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Abstract
The discovery of novel metallic glasses (MGs) with high glass-forming ability (GFA) has been an important area of 
active research for years in materials science and engineering. Unfortunately, the traditional approach based on 
trial-and-error methods is inefficient, time consuming and costly. Therefore, machine learning (ML) has recently 
drawn significant research interest as an alternative approach for the development of MGs. In this review, we 
discuss the current progress regarding the ML guided design of MGs from a variety of perspectives, including the 
GFA database, data representation, ML algorithms and numerical evaluation. Furthermore, we consider the 
challenges facing this field, including the scarcity and quality of GFA data, the development of physics informed 
data descriptors, the selection of appropriate algorithms and the necessity for experimental validation. We also 
briefly discuss possible solutions to tackle these challenges.
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INTRODUCTION
Since their first discovery in the 1960s[1], metallic glasses (MGs) have attracted extensive research attention 
because of their excellent properties, which include strong resilience[2], high strength[3], excellent hardness[3] 
and corrosion resistance[4] and good biocompatibility[5]. Unfortunately, due to their relatively poor glass-
forming ability (GFA), as-cast MGs can only attain a limited size, which restricts their development and 
application in various industrial sectors. Until now, the conventional design of MGs has been mainly based 
on trial-and-error methods with guidance from empirical rules[6]. However, this approach is well known to 
be inefficient with regards to time and cost. Thus, the development of new approaches for the design of 
MGs, particularly chemically complexed MGs with good GFA and properties, remains an open issue for the 
MG community.

The past decade has witnessed significant developments in data science and machine learning (ML). ML is a 
data-driven approach that has been proved to be considerably effective in addressing complicated 
problems[7]. Given that the design of MGs always has a target property, supervised learning, which has been 
well developed to seek the correlation between input descriptors and output labels, is the most preferred 
approach in ML modeling for MG design. To date, researchers have already built different supervised 
learning-based ML models to address various problems related to MG design, such as the GFA of alloys[8-27], 
GFA-related characteristic temperatures[13,14,19,20,23,25,28,29] and various other mechanical and magnetic 
properties[19,22,30]. With the hitherto reported data, one can design data descriptors based on compositional 
information, empirical parameters or physical theories. One can then apply classification and/or regression 
algorithms to train a ML model, which can be further used to guide the new MG discovery. A number of 
new MG compositions have been developed so far through ML[20,23,31]. These ML efforts are therefore highly 
promising for the acceleration of MG development.

Figure 1 illustrates two different approaches to the design of new MGs. As shown in Figure 1A, the 
conventional approach is in essence a trial-and-error method, which starts with compositional design based 
on either empirical rules or physical models and then proceeds to process selection and structural and 
property characterization. If the properties of the designed MG do not meet the need or requirements, the 
data are usually considered useless (or “bad” data) and are hence discarded. The same process can be 
repeated many times until the target properties are achieved, which produces “good” data but is usually time 
consuming and highly dependent on human skills and experience. In contrast, a typical data driven 
approach [Figure 1B] comprises three steps, i.e., data representation, ML modeling and experimental 
validation. In this case, both “bad” and “good” data with properly designed features (or descriptors) and 
labels are required to build up a database (or dataset). Afterward, one can train and develop a ML model 
based on these data that will be used subsequently for experimental validation. Compared to the 
conventional approach, the data driven (or ML-based) approach is less dependent on human factors, much 
more efficient and cost effective.

Nevertheless, we note that it is not straightforward to build a predictable ML model for MG design and 
there are several issues that must be considered. The first issue is that the dataset of MG is not large. Only 
thousands of MG compositions have been reported in the past 60 years and most still lack detailed property 
information. For example, the number of Vickers hardness data is fewer than 100, which is not adequate for 
ML modeling. Although one might develop physics-based descriptors for a small dataset for an enhanced 
ML performance[32], the current literature regarding ML guided MG design is still overwhelmed by 
empirical data descriptors. Furthermore, overfitting is another issue and needs to be addressed for effective 
ML modeling[7]. Considering the rapid development in this field, we provide a focused review on the recent 
ML guided MG design here. In particular, we discuss two general issues: (1) how ML models have been 
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Figure 1. Schematics of (A) a conventional approach and (B) a data driven approach for the design of MGs. MGs: Metallic glasses.

built; and (2) how ML validation and further ML prediction have been achieved.

