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INTRODUCTION

Stroke is the fourth leading cause of death in the 
United States and is a prominent cause of long-term 
disability.[1] The prevalence of stroke among adults 
age 20 or older is estimated at 6.8 million, with 
795,000 individuals experiencing a new or recurrent 
stroke annually.[1] Subarachnoid hemorrhage (SAH), 
secondary to ruptured intracranial aneurysms (IAs) 
comprises 1-7% of all strokes.[2] On an average 3.6-6% 
of the adult population harbor IAs; however, the rate 
of rupture is estimated to be between 0.05% and 
0.5%.[3] The small number of IAs that do rupture 
have a poor prognosis with a mortality rate of roughly 
50%.[3] Of those that survive the initial hemorrhage, 
approximately 30% remain severely disabled, resulting 
in a poor quality of life.[4]

The mechanisms of aneurysm genesis, maturation, and 
eventual rupture remain incompletely defined, yet new 
studies highlight multiple genetic and environmental 
factors that may contribute to the pathogenesis. 

Chronic hypertension, binge drinking, and cigarette 
smoking have all been linked to aneurysm development 
and rupture.[5-7] Inflammation represents a potential 
common endpoint through which these diverse 
environmental stimuli enact pathologic changes in 
the intracranial vasculature, thus leading to aneurysm 
formation.

Animal aneurysm models, as well as analysis of 
human aneurysms, suggest that inflammation is 
a key mediator in the formation, progression, and 
rupture.[5,8-19] Multiple studies have demonstrated the 
inflammatory response to be associated with persistent 
pathologic vascular remodeling in response to an insult 
to the vessel wall. Abnormal blood flow, chronically 
elevated blood pressure, and shear stress have all been 
linked to the induction of the inflammatory response 
as well as IA pathogenesis.[6,12,20-29] Central to the 
process of inflammation-driven vascular remodeling 
is endothelial and vascular smooth muscle cell (VSMC) 
dysfunction resulting in vessel weakening.[30] The 
inflammatory response associated with vascular 
remodeling is composed of multiple complex cellular 
and biochemical processes. VSMCs, endothelial cells, 
and inflammatory cells participate in intercellular 
signaling, resulting in the recruitment of immune cells, 
such as leukocytes, to the vessel walls.

We review the current literature pertaining to the role 
of leukocytes in aneurysm formation, progression, 
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and rupture. The contributions of individual cell 
types are detailed, with special attention paid to the 
cytokine and molecular profiles. The role of magnetic 
resonance imaging (MRI) as a means by which to 
evaluate aneurysm-associated inflammation is 
reviewed. Finally, we discuss leukocytes as potential 
targets of pharmacologic intervention.

DETECTION AND INVESTIGATION OF 
LEUKOCYTES IN HUMAN INTRACRANIAL 
ANEURYSM PATHOGENESIS

Currently, the literature suggests that leukocyte 
infiltration of the intracranial vasculature may play 
various roles in the prolonged formation and acute 
rupture of IAs. Frösen et al.[12] reported that IA walls 
obtained less than 12 h after rupture demonstrated 
T-cell and macrophage infiltration, as well as VSMC 
proliferation, indicating a chronic process that preceded 
rupture. In addition, the observation of leukocytes 
spread throughout aneurysm walls supports their role 
in the global deterioration of the vessel and suggests 
that their prominence in ruptured aneurysms is not an 
acute response to the sudden event.[31]

Transcriptome analysis of control vessels and IAs 
demonstrates upregulation of gene expression of the 
pro-inflammatory cytokines associated with leukocyte 
infiltration within aneurysm walls.[15,32-36] Weinsheimer 
et al.[35] in an analysis of IAs obtained from autopsies 
within 24 h of death, showed upregulation of 
several pro-inflammatory genes, including, adherens 
junction, the mitogen-activated protein kinase 
pathway, and Notch signaling. Krischek et al.[36] 
investigated gene expression on 10 IAs (6 ruptured 
and 4 unruptured) and determined that the most 
significantly upregulated pathway was antigen 
processing. Shi et al.[15] interrogated 6 IAs using the 
illumina microarray platform and determined focal 
adhesion, extracellular matrix receptor interaction, cell 
communication, inflammatory response, and apoptosis 
to be the most significant functional pathways 
involved in IA pathogenesis. These findings indirectly 
implicate leukocyte infiltration as a major contributor 
to aneurysm genesis and progression.

