## **Energy Materials**

## **Supplementary Material**

Enhancing the long-term cycling stability of Ni-rich cathodes via regulating the length/width ratio of primary particle

Duzhao Han<sup>1</sup>, Jilu Zhang<sup>1</sup>, Mingyu Yang<sup>1</sup>, Keyu Xie<sup>2</sup>, Jiali Peng<sup>3</sup>, Oleksandr Dolotko<sup>3</sup>, Cheng Huang<sup>4</sup>, Yuping Wu<sup>5</sup>, Le Shao<sup>6</sup>, Weibo Hua<sup>1,\*</sup>, Wei Tang<sup>1,\*</sup>

<sup>1</sup>School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

<sup>2</sup>State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
<sup>3</sup>Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany.

<sup>4</sup>Guangdong Jiana Energy Technology Co., Ltd., Guangzhou 511449, Guangdong, China.

<sup>5</sup>School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China.

<sup>6</sup>Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710049, Shaanxi, China.

\*Correspondence to: Prof. Wei Tang, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, China. E-mail: tangw2018@xjtu.edu.cn; Prof. Weibo Hua, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, China. E-mail: weibo.hua@xjtu.edu.cn



| Complex   | Cher  | Chemical composition (at. %) |      |  |  |
|-----------|-------|------------------------------|------|--|--|
| Samples - | Ni    | Co                           | Mn   |  |  |
| HR-NCM    | 80.43 | 9.69                         | 9.88 |  |  |
| LR-NCM    | 81.01 | 9.55                         | 9.84 |  |  |

Supplementary Table 1. Chemical compositions of Ni, Co and Mn for the NCM cathode powders obtained from the ICP-AES.

Supplementary Table 2. Lattice parameters of HR-NCM derived from the Rietveld refinement against the sXRD patterns.

| HR-NCM (Li[Ni <sub>0.8</sub> Co <sub>0.1</sub> Mn <sub>0.1</sub> ]O <sub>2</sub> ) |      |   |   |        |        |
|------------------------------------------------------------------------------------|------|---|---|--------|--------|
| Atom                                                                               | Site | X | У | Z      | Occ.   |
| Lil                                                                                | 3a   | 0 | 0 | 0      | 0.9869 |
| Ni1                                                                                | 3b   | 0 | 0 | 0.5    | 0.7869 |
| Co1                                                                                | 3b   | 0 | 0 | 0.5    | 0.0999 |
| Mn1                                                                                | 3b   | 0 | 0 | 0.5    | 0.0999 |
| 01                                                                                 | 3c   | 0 | 0 | 0.2412 | 1      |
| Li2                                                                                | 3b   | 0 | 0 | 0.5    | 0.0131 |
| Ni2                                                                                | 3a   | 0 | 0 | 0      | 0.0131 |

a = b = 2.8727(4) Å, c = 14.1930(5) Å, Volume = 101.4372 Å<sup>3</sup>

 $\alpha = \beta = 90.0, \gamma = 120.0$ 

 $R_p = 8.12\%$ ,  $R_{wp} = 6.05\%$ ,  $Chi^2 = 1.34$ 

Supplementary Table 3. Lattice parameters of LR-NCM derived from the Rietveld refinement against the sXRD patterns.

| LR-NCM (Li[Ni <sub>0.8</sub> Co <sub>0.1</sub> Mn <sub>0.1</sub> ]O <sub>2</sub> ) |      |   |   |        |        |
|------------------------------------------------------------------------------------|------|---|---|--------|--------|
| Atom                                                                               | Site | X | У | Z      | Occ.   |
| Lil                                                                                | 3a   | 0 | 0 | 0      | 0.9865 |
| Ni1                                                                                | 3b   | 0 | 0 | 0.5    | 0.7659 |
| Co1                                                                                | 3b   | 0 | 0 | 0.5    | 0.0999 |
| Mn1                                                                                | 3b   | 0 | 0 | 0.5    | 0.0999 |
| 01                                                                                 | 3c   | 0 | 0 | 0.2412 | 1      |
| Li2                                                                                | 3b   | 0 | 0 | 0.5    | 0.0134 |
| Ni2                                                                                | 3a   | 0 | 0 | 0      | 0.0134 |

a = b = 2.8713(1) Å, c = 14.2017(1) Å, Volume = 101.3988 Å<sup>3</sup>

 $\alpha = \beta = 90.0, \gamma = 120.0$ 

 $R_p = 8.65\%$ ,  $R_{wp} = 5.64\%$ ,  $Chi^2 = 0.84$ 

Supplementary Table 4. Lattice parameters of cathode materials before and after cycles derived from the Rietveld refinement against the XRD patterns.