GFA DATA
In principle, both data quantity and quality are important for ML modeling. As shown in Table 1, the 
majority of GFA data used for ML modeling are from prior experiments reported in the literature[23], while 
only a few from atomistic simulations. According to Zhou et al.[31], the available GFA dataset covers a wide 
range of MG compositions. As seen in Figure 2, the principal elements contained in the MG dataset include 
Fe, Zr, Ni, Al, Co, Mg, Cu, La, Pd and many others, as ranked according to the percentage of MGs based on 
them. Despite the seemingly compositional diversity, we note that MG compositions mainly encompass 
transition metals (e.g., Zr, Fe, Ni and Cu), alkaline-earth metals (e.g., Mg, Ca and Be), rare earth metals (e.g., 
La) and other metals (e.g., Al), as shown by the inset of Figure 2.

GFA data can come from handbooks, such as Phase Diagrams and Physical Properties of Nonequilibrium 
Alloys[35] and Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys[36]. In particular, it is 
noteworthy that that one may retrieve the GFA data directly from studies, such as Lu et al.[37] in 2002, 
Lu et al.[38] in 2007, Long et al.[39] in 2009, Guo et al.[40] in 2011, Tripathi et al.[41] in 2015, Ward et al.[23] in 
2018 and Zhou et al.[31] in 2021. In addition to experiments, we GFA data can be generated from atomistic 
simulations[12]. If we include all available data, the size of the GFA dataset could reach ~8000 as of today. 
Furthermore, one may consider building ML models with hundreds of data; however, it is always beneficial 
to enlarge the dataset size such that a wide range of compositions can be covered.
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Table 1. Comparison of recent works on the ML guided design of MGs

Source of data Data size Origin of data descriptors Design of data labels Refs.

Glass forming likelihood [8,20-27,33]Composition/empirical rules

GFA/elastic modulus/ΔTx, Trg and Tx [5-23,34]

Experiments 200-8000

Physical models Glass forming likelihood/GFA [31]

Atomistic simulations 78 Simulations GFA [12]

ML: Machine learning; MGs: metallic glasses; GFA: glass-forming ability.

Figure 2. Comparison of various MGs based on their percentage in reported MG compositions. The inset highlights the number of times 
that an element is counted in all MG compositions reported so far. MGs: Metallic glasses.

Although one may easily retrieve GFA data from prior works, data pre-screening and/or data 
transformation in order to rule out low-fidelity data usually needs to be performed. While this process of 
data pre-processing can be vital for ML modeling, particularly for a limited data size, we note that it has 
often been neglected in previous studies[14,15,18,42]. As noted by Liu et al.[24] and Zhou et al.[31], a GFA dataset 
built from successful experiments can be significantly biased if it only includes the data for good glass-
forming alloys, thereby potentially compromising the efficiency of either classification or regression ML 
models.

To mitigate this problem, one can create a more balanced dataset by data undersampling[24] or 
oversampling[31], which is particularly useful for classification ML modeling. In addition, one can perform 
data transformation such that the distribution of the transformed data becomes closer to a normal 
distribution than before. In practice, this could improve the performance of regression ML models built 
upon the data of high skewness[31], such as those reported in Refs.[37,43]. Here, we note that Deng et al.[16] 
reported that improper data transformation may also jeopardize the performance of a ML model. Given the 
difference in the datasets used in prior works, these reports imply that one must carefully examine the 
structure of datasets relevant to the physical problem (e.g., range, skewness and so on) before choosing an 
appropriate method for data pre-processing. While the quality of the GFA data can be compromised by the 
traditional design of experiments, such as the use of the casting mold size to approximate the critical glass-
forming size, which unavoidably leads to round up errors, human factors are additional issues that can 
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cause data inconsistency. It is not uncommon to find reported data for the same alloy from different groups 
that appear different. Thus, additional efforts are needed in order to obtain high-fidelity data. One possible 
route is through high-throughput combinatorial experiments[40] and the other is through atomistic 
simulations[12].

DATA REPRESENTATION: DESCRIPTORS AND LABELS
After sufficient data have been collected, proper descriptors and labels need to be developed for them. In 
theory, data descriptors provide expressive information that can be linked to data labels[44]. Therefore, the 
design of suitable data descriptors is important for successful ML modeling[7,23,31]. As shown in Table 1, the 
current design of data descriptors is mostly based on alloy compositions and empirical rules. Although the 
compositional descriptors can be readily calculated once an alloy is known[13,17,29], they lack physical 
significance and require other types of complementary descriptors[8,13,26]. Therefore, by following the 
empirical rules[6,45,46], researchers can translate compositional information into data descriptors in order to 
enhance the performance of ML modeling. These empirical descriptors could include mean atomic 
size[20-22,47], atomic size difference[16,21,24,47], mixing enthalpy[20-22,47], ideal mixing entropy[20-22,24,47], mean 
electronegativity[16,20,22,47], electronegativity difference[24,47] and mean valence electron concentration[20,22,24,47].