Finally, immunohistochemical analysis of the 
animal model and human aneurysms has repeatedly 
demonstrated leukocytes within the aneurysmal walls. 
Chyatte et al.[20] reported the presence of macrophages 
and T-lymphocytes within the walls of unruptured 
aneurysms. Ruptured aneurysms have also been found 
to harbor T-lymphocytes and macrophages within 
their walls.[12,31] In a study of ruptured and unruptured 
IAs, Kataoka et al.[31] observed leukocyte infiltration, 
particularly macrophages, in 50% of the unruptured 

and in all of the ruptured IAs. Using electron 
microscopy, the authors were able to demonstrate 
an association between advanced deterioration in 
the wall of ruptured aneurysms and the infiltration 
of leukocytes and macrophages.[31] Frösen et al.[12] 
also observed more prominent leukocyte infiltration 
in ruptured IAs when compared to unruptured IAs. 
These findings suggest that the structural architecture 
of ruptured aneurysms differs from that of unruptured 
aneurysms. Furthermore, leukocyte invasion appears 
to be a mediator of this change and a potential driving 
impetus behind the progression to aneurysm rupture.

ROLE OF MACROPHAGES

Animal and clinical studies have identified macrophages 
as important contributors to the formation and rupture 
of aneurysms. These cells participate in the synthesis 
and secretion of matrix metalloproteinases (MMPs) 
and elastases, which play significant roles in the 
degradation of the extracellular matrix and internal 
elastic lamina. Histopathological analysis of both 
unruptured and ruptured aneurysms has repeatedly 
identified macrophage infiltration within the aneurysm 
walls.[12,20,37] In addition, Ruzevick et al.[38] observed 
the pro-inflammatory haptoglobin 2-2 genotype to 
be associated with larger aneurysms and increased 
macrophage infiltration within the aneurysm walls.

Macrophage-depleted mice have been shown to have a 
moderate protective advantage from aneurysm formation 
and rupture, suggesting macrophages play a critical role 
in the aneurysm pathogenesis.[13,39] Corroborating this 
hypothesis are two animal studies investigating the 
role of monocyte chemoattractant protein 1 (MCP-1), 
an important macrophage chemoattractant that has 
been studied in atherosclerosis and abdominal aortic 
aneurysms (AAA).[40,41] By using MCP-1 knockout (KO) 
mice, both Aoki et al.[9] and Kanematsu et al.[13] were able 
to demonstrate a decrease in aneurysm formation and 
macrophage accumulation. Aoki et al.[9] also reported 
that inhibiting MCP-1 activity using a dominant 
negative mutant of MCP-1 resulted in the inhibition 
of aneurysm progression in rats. MCP-1 deficient mice 
also demonstrated decreased macrophage accumulation 
and expression of MMP-2 and MMP-9.[9] A recent 
study conducted by Chalouhi et al.[42] surveyed the 
cytokines and chemokines in aneurysm lumen blood 
and found an increase in chemoattractant cytokines 
interleukin-7 (IL-7), IL-8, and MCP-1, suggesting active 
recruitment of inflammatory cells into the aneurysm.

Nuclear factor-κB (NF-κB) is a family of transcriptional 
factors involved in regulating the expression of a 
variety of inflammatory factors including MCP-1. 
Aoki et al.[43] investigated the role of NF-κB in the 
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initiation and progression of IAs using animal models. 
The authors were able to demonstrate that NF‑κB 
participates in the initiation of IA formation through 
transactivation of many downstream genes related to 
macrophage recruitment and vascular inflammation, 
such as MCP‑1, vascular cell adhesion molecule 
1 (VCAM‑1), MMP‑2, MMP‑9, IL‑1β, and inducible 
nitric oxide synthase (iNOS).[43] In addition, NF‑κB 
decoy oligodeoxynucleotides (ODNs), which inhibit 
NF‑κB, abrogated the upreguation of inflammatory 
factors, including MCP‑1. In an additional study 
conducted by the same group, Aoki et al.[44] linked 
MCP‑1 expression in VSMCs with Ets‑1, a transcription 
factor implicated in many vascular inflammatory 
diseases. Ets‑1 binds to the promoter region of MCP‑1 
resulting in increased Ets‑1 expression. Utilizing the 
knowledge obtained from previous studies on the role of 
NF‑κB and Ets‑1, Aoki et al.[45] showed that treating rats 
with chimeric decoy ODNs, designed to simultaneously 
inhibit NF‑κB and Ets‑1, reduced aneurysm size while 
thickening aneurysm walls of preexisting aneurysms. 
Furthermore, decreased expression of MCP‑1 and 
reduced macrophage infiltration was observed in rats 
treated with the decoy ODNs.