| Comples -             |              | 8            |                          |
|-----------------------|--------------|--------------|--------------------------|
| Samples               | <i>a</i> (Å) | <i>c</i> (Å) | Volume (Å <sup>3</sup> ) |
| HR-NCM (before cycle) | 2.8727(4)    | 14.1930(5)   | 101.4372                 |
| HR-NCM (after cycles) | 2.8732(1)    | 14.2025(6)   | 101.5439                 |
| LR-NCM (before cycle) | 2.8713(1)    | 14.2017(1)   | 101.3988                 |
| LR-NCM (after cycles) | 2.8839(9)    | 14.3132(9)   | 103.0900                 |



**Supplementary Figure 1.** XRD patterns of the hydroxide precursors synthesized under different pH conditions.



**Supplementary Figure 2.** The low magnification SEM images of (a) HR-precursor and (b) LR-precursor.



**Supplementary Figure 3.** Enlarged XRD patterns for (a) 006/102 and (b) 018/110 reflections of Ni-rich cathode materials.



**Supplementary Figure 4.** The magnified XRD patterns to highlight the intensity ratio of 003/104 reflections.



**Supplementary Figure 5.** TEM-EDS element mapping of Ni, Co, Mn, O in HR-NCM material.



**Supplementary Figure 6.** TEM-EDS element mapping of Ni, Co, Mn, O in LR-NCM material.



**Supplementary Figure 7.**  $dQ dV^{-1}$  curves of the HR-NCM and LR-NCM cathodes during the first cycle between 2.7 and 4.3 V.



**Supplementary Figure 8.** CV curves of (a) HR-NCM and (b) LR-NCM cathodes with different cycles in the voltage range of 2.7-4.3 V at a scanning rate of  $0.1 \text{ mV s}^{-1}$ .



**Supplementary Figure 9.** Charge-discharge curves of (a) HR-NCM and (b) LR-NCM cathodes at certain cycles. (c) Corresponding voltage decay for HR-NCM and LR-NCM cathodes upon 200 cycles between 2.7 and 4.3 V.



**Supplementary Figure 10.** Calculated apparent Li<sup>+</sup> diffusion coefficient obtained from GITT for HR-NCM and LR-NCM: (a) charge process and (b) discharge process.



**Supplementary Figure 11.** GITT tests: Transient voltage-time curves, applied current pulse *vs.* voltage for a single titration about 3.8 V and corresponding variation of the potential for titration plotted against  $t^{1/2}$  to show a linear fit for (a, b, c) HR-NCM and (d, e, f) LR-NCM cathodes.



**Supplementary Figure 12.** EIS spectra tested under different temperatures of (a) HR-NCM and (b) LR-NCM cathodes. (c) Arrhenius plots of  $\ln i_0$  versus 1000/T for the

cathodes with the linear fitting results to calculate the apparent activation energy  $(E_a)$  of the interface reactions.



**Supplementary Figure 13.** Stacked profiles of the *in situ* XRD patterns of the HR-NCM cathode during the initial charge/discharge process.



**Supplementary Figure 14.** Stacked profiles of the *in situ* XRD patterns of the LR-NCM cathode during the initial charge/discharge process.



**Supplementary Figure 15.** Magnified XRD patterns of 006/102 splitting reflections before and after 100 cycles of (a) HR-NCM and (b) LR-NCM.



**Supplementary Figure 16.** The cross-sectional SEM images of uncycled (a) HR-NCM and (b) LR-NCM cathodes.



**Supplementary Figure 17.** EIS curves measured before cycling of HR-NCM and LR-NCM electrodes.



**Supplementary Figure 18.** The apparent ion diffusion coefficient during charging process at various cycles of (a) HR-NCM and (b) LR-NCM cathodes.