According to Ward et al.[23], the number of compositional and empirical descriptors derived from the 
constituent elements could amount to 186, indicating that the ML modeling of the GFA of MGs could have 
a very high dimension. However, this high dimension of data increases the computational cost and, most 
importantly, can degrade the performance of ML models[32,44]. In contrast, Zhou et al.[31] recently utilized 
eight physics guided data descriptors, which proved sufficient for the development of a reliable ML model. 
These eight descriptors were derived from the effects of atomic size misfit, correlated entropy and local 
chemical affinity, based on which one can draw the parallel coordinate plots (PCPs) for different types of 
MGs (e.g., Zr-, Cu- and La-based MGs). As shown in Figure 3A-F, it is evident that these eight physics 
guided descriptors are distributed within narrow “bands” for MGs that can form bulk glasses. In 
comparison, the similar “bands” in the PCPs appear wider for those that can only form glassy ribbons. This 
behavior is interesting, which suggests that the compositional space, as characterized by the physics guided 
data descriptors, is limited for bulk metallic glasses (BMGs) relative to that for glassy ribbons.

Although the origin of data descriptors can affect their dimension, one can optimize the dimension of data 
descriptors through unsupervised learning, such as the principal component analysis (PCA)[41]. In theory, 
PCA extracts the eigenvectors from the covariance matrix of the data with descriptors and only keeps those 
with the largest eigenvalues. In doing so, PCA can retain the most important information by keeping the 
descriptors with high coefficients of variation while discarding those with low coefficients of variance[24,26], as 
exemplified by Figure 4A. In addition, one can also calculate the Pearson’s correlation coefficient 
(PCC)[22,24,26,27] of data descriptors, which measures the linear correlation between any two descriptors, as 
shown in Figure 4B. In order to reduce the dimension of data descriptors, one usually keeps those with a 
high PCC magnitude (e.g., |PCC| > 0.8) and removes the rest. In addition to PCA and PCC, we note that the 
following descriptor selection algorithms, such as the sequential backward selector[11,48], the exhaustive 
feature selector[11,48] and the ReliefF algorithm[22,49], are also available, which have already proved effective in 
improving the performance of ML modeling[11,22,24,26,27,41]. With respect to data labeling, we note that data 
labels are usually taken directly from the targeted properties, such as GFA, elastic modulus and GFA-related 
characteristic temperatures, for regression ML modeling, as shown in Table 1. In comparison, researchers 
often apply binary labeling for classification ML modeling. For instance, the good data or typical MG 
compositions can be labeled as “1”, while the bad data or non-MGs can be labeled as “0” according to 
Refs.[8,20-27,33].
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Figure 3. Parallel coordinate plots of eight physics guided data descriptors for (A) Zr BMGs, (B) Cu BMGs, (C) La BMGs, (D) Zr glassy 
ribbons, (E) Cu glassy ribbons and (F) La glassy ribbons. Reprinted from Ref.[31], copyright (2021), with permission from Springer Nature. 
BMGs: Bulk metallic glasses.

ML MODELING
Once the high-fidelity data have been properly represented, one can develop ML models based on the 
available ML algorithms. Figure 5A shows the variety of ML algorithms that have been applied in the design 
of MGs, which include support vector machines (SVMs)[8,18,19,21,26,27,31], artificial neural networks 
(ANNs)[13-15,18,20,21,24,28,29,31], k-nearest  neighbors[21,27], neighborhood components analysis[34], decis ion 
trees[9,11,17,21,26,31], random forests (RFs)[10,12,16,21-23,25-27,31,33,42], fusion algorithms[27], linear regression[18,26], Gaussian 
process regress[21,31], least absolute shrinkage and selection operator[12], ridge regression[12] and symbolic 
regression. These algorithms can gage the effect of data descriptors by a parameter generated by the 
descriptors[22]. Among these ML algorithms, we note that some have shown good performance and high 
adaptability, and are therefore very popular, such as ANNs. The common practice is that one can test 
different algorithms to solve the same problem and choose the best performing one to guide the subsequent 
alloy design.