Additional molecular signaling molecules associated 
with macrophage‑induced aneurysm formation 
include tumor necrosis factor alpha (TNF‑α) and 
stromal cell‑derived factor‑1 (SDF‑1). Several 
studies have suggested that TNF‑α is a key mediator 
in aneurysm development through the activation 
of several cytokines and MMPs.[17‑19,46] TNF‑α has 
been shown to upregulate MCP‑1, which in return 
attracts macrophages, thereby leading to additional 
TNF‑α expression in a positive feedback loop.[18] 
Using TNF‑α KO mice, Starke et al.[18] demonstrated 
a reduction in IA formation and rupture. Additional 
studies using a synthesized TNF‑α inhibitor 3, 
6’dithiothalidomide (DTH) substantiated the results 
from the KO experiments. Starke et al.[18] also showed 
DTH to inhibit IA progression with fewer ruptured IA 
in the treatment group compared to the control group. 
Furthermore, using tumor necrosis factor receptor 
superfamily member 1a (TNFR1) deficient mice, 
Aoki et al.[46] demonstrated suppressed IA formation 
with decreased NF‑κB activation, reduced MCP‑1 
and cyclooxygenase 2 (COX‑2) expression, and fewer 
infiltrating macrophages. These results suggest that 
TNF‑α/TNFR1 signaling is critical in IA pathogenesis.

Stromal cell‑derived factor‑1 is an important chemokine 
that promotes inflammation directly as well as through 
angiogenesis.[47] Macrophage recruitment and retention 
around new blood vessels has been shown to be mediated 
by SDF‑1.[48] Expression of SDF‑1 in IAs was recently 
evaluated in a study conducted by Hoh et al.,[47] wherein 

SDF‑1 was present in the walls of both human and mouse 
aneurysms. Hoh et al.[47] also found SDF‑1 promotes 
aneurysm wall angiogenesis through endothelial cell 
tube formation and macrophage infiltration. Inhibiting 
SDF‑1, using anti‑SDF‑1 blocking antibodies, supressed 
murine aneurysm wall angiogenesis and resulted in 
the development of significantly fewer IAs compared 
to control mice.

Macrophages mediate flow‑induced vascular 
remodeling, in part, through the release of MMPs, a 
process that under physiologic conditions, preserves 
vascular integrity and health.[39,49] However, increased 
levels of MMP expression, particularly MMP‑2 and 
MMP‑9, have been reported in IAs.[10,11,50,51] Studies using 
broad‑based MMP inhibitors, such as doxycycline, have 
shown significant reductions in the incidence of IAs 
in animal models.[49,52] Tolylsam, a selective inhibitor 
for MMP‑2, ‑9, and ‑12 also abolished the progression 
of IA, although it did not reduce the incidence of total 
aneurysmal changes.[10] Using more refined inhibition 
techniques, a greater understanding for the role of 
MMPs has materialized. Nuki et al.[52] showed that 
MMP‑9 KO mice, but not MMP‑2 KO mice, diminished 
the incidence of IAs. A separate study by Ota et al.[49] 
also demonstrates a reduced incidence of IAs in MMP‑9 
KO animals but not in MMP‑12 KO animals.

Whereas MMP‑9 is the main gelatinase, MMP‑12 is 
the main elastase secreted from macrophages. Since 
MMP‑12 appears to have no effect on aneurysm 
formation and rupture, other sources of elastases 
are likely. Neutrophil elastase is involved in 
atherosclerotic plaques and AAA and is produced 
by not only neutrophils but also macrophages and 
vascular endothelial cells.[53,54] Furthermore, neutrophil 
depletion studies inhibited AAA development through 
a non‑MMP‑2 and non‑MMP‑9‑mediated mechanism, 
implying other mediators must exist, including the 
possibility of neutrophil elastase.[55]

