 150 mmHg and/or diastolic blood pressure ≥ 85 mmHg, 
or antihypertensive drug treatment, and fasting glucose ≥ 5.6 mmol/L or drug treatment of elevated glucose 
were taken in consideration. The presence of at least 3 of above criteria was required for the diagnosis of 
MetS. The group of MetS-free study participants consisted of subjects who had 0-1 of the above criteria. The 
subjects with 2 MetS criteria were not eligible for inclusion in the study to avoid possible uncertainties. To 
formally describe the severity of MetS (the extent of clusterization of conventional risk factors), an unofficial 
integral MetS index was calculated as a simple multiplication of the absolute values of waist circumference, 
triglycerides, systolic and diastolic blood pressure, and fasting glucose, divided by HDL cholesterol. 

Ultrasonographic examination
For diagnostics of carotid atherosclerosis, high-resolution B-mode carotid arterial ultrasonography 
imaging was used (SSI-6000 ultrasound system, SonoScape, China, equipped by 7.5-MHz L741 linear array 
probe). The protocol of ultrasound examination developed earlier by Salonen et al.[21], 1995 was used. The 
cIMT measurements were carried out with M’Ath software package (IMT, France). The extent of carotid 
atherosclerosis and the size of atherosclerotic plaques were evaluated as described elsewhere[17,22].

MtDNA genotyping
DNA was isolated from circulating leukocytes (whole venous blood) using a commercial kit for DNA 
isolation and purification (QIAGEN GmbH, Germany) according to manufacturer’s instructions. DNA 
concentration in samples was determined by NanoPhotometer Pearl UV/Vis SDRAM P-34 (IMPLEN, 
Germany); the samples were kept in TE buffer at a concentration of 0.03 µg/µL. Heteroplasmy levels of 
mtDNA mutations m.652delG, m.1555A>G, m.3336T>C, m.3256C>T, m.5178C>A, m.12315G>A, m.13513G>A, 
m.14459G>A, m.14846G>A, and m.15059G>A were analyzed on Real Time PCR System 7500 Fast (Applied 
Biosystems, USA) by qPCR (5’-terminal tag excision, TaqMan Assay). The nucleotide sequences for primers 
and probes are shown in Table 1.

For qPCR, 4 µL DNA was added to 25 µL of standard reaction mixture [1x TaqMan Buffer, 3 mmol/L MgCl2, 
250 µmol/L of each dNTP, 300 nmol/L primers, 300 nmol/L hybridization probes, 0.5 units Taq-polymerase 
(Helicon, Moscow, Russia)]. Denaturation was held for 2 min at 94 ˚C; amplification stage with fluorescence 
detection included denaturation for 10 s at 94 ˚C, and annealing for 15 s at a temperature specified for each 
pair of primers and probes (range 61 ˚C-67 ˚C).

Statistical analysis
The statistical analysis was done using the IBM SPSS 22.0 software package (IBM Corp., Chicago, IL, USA). 
The methods of descriptive statistics, correlation analysis by Spearman and Pearson, and one-way analysis 
of variance (ANOVA) were used. Mean values were compared by T-test or U-test by Mann-Whitney for 
continuous variables, and χ2 Pearson’s test for categorical variables. To assess the homogeneity of variance, 
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F-Test was used. The data were presented in terms of mean and SD, where appropriate. The significance of 
differences was defined at the 0.05 level of confidence. 

RESULTS
In total, 220 participants were recruited in the study. Forty-four study participants (20% of the sample) met 
the criteria of MetS. The data on anthropometric, clinical and biochemical data are presented in Table 2.

As expected, the two groups differed significantly in parameters taken as the criteria for MetS (waist 
circumference, the presence of arterial hypertension and Type 2 diabetes mellitus, systolic and diastolic 
blood pressure, blood glucose, serum triglycerides and HDL cholesterol). Additionally, there was a difference 
in body mass index, the prevalence of left ventricular hypertrophy, the prevalence of CHD, and family 
anamnesis of Type 2 diabetes mellitus. At the same time, there were no statistically significant differences in 
age, smoking, total and LDL cholesterol, and family anamnesis of myocardial infarction and hypertension.

Instrumental data on the extent of carotid atherosclerosis assessed by high-performance ultrasound 
examination are given in Table 3. Mean cIMT and mean maximum cIMT were significantly higher in 
MetS patients, thus demonstrating higher predisposition to atherosclerosis in patients with cardiometabolic 
abnormalities. However, the difference in the extent of carotid atherosclerosis assessed by the size of 
atherosclerotic plaques did not reach statistical significance. Moreover, the correlation coefficient between 
cIMT and integral MetS index did not reach statistical significance (r = 0.119, P = 0.10).