According to the current literature, we note that traditional supervised learning dominates the ML 
modeling of MG design. To the best of our knowledge, we are not aware of any unsupervised learning 
algorithms that have been directly for the design of MGs except for the reduction of data 
dimensions[22,24,26,27,41]. For the sake of comparison, Figure 5B shows the word cloud depiction of the 
aforementioned ML algorithms. The font size for each ML algorithm corresponds to the frequency of its 
use. Clearly, RFs, ANNs and SVMs are the first three most popular ML algorithms, which could be 
attributed to their good performance in both regression and classification ML modeling. In addition to 
traditional supervised learning, deep learning was recently utilized for the design of MGs[50], such as the 
convolutional neural network, which was able to identify good glass-forming compositions at a high testing 
accuracy of 96.3%. Meanwhile, one can apply the 2D pseudo-image feature space to extract domain 
knowledge based features automatically from a small dataset[50]. These novel ML techniques are useful for 
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Figure 4. Descriptor selection based on (A) coefficient of variance of descriptors and (B) Pearson correlation coefficient matrix. 
Reprinted from Refs.[24,27], copyright (2020) & (2021), with permission from Elsevier.

the design of new MGs with superior GFA.

In training a ML model, various problems, such as underfitting, overfitting or irreducible errors[7], may 
occur, leading to poor performance and predictability of the ML model. Therefore, it is necessary to 
evaluate or validate the model predictability with “unseen” data, i.e., the data not used for model training. 
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Figure 5. (A) Schematic of available ML algorithms applied in MG design. (B) Word cloud depiction of ML algorithms in (A). Note that 
the larger the font, the more frequent the corresponding algorithm has been used. ML: Machine learning; MG: metallic glass.

Until now, the most commonly used validation methods have been hold-out validation[24] and k-fold cross-
validation[22]. In addition, one can also use the root mean square error[20,24,31], the coefficient of determination 
(R2)[10,12,16,17,31,42] and the correlation coefficient (R)[14,15,18,20,22,23,25,28] to validate the predictability of a regression 
ML model. As we previously discussed, the quality of the available GFA data is adversely affected by 
experimental measurements (e.g., round-up error[31,51]) and the data distribution (e.g., high skewness[16,17,31]). 
Therefore, the performance of ML models built upon these data is not high. According to Refs.[10,16,17], the R2 
value is ~0.7 for well-trained GFA regressors. Recently, Zhou et al.[31] managed to increase the R2 value to 0.8 
after reducing the skewness of the GFA data. In contrast, if the data label is a GFA-related temperature (e.g., 
Tg, Tx and Tl), which is not heavily affected by either round-up errors or a highly skewed distribution, the R2 
value can be as high as 0.94-0.99 for well-trained ML models[29,42].

Alternatively, the performance of a GFA classifier is gaged by its overall accuracy, which depends on data 
noise and diversity. According to the literature[21,23,24,31], the overall accuracy of a GFA classifier is ~80%-90%. 
Apart from that, the model precision and recall of a specific class[11,24] are another two metrics for the 
performance of a GFA classifier, which are characterized by the confusion matrix. Figure 6A shows the 
confusion matrix of a well-trained GFA classifier, which has the entry of 81.6% for the positive predictive 
value (PPV) for the precise prediction of MG, 88.8% for the true positive rate (TPR) for the recall of MG, 
82.9% for the negative predictive value (NPV) for the precise prediction of non-MG and 73.1% for the true 
negative rate (TNR) for the recall of the non-MG class[24]. This behavior indicates that the GFA classifier is 
well trained with a good and balanced performance. In addition, the receiver operating characteristic (ROC) 
curve, as shown in Figure 6B, is another performance indicator for a GFA classifier. We note that the ROC 
curve simply connects the origin (0, 0) and (1, 1) as a straight line for a dummy classifier (i.e., random 
guessing) and the value for the area under curve (AUC) is 0.5. In contrast, the ROC curve for a best 
performing classifier would bend rapidly toward TPR = 1 with AUC = 1[24]. In practice, the AUC value is 
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Figure 6. (A) Confusion matrix and (B) ROC curves for a classification ML model for MG formation. Note that the terminology and 
derivations in (A) are true negative (TN), false negative (FN), false positive (FP), true positive (TP), negative predictive value (NPV = 
TN/(TN + FN), false omission rate [FOR = FN/(TN + FN)], false discovery rate [FDR = FP/(FP + TP)], positive predictive value [PPV = 
TP/(TP + FP)], true negative rate [TNR = TN/(TN + FP)], false positive rate [FPR = FP/(FP + TN)], false negative rate [FNR = FN(TP + 
FN)], true positive rate [TPR = TP/(TP + FN)] and accuracy [ACC = (TP+TN)/(TP + TN + FP + FN)]. Reprinted from Ref.[24], copyright 
(2020), with permission from Elsevier. ROC: Receiver operating characteristic; ML: machine learning; MG: metallic glass.