Another protease that is of interest is the cathepsin 
family (B, D, K, and S), which have been shown to be 
expressed in IAs and promote their progression.[56,57] 
Specifically, histological analysis of ruptured aneurysms 
exhibited a cluster of macrophages expressing cathepsin 
D within the aneurysm wall where there was evidence 
of collagen erosion.[31] Multiple studies suggest that 
a polarized macrophage population is associated 
with a variety of diseases including atherosclerosis, 
inflammatory lung disease, and inflammatory 
diseases of the nervous system.[58‑62] Two populations 
of macrophages, the M1 (pro‑inflammatory) and 
M2 (anti‑inflammatory) subtypes, have been identified. 
Predominance of the M1 subtype has been implicated 
in aneurysm progression and rupture.
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The M1 population is pro-inflammatory and secretes 
high levels of IL-2, IL-23, IL-6, IL-1, and TNF-α.[63] The M2 
population is antiinflammatory and secretes high levels 
of IL-10. Hasan et al.[63] examined 10 patients with IAs (5 
unruptured and 5 ruptured) for the presence of M1 and 
M2 macrophage populations. The authors demonstrated 
a predominance of M1 over M2 macrophages within 
the walls of ruptured aneurysms and observed an 
increase in mast cells in ruptured aneurysms compared 
to unruptured aneurysms. The authors hypothesized 
that the imbalance between M1 and M2 may be in part 
due to the effects of mast cells. Given these results, the 
interplay between M1 and M2 phenotypes appears to be 
important in the aneurysm pathogenesis and warrants 
further investigation.

ROLE OF MAST CELLS

Mast cells are resident leukocytes that contain 
cytoplasmic granules rich in histamine and heparin, as 
well as, the pro-inflammatory cytokines, TNF-α, IL-1, 
IL-3, IL-4, IL-5, IL-8 and IL-13, and transforming growth 
factor-beta.[64,65] Mast cell degranulation and release of 
cytokines has been linked with vascular inflammatory 
processes, such as, atherosclerosis and AAAs.[66,67] Recent 
investigations have targeted mast cells as contributors 
to IA genesis and progression. In a study conducted by 
Ishibashi et al.,[65] an increase in the total number of 
mast cells during IA formation was observed using a rat 
model. Mast cell degranulation inhibitors suppressed 
IA progression through attenuation of the local chronic 
inflammatory response, as was evident from decreased 
NF-κB activation, macrophage infiltration, and expression 
of MCP-1, MMPs, and IL-1β.[65] In addition, Ollikainen 
et al.[68] demonstrated that mast cells in the wall of 
IAs were associated with histopathological changes 
consistent with wall remodeling, lipid accumulation, 
and inflammatory cell infiltration. Finally, Hasan et al.[63] 
observed increased mast cells in ruptured IAs relative to 
unruptured IAs. Taken together, these studies indicate 
that mast cell degranulation play a critical role in 
aneurysm formation and may contribute to IA rupture.

ROLE OF NEUTROPHILS

Neutrophils are recruited to sites of injury and are 
a hallmark of acute inflammation. Although the 
contribution of neutrophils in IA formation is largely 
undefined, evidence from investigations into AAA 
pathogenesis offers insight into their role. Animal 
models have demonstrated progressively increasing 
neutrophil infiltration into the walls of AAAs over the 
course of aneurysm development.[55,69]

Neutrophil recruitment to the vascular wall may 
be associated with macrophage infiltration. Mice 

treated with an antineutrophil-antibody showed 
a decreased number of macrophages compared to 
wild-type (WT) mice.[55] Furthermore, depletion of 
neutrophils attenuated the size and incidence of AAA. 
Diminished macrophage infiltration in aneurysms 
of neutrophil-depleted mice is not associated with a 
decrease in chemoattracts such as MCP-1 and MIP-1α.[55] 
This suggests that additional mediators are contributing 
to this complex interaction. Importantly, there was no 
difference in expression of MMP-2 and MMP-9, despite 
a decrease in macrophage infiltration.