The data on genotyping of mtDNA are given in Table 4. Among 10 mtDNA mutations studied, only 
heteroplasmy levels for m.3336T>C and m.14846G>A mutations were significantly different between MetS 
patients and MetS-free study participants. The correlation analysis revealed significant correlations between 
the severity of MetS assessed by integral MetS index and m.652delG heteroplasmy (r = 0.213, P = 0.003), and 
m.3336T>C heteroplasmy (r = 0.323, P < 0.001), but not m.14846G>A heteroplasmy. 

Several correlations were revealed between mtDNA heteroplasmy and stand-alone components of MetS. 
Systolic blood pressure correlated with heteroplasmy m.1555A>G (r = -0.144, P = 0.046), m.3256C>T (r = 
0.197, P = 0.006), and m.15059G>A (r = 0.218, P = 0.002). Serum triglycerides correlated with heteroplasmy 
m.652delG (r = 0.190, P = 0.008), m.3336T>C (r = 0.291, P < 0.001), and m.12315G>A (r = 0.153, P = 0.034). 

Table 1. Nucleotide sequences for primers and probes for qPCR

Mutation Primers Probes
m.652delG F actgaaaatgtttagacgggct

R ggggatgcttgcatgtgtaa
5’-ROX- aatagggtttggtcctagcctttctattagctc -BHQ-2-3’
5’-FAM- aataggtttggtcctagcctttctattagctc -BHQ-1-3’

m.1555A > G F aggacatttaactaaaacccctacg
R agctacactctggttcgtcca

5’-ROX- agaggaaacaagtcgtaacatggtaagtgtac -BHQ-2-3’ 
5’-FAM- agaggagacaagtcgtaacatggtaagtgtac -BHQ-1-3’

m.3256C > T F atacccacacccacccaag
R aagaagaggaattgaacctctgact

5’-ROX- gcagagcccggtaatcgtataaaactta -BHQ-2-3’ 
5’-FAM- agagcccggtaatcgcataaaacttaaa -BHQ-1-3’

m.3336T > C F acagtcagaggttcaattcctctt
R ttcgttcggtaagcattagga

5’-ROX- tactcctcatcgtacccattctaatcgc -BHQ- -3’ 
5’-FAM- tcctcattgtacccattctaatcgcaat -BHQ-2-3’

m.5178C > A F cttaaactccagcaccacgac
R aggcctcctagggagagga

5’-ROX- atctcgcacctgaaacaagataacatga -BHQ-2-3’
5’-FAM- cgcacctgaaacaagctaacatgactaa -BHQ-1-3’

m.12315G > A F cagctatccattggtcttaggc
R ggaagtcagggttagggtggt

5’-ROX- ccaaaaattttagtgcaactccaaataaaag -BHQ-2-3’ 
5’-FAM- ccaaaaattttggtgcaactccaaataa -BHQ-2-3’

m.13513G > A F gcagcctagcattagcagga
R atagggctcaggcgtttgt

5’-ROX- caggtttctactccaaaaaccacatcatc -BHQ-2-3’
5’-FAM- caggtttctactccaaagaccacatcatc -BHQ-2-3’  

m.14459G > A F ccactaaaacactcaccaagacc
R tttagggggaatgatggttg

5’-ROX- ctcaggatactcctcaatagccatcactgt -BHQ-2-3’
5’-FAM- ggatactcctcaatagccatcgctgtag -BHQ-2-3’

m.14846G > A F aaccactcattcatcgacctc
R cctgtggtgatttggaggat

5’-ROX- gcatgatgaaacttcagctcactcctt -BHQ-2-3’
5’-FAM- catgatgaaacttcggctcactcctt -BHQ-2-3’

m.15059G > A F caatggcgcctcaatattct
R caggaggataatgccgatgt

5’-ROX- gggcgaggcctatattacagatcatttct -BHQ-2-3’
5’-FAM- gcgaggcctatattacggatcatttctc -BHQ-2-3’
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HDL cholesterol correlated with heteroplasmy m.1555A>G (r = 0.151, P = 0.037) and m.14459G>A (r = 
-0.165, P = 0.022). Fasting blood sugar correlated with m.3336T>C heteroplasmy (r = 0.180, P = 0.013), and 
m.14846G>A heteroplasmy (r = 0.142, P = 0.050). None of the mutations correlated with waist circumference 
or diastolic blood pressure.