~0.94-0.95[24,31] for a well-trained GFA classifier. These numeric metrics provide the results of the immediate 
evaluation of the predictability of the ML models after data training. Based on the current literature, it 
appears that the ML models, particularly the GFA classifiers[8,20,22-24,27,31,33], exhibit a very good performance 
according to the results of numerical evaluation.

EXPERIMENTAL VALIDATION
Although numerical validation provides the first and immediate assessment of the ML modeling, we stress 
that it is necessary to further evaluate the predictability of a ML model with experiments. In a recent work 
by Zhou et al.[31], the authors tested two ML models, the Levenberg-Marquardt backpropagation artificial 
neural network model (LMANN) and the ration quadratic kernel-based Gaussian process regression model 
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Figure 7. Comparison of GFA predictions from (A) RQGPR and (B) LMANN models with the experimental results obtained from the 
quasi-ternary Zr-Cu-(Ag, Al) system by Inoue et al.[52]. Reprinted from Ref.[31], copyright (2021), with permission from Springer Nature. 
GFA: Glass-forming ability; RQGPR: ration quadratic kernel-based Gaussian process regression; LMANN: Levenberg-Marquardt 
backpropagation artificial neural network.

(RQGPR) for the design of MGs. Interestingly, while these two ML models exhibit a similar value of R2 
(~0.8) in numerical validation, they made noticeably different predictions with respect to the experimental 
data obtained from the Zr-Cu-(Ag, Al) quasi-ternary BMGs[52], which were not included in the original 
database for the ML models [Figure 7]. As seen in Figure 7A and B, it is clear that the predictions of the 
RQGPR model fit well with the experiments, while those of the LMANN model are clearly off from the 
experimental data [Figure 7B], which simply contradicts the results of numerical validation. Unfortunately, 
we note that only a few ML models were validated by experiments[9,19,20,23-26,28,29,42], so far and it is still not a 
mandate to carry out experimental validation on ML modeling. One possible reason for the disparity 
between theory and experiment may be due to the relative scarcity of high-fidelity experimental GFA data, 
which amount to only several hundred should the data of glassy ribbons be excluded. Therefore, as a new 
MG was designed, it could be out of the original design space spanned by the available MGs. In such a case, 
we would suggest that the adaptability and reliability of any future ML models should be tested both 
numerically and experimentally.
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Figure 8. Data visualization of GFA dataset (875 data) and newly designed MGs reported by Zhou et al.[31] through PCA. Note that PC1 
stands for the first principal component while PC2 represents the second. GFA: Glass-forming ability; MGs: metallic glasses; PCA: 
principal component analysis.

Finally, we discuss the new MGs that were designed based on the ML models. According to the literature, 
Ward et al.[23] developed six Zr-based BMGs, Liu et al.[24] developed a series of glassy ribbons in the Ti-Fe-Cu 
and Ti-Ni-Zr ternary systems, Zhou et al.[31] developed six Zr-based BMGs and six high entropy glassy 
ribbons and Samavatian et al.[20] developed four Zr-based BMGs. First of all, it is clear that most of the newly 
designed MGs are concentrated on one specific type, i.e., Zr-based MGs, and it is not known yet whether 
these ML models can be extended to other types of MGs. To reveal the relation of some new MGs with the 
GFA dataset, we plot the distribution of the GFA dataset together with some new MGs by applying PCA to 
all data with the physics guided data descriptors provided by Zhou et al.[31]. As shown in Figure 8, it is 
obvious that the newly designed MG compositions just fall into the area covered by the GFA dataset. In 
other words, the accelerated search of new MGs could be effective only within the compositional space 
spanned by the existing data. Therefore, should more interesting or unusual MGs be discovered in future, 
we would require more high-fidelity data to expand the compositional space, resulting in the need for more 
extensive research into data generation via a high-throughput means.

SUMMARY
We have provided a critical review on the recent progress in the ML guided MG design for superior GFA. 
Compared to the traditional trial-and-error approach, the data-driven approach is powerful in that it can 
significantly accelerate the discovery of new MGs. However, we are still facing challenges with respect to the 
development of a reliable and adaptive ML models because of the lack of sufficient high-fidelity GFA data 
across different types of MGs. In addition, we note that the development of data descriptors and the choice 
of ML algorithms are also important, which could affect the results of numerical and experimental 
validation. Finally, we also note that nearly all reported ML algorithms belong to supervised learning, which 
demands human interventions during model training and could be heavily influenced by human factors in 
exploring the multi-dimensional compositional space. Therefore, in the opinion of the current authors, it 
may be worthwhile to extend the current efforts to novel learning algorithms (e.g., deep 
learning/unsupervised learning), such that an automated design of MGs could become possible in future.
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