Supplementary material

Effect of the crystal size of ZSM-11 zeolite on the catalytic performance and reaction route in methanol to olefins

Kai Yuan^{1,2,#}, Xiangyu Jia^{1,2,#}, Sen Wang^{1,*}, Sheng Fan^{1,2}, Shipei He^{1,2}, Pengfei Wang¹, Zhangfeng Qin^{1,*}, Mei Dong¹, Weibin Fan¹, Jianguo Wang^{1,2,*}

¹State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of

Sciences, P. O. Box 165, Taiyuan 030001, Shanxi, China.

²University of Chinese Academy of Sciences, Beijing 100049, China.

[#]These authors contributed equally to this work.

Corresponding authors: Tel.: +86-351-4046092; Fax: +86-351-4041153. E-mail:

wangsen@sxicc.ac.cn (S. Wang); qzhf@sxicc.ac.cn (Z. Qin); iccjgw@sxicc.ac.cn (J. Wang).

Zeolite	$\mathrm{Al}_{\mathrm{F}}\left(\% ight)$	Al _{EF} (%)	Aluminum distribution (%)						
			48.5 ppm	55.6 ppm	58.1 ppm	53.2 ppm			
L-ZSM-11	98.7	1.3	6.8	39.3	8.2	45.7			
M-ZSM-11	98.3	1.7	8.5	37.6	8.9	45.0			
S-ZSM-11	96.2	3.8	2.8	47.9	2.8	46.5			

 Table 1. Proportion of integrated peaks obtained by deconvolution of the ²⁷Al MAS

 NMR spectra of various ZSM-11 zeolites.

Al_F and Al_{EF} represent the percentages of Al atoms in the framework and extra-framework, respectively, obtained as the relative intensity of the signals at 45-65 and 0 ppm, respectively, in the ²⁷Al MAS NMR spectra. The proportions of various peaks were obtained by dividing their intensity by the total intensity of the signals in the range of 45-65 ppm. The peaks at 48.5, 55.6, and 58.1 ppm correspond mainly to Al atoms at T3, T4 + T6, and T5 sites, respectively, which are located in the intersection cavity, whereas the peak at 53.2 ppm represents the Al atoms at T1 + T2 + T7 sites in the straight channel.

 Table 2. Catalytic results of various ZSM-11 zeolites in MTO.

Zeolite (ХM	Product distribution (%)						(P-E)/	2-	TON	Lifet		
	(%)	C_1^0	C ₂₋	$C_2^=$	$C_3^{=}$	$C_4^{=}$	$C_5^{=}$	C ₆₊	arom	Е	MB/E	$\times 10^5$	ime
L-ZSM-11	99.9	1.5	6.1	7.8	39.	26.1	10.	3.7	5.1	4.1	0.8	1.1	74
M-ZSM-11	99.9	1.3	5.5	5.6	41.	26.4	12.	4.0	3.4	6.5	1.3	1.9	134
S-ZSM-11	99.9	1.2	5.3	4.9	42.	26.5	12.	4.1	2.7	7.7	1.6	3.5	243

Methanol conversion and product distribution are provided at the half lifetime; C_1^0 , C_{2-5}^0 , $C_2^=$, $C_3^=$, $C_4^=$, $C_5^=$, C_{6+} , and arom. represent methane, ethane to pentane, ethene, propene, butene, pentene, aliphatics higher than pentane/pentene, and the sum of aromatics (benzene, toluene, xylene, and trimethylbenzene), respectively. (P-E)/E and 2-MB/E are the selectivity ratios of ([propene]-[ethene])/[ethene] and ([2-methylbutane] + [2-methyl-2-butene])/[ethene], which are used as indicators for the relative contribution of the alkene cycle to the aromatic cycle^[1-4]. The turnover numbers (TONs) were determined by the accumulated number of methanol molecules converted per Brønsted acid site throughout the

Zeolite	WHSV	Con.	Produc	t distribu	$(\mathbf{P}-\mathbf{E})/\mathbf{E}$	2MB/F			
	(h^{-1})	(%)	$C_2^=$	$C_3^{=}$	C4-C6	arom.	others	-(I L)/L	21 v1D /12
L-ZSM-11	19.0	18.8	11.6	37.4	45.3	3.7	2.0	2.2	0.9
M-ZSM-11	9.5	16.1	8.2	39.7	47.9	2.0	2.2	3.8	1.3
S-ZSM-11	8.7	19.1	4.8	41.2	51.6	0.7	1.7	7.6	2.5

 Table 3. Catalytic performance of various ZSM-11 zeolites in MTO at sub-complete conversion of methanol.

 $C_2^{=}$, $C_3^{=}$, C_4 - C_6 , and arom. represent ethene, propene, C_4 - C_6 aliphatics, and the sum of aromatics (benzene, toluene, xylene, and trimethylbenzene), respectively.

Figure 1. Schematic diagram of the catalytic evaluation system for the conversion of methanol to olefins (MTO).

Figure 2. ²⁷Al MAS NMR spectra of L-ZSM-11, M-ZSM-11, and S-ZSM-11 zeolites.

Figure 3. Distribution of ¹³C atoms in ethene over L-ZSM-11 (A) and S-ZSM-11 (B) and (C) isotopic labeling patterns of retained polyMBs (xylene to hexa-MB) after different reaction times of co-reacting ¹³C-methanol with ¹²C-benzene (molar ratio 10.8:1) at 350 °C.

Reference

- Sun XY, Mueller S, Liu Y, et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. *J. Catal* 2014;317:185-97. [DOI: 10.1016/j.jcat.2014.06.017]
- [2] Wang S, Chen YY, Wei ZH, et al. Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to ole*fi*ns over H-ZSM-5 zeolite. *J. Phys. Chem. C* 2015;119:28482-98. [DOI: 10.1021/acs.jpcc.5b10299]
- [3] Bjorgen M, Joensen F, Lillerud KP, Olsbye U, Svelle S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-Beta. *Catal. Today* 2009;142:90-7. [DOI: 10.1016/j.cattod.2009.01.015]
- [4] Ilias S, Khare R, Malek A, Bhan A. A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5. *J. Catal* 2013;303:135-140. [DOI: 10.1016/j.jcat.2013.03.021]
- [5] Yuan K, Jia XY, Wang S, et al. Regulating the distribution of acid sites in ZSM-11 zeolite with different halogen anions to enhance its catalytic performance in the conversion of methanol to olefins. *Microporous Mesoporous Mater* 2022;341:112051-64. [DOI: 10.1016/j.micromeso.2022.112051]