Linear regression analysis was performed to explain the variability of integral MetS index by the presence of 
heteroplasmic mtDNA mutations. The linear regression model explained 14.2% variability of integral MetS 
index (R = 0.377, P = 0.003). The most potent explanatory variable was T3336C heteroplasmy (P = 0.003); 
other mutations did not reach explanatory level by statistical significance. 

As mentioned above, the difference between MetS-free study participants and MetS patients reached 
statistical significance for BMI, waist circumference, systolic and diastolic BP, hypertension and left 
ventricular hypertrophy, Type 2 diabetes prevalence and family history, triglycerides, HDL cholesterol, 
fasting glucose, integral MetS index, mean and mean-maximum cIMT, plaque score, and heteroplasmy for 
m.3336C>T and m.14846G>A mutations. Therefore, the null-hypothesis on the absence of difference was 
rejected with more than 95% probability, and the groups size was sufficient to demonstrate the observed 
differences. We have also checked the statistical power of the study for those mtDNA mutations, for which 

Table 2. Anthropometric, clinical and biochemical characteristics of study participants

Variable MetS-free study participants, n  = 176 MetS patients, n  = 44 P  for the difference
Age, years 65.0 (9.9) 65.7 (7.5) NS
Gender, m:f 76:100 21:23 NS
BMI, kg/m2 25.8 (3.9) 30.9 (4.8) < 0.001
Waist circumference, cm 85.9 (4.1) 100.9 (5.6) < 0.001
Systolic BP, mmHg 146 (13) 137 (18) < 0.003
Diastolic BP, mmHg 81 (11) 88 (10) < 0.001
Current smokers, % 8 11 NS
Hypertension, % 60 87 0.002
LVH, % 31 50 0.024
T2DM, % 4 47 < 0.001
CHD, % 19 45 0.001
Family history of AMI, % 27 34 NS
Family history of HT, % 40 37 NS
Family history of T2DM, % 13 34 0.002
Total cholesterol, mg/dL 240 (48) 234 (47) NS
Triglycerides, mg/dL 113 (47) 182 (72) < 0.001
LDL cholesterol, mg/dL 148 (43) 144 (42) NS
HDL cholesterol, mg/dL 69 (14) 53 (14) < 0.001
Fasting glucose, mmol/L 5.3 (0.9) 6.4 (1.1) 0.004
Integral MetS index 5267 (3181) 18069 (12495) < 0.001

Family history, the presence of the disease in first degree relatives diagnosed at age before 60. BMI: body mass index; BP: blood pressure; 
LVH: left ventricular hypertrophy; T2DM: Type 2 diabetes mellitis; CHD: coronary heart disease; LDL: low density lipoprotein; HDL: high 
density lipoprotein; AMI: acute myocardial infarction; HT: hypertension; NS: not significant; MetS: metabolic syndrome

Table 3. Characteristics of carotid atherosclerosis

Variable MetS-free study participants,
n  = 176

MetS patients,
n  = 44 P  for the difference

Mean cIMT, mm 0.853 (0.151) 0.935 (0.209) 0.006
Mean maximum cIMT, mm 0.986 (0.187) 1.086 (0.285) 0.009
Atherosclerotic plaques, score 0.78 (0.85) 1.08 (0.91) 0.071 (NS)

Note: to calculate the score for atherosclerotic plaques in carotid arteries, the 4-point scale was used (0, no plaques; 1-2, lesions 
occluding up to 10% or 10%-30% lumen diameter, respectively; 3, plaques occluding > 30% lumen diameter)[17]. NS: not significant; 
MetS: metabolic syndrome
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the differences in heteroplasmy levels did not reach statistical significance. Statistical power varied from 28% 
to 76%; the analysis has shown that the sample size was insufficient to exclude type 2 error for mutations 
m.652delG, m.1555A>G, m.12315G>A, and m.13513G>A. For all remaining mutations, the increase of sample 
size turned unreasonable, since it could not lead to statistically significant between-group differences.

DISCUSSION
In this study, we have found that only a few mtDNA mutations previously described as atherosclerosis-related 
ones[13-18], are also associated with MetS. Namely, these are m.3336T>C mtDNA mutation and, to some 
extent the m.652delG mutation. Since MetS is a constellation of several risk factors, the observed associations 
should be explained by correlations with single cardiometabolic risk factors, that is the higher the correlation 
of risk factors with mtDNA heteroplasmy, the higher the probability of association with MetS. This seems 
to be especially true for m.3336T>C mtDNA mutation, which occurs in MT-ND1 gene (encodes subunit 1 
of NADH dehydrogenase). It is known that the m.3336T>C mutation is a silent point mutation, resulting 
in an ATT to ATC substitution without changing the amino acid sequence of the transcribed protein. The 
association of m.3336T>C variant with metabolic syndrome may be speculatively explained by the linkage 
with some still unknown mutant haplotype associated with mitochondrial dysfunction. In any case, it is not 
at present possible to suggest any mechanistic role of m.3336T>C mutation in the formation of a pathologic 
phenotype; one can only consider this mtDNA variant as a potential biomarker or even as a bystander. 
It remains questionable, if this mutation may have something to do with disruption to mitochondrial 
glutathione redox status due to oxidative stress; the analysis of sequence variation in mitochondrial complex 
I genes did not describe m.3336T>C variant as possibly, probably or almost certainly pathogenic one[23]. It 
should be mentioned that because of highly polymorphic nature of mtDNA, the establishing of polymorphic 
either pathogenic nature of any detected sequence change is still a major difficulty[23].

As for the other mutations, there are some theoretical pathways whereby they may promote metabolic 
consequences, altering the expression of cardiometabolic risk factors via increased oxidative stress, increased 
ROS production, and mitochondrial dysfunction, which may be generally described as the inhibition of 
mitochondrial consumption of oxygen, the changes in the mitochondrial membrane potential, and the 
reduction of adenosine triphosphate levels due to an disbalanced intake and expenditure of energy[24].

Mutation m.652delG (guanine deletion at position 652) in MT-RNR1 gene affects the function of 12S 
ribosomal RNA, even leading to complete mitochondrial dysfunction due to decrease in expression of 
respiratory chain enzymes, reduction of the amount of these enzymes and increase of oxidative stress[25]. 
Mutation m.1555A>G in the same gene leads to a single nucleotide substitution, and is known to be 
associated with mitochondrial deafness and aminoglycoside-induced sensorineural hearing loss[26,27]. 
Interesting, this mutation is also thought to stabilize the ribosome and provide some beneficial effect[20]. 

Table 4. Heteroplasmy level of mtDNA (% of mutant allele) in leukocytes from MetS patients and MetS-free study 
participants

Heteroplasmic mtDNA mutation MetS-free study participants, n  = 176 MetS patients, n  = 44 P  for the difference
m.652delG 2.8 (7.7) 5.3 (9.0) NS
m.1555A>G 17.1 (11.6) 14.3 (7.4) NS
m.3256C>T 22.6 (14.3) 26.0 (16.1) NS
m.3336T>C 7.9 (5.1) 13.1 (15.5) 0.036
m.5178C>A 15.4 (9.9) 16.7 (13.3) NS
m.12315G>A 22.0 (12.5) 25.3 (12.3) NS
m.13513G>A 24.6 (19.1) 20.3 (17.1) NS
m.14459G>A 17.2 (12.9) 17.2 (12.1) NS
m.14846G>A 14.6 (11.5) 20.8 (13.7) 0.047
m.15059G>A 6.2 (5.7) 6.7 (5.8) NS

NS: not significant; MetS: metabolic syndrome; mtDNA: mitochondrial DNA
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In support of this, within our study, m.1555A>G heteroplasmy level negatively correlated with systolic 
blood pressure and positively correlated with HDL cholesterol, thus trending to be associated with lower 
cardiometabolic risk.

Mutation m.3256C>T occurring in coding sequence of the MT-TL1 gene (encodes tRNA leucine) leads to 
impaired protein synthesis due to reduced number of cellular organelles[28,29]. This effect can be enhanced 
by mutation m.12315G>A, which is located in the coding sequence of another gene encoding tRNA leucine, 
namely, the MT-TL2 gene. So, the impairments in tRNA leucine production may act as a previously 
unknown mechanism for the development of metabolic abnormalities, with the m.12315G>A mutation 
known to be associated with mitochondrial encephalomyopathy[30].

Three mutations (m.14459G>A, m.14846G>A, and m.15059G>A) occur in coding regions of two genes 
responsible for the synthesis of subunit 6 of NADH dehydrogenase and cytochrome B (MT-ND6 and 
MT-CYB genes, respectively). The impairments of these respiratory chain enzymes can attenuate NADH 
oxidation and ubiquinone (CoQ) reduction and promote oxidative stress. Mutation m.14459G>A leads 
to alanine to valine substitution in a conserved region of ND6 protein, and is associated with several 
mitochondrial disorders (Leber’s hereditary visual neuropathy, hereditary ocular neuropathy, dysfunction 
of basal ganglia, atrophy of visual nerve, musculospastic syndrome and encephalopathy)[31,32]. Mutations 
m.14846G>A and m.15059G>A induce the damage of cytochrome B. The former (glycine to serine 
substitution at position 34) affects intermediate transfer of electrons in mitochondrial respiratory chains. 
The latter (glycine to stop codon substitution at position 190) stops translation and leads to the loss of 244 
amino acids at C-terminal of protein. Both mutations reduce enzymatic function of cytochrome B, and are 
associated with mitochondrial disorders in various myopathies[33,34].

The list of mtDNA mutations associated with metabolic and atherosclerotic diseases obviously needs to be 
supplemented with new variants deserving further investigation. As an example, the T/C substitution at 
position 16189 in the hypervariable D-loop of the control region is suspected to be associated with various 
multifactorial diseases; the frequency of this mtDNA variant in patients with coronary artery disease and 
type 2 diabetes mellitus was higher as compared to healthy individuals of Middle European descent in 
Austria[35].

Defective cell metabolism is considered as the main mechanism of MetS development, due to the disbalance 
of nutrient intake and utilization for energy[36]. It is supposed that decreased fatty acid oxidation, in turn, 
increases the accumulation of fatty acyl-CoAs and other fat-derived molecules in various organs and 
cells, this causing the inhibition of insulin signaling, resulting in hyperinsulinemia, which targets various 
organs and tissues in metabolic diseases. It is known that mtDNA mutations correlate with increased ROS 
production in cells[37,38]. Thus, oxidative stress induced by genetic factors, aging and mitochondrial biogenesis 
can affect mitochondrial function, leading to insulin resistance and related pathological conditions, such as 
MetS, Type 2 diabetes mellitus, cardiovascular and atherosclerotic disease[39-42]. However, it is still not clear 
whether mitochondrial dysfunction is one of the primary causes of cardiometabolic disturbances, or merely 
a secondary effect[43].

Beyond doubt, this study has certain limitations. First, the atherosclerotic state of study participants 
was evaluated only by carotid ultrasonography and cIMT measurement, the latter being widely used as 
a surrogate marker for detecting subclinical atherosclerosis for risk prediction and disease progress[44]. 
Ultrasound-derived atherosclerosis metrics are independent predictors of cardiovascular events and improve 
risk prediction when added atop of conventional cardiovascular risk factors[45]. However, it can be argued 
that cIMT and carotid plaque measurement are insufficient for the diagnostics of systemic atherosclerosis, 
and therefore may be supplemented by other diagnostic techniques, like computer tomography or magnetic 
resonance imaging. However, it could be true if only these methods possessed much better resolution to 
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measure the plaque size and/or the intima-media thickness in a quantitative manner. In our study, the 
principal point was the use of cIMT as the continuous variable, which allows further correlation and 
regression analyses. Second, statistical analysis has shown that the sample size was insufficient to exclude 
type 2 error for mutations m.652delG, m.1555A>G, m.12315G>A, and m.13513G>A. It means that the null-
hypothesis on the presence of the differences for these variables in the case when we failed to observe them 
in our study due to insufficient sample size, cannot be rejected. 

In conclusion, the phenotype of MetS in this study was not explained directly by atherosclerosis-related 
mtDNA variants, or the known proatherogenic mtDNA mutations. By far, it may be hypothesized that 
mtDNA-related mechanisms in atherosclerosis and MetS are different, in spite of the similarity of several 
phenotypic characteristics. However, there is a convincing evidence that mtDNA damage may play a 
mechanistic role in arising and development of cardiovascular and metabolic disorders. Complexity of the 
MetS phenotype should be taken into account, as well as the uncertainty about the common pathogenic 
mechanisms explaining the clustering of metabolic abnormalities, and modulating effects of lifestyle 
factors[46]. The conventional role of modified low density lipoprotein in the development of atherosclerosis 
should be also assumed[47,48]. It may be speculated that the sets of mtDNA mechanistic biomarkers may be 
different in MetS and atherosclerosis. As an example, in the East Finland Founder Population Hypertension 
Genetics Study (EFFGE) the whole mtDNA was sequenced in 1,204 adult subjects, and the variants with 
the strongest association with obesity were retested in 1,656 subjects from the Young Finns Study. At least 7 
novel mtDNA variants were found to be associated with body mass index, and 6 - with obesity (body mass 
index above 30 kg/m2) (J.T. Salonen, personal communication). Interestingly, none of these mtDNA variants 
were ever shown to be associated with atherosclerosis or its clinical manifestations (or, more correct, tested 
for such association). So, the search for genetic determinants of the MetS remains the challenge.
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