The presence of neutrophils was recently reported 
by Marbacher et al.[70] using a decellularized rat 
aneurysm model. This rat model simulated the loss 
of mural cells (endothelial and VSMCs), a hallmark 
of ruptured cerebral aneurysms.[12,31] The ruptured 
aneurysms displayed marked adventitial fibrosis 
and inflammation, complete wall disruption, and 
increased neutrophil accumulation in unorganized 
intraluminal thrombus.[70] Neutrophils trapped 
in unorganized thrombus are a major source of 
matrix-degrading proteases. Intraluminal thrombus 
is a site of protease and cytotoxic compound release 
leading to wall inflammation and subsequent matrix 
degradation.[55,71]

Myeloperoxidase (MPO) is a peroxidase enzyme that 
catalyzes the formation of a number of reactive oxidant 
species and is primarily produced by neutrophils.[72] 
Along with a well-known role in host mechanisms 
against pathogens, MPO has recently been implicated 
in the initiation and destabilization of atherosclerotic 
plaques.[73] In a study conducted by Gounis et al.,[74] 
MPO was detected in all three ruptured IAs and 10 out 
of 20 unruptured IAs.[74] Additionally, Gounis et al.[74] 
demonstrated that MPO positivity was a significant 
predictor of 5-year aneurysm rupture rate. An emerging 
picture suggests a key factor in aneurysm formation 
and rupture is the ongoing inflammatory process 
mediated by infiltration of leukocytes. This suggests 
that MPO may play an important role in the aneurysm 
pathogenesis. Therefore, MPO may also serve as a 
potential biomarker.

Neutrophils represent a potential therapeutic target for 
pharmacologic interventions designed at preventing 
aneurysm progression and rupture. Hannawa et al.[69] 
demonstrated suppressed AAA formation in L-selectin 
KO mice. L-selectin, an adhesion molecule expressed 
on the surface of most leukocytes, is responsible for 
the recruitment of immune cells.[75-77] Hannawa et al.[69] 
postulated that the diminished AAA formation seen in 
WT mice compared with the L-selectin KO mice is most 
likely due to the impaired recruitment of neutrophils 
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and macrophages. Specifically, since neutrophils are 
present in the aortic wall before macrophages in WT 
mice, a decrease in neutrophils in the L-selectin KO 
mice is most likely due to the lack of L-selectin.[69]

ROLE OF LYMPHOCYTES

The contribution of T and B lymphocytes to IA 
formation is an additional avenue of exploration. 
B lymphocytes are rarely detected, and their role in IA 
pathogenesis is unclear.[20] However, T-lymphocytes 
have been documented within aneurysm walls[12,20] 
and CD8+ T-cells have been linked with AAA 
development.[78] T-lymphocytes have been shown to 
secrete pro-inflammatory cytokines including TNF-α, 
IFN-γ, and IL-6.[79] T-lymphocytes were detected 
within the walls of ruptured aneurysms and were 
associated with increased infiltration in samples 
taken < 12 h from rupture. These results indicate 
that this observation was not reactive.[12] Based on 
these observations, T-lymphocytes may play an 
important role in not only aneurysm formation, 
but also rupture. Additional studies focused on the 
role of lymphocytes in IA formation and rupture 
are necessary to further our understanding of the 
aneurysm pathogenesis.

DETERMINING INFLAMMATORY STATUS USING 
IMAGING

The apparent relationship between inflammation 
and aneurysm rupture is of clinical significance and 
may provide an avenue through which more accurate 
predictions of aneurysm rupture can be made. MRI is 
currently being explored as a noninvasive modality 
with the potential to evaluate the inflammatory state 
of aneurysms.

Hasan et al.[80] have reported on ferumoxytol-enhanced 
MRI images to evaluate aneurysm walls for macrophage 
infiltration. Ferumoxytol, which is used to treat iron 
deficiency anemia in patients with chronic renal 
failure, is a Food and Drug Administration approved 
drug consisting of an iron oxide nanoparticle.[81,82] The 
investigators imaged 19 unruptured aneurysms in 
11 patients and determined that images acquired 72 h 
postinfusion of ferumoxytol were optimal for detecting 
macrophages within the aneurysm wall.

In a follow-up study, Hasan et al.[83] found that early 
uptake (within 24 h of infusion) of ferumoxytol in 
unruptured aneurysm walls suggested an active 
inflammatory process leading to aneurysm instability, 
ultimately resulting in rupture within 6 months. This 
hypothesis was validated with increased expression 
of COX-2 and mPGES-1 and an increased number of 

macrophages in aneurysms with early MRI signal 
changes. These results showed similar expression 
patterns to ruptured aneurysms. Unruptured 
aneurysms with late uptake (72 h postinfusion), 
did not rupture or increase in size after 6 months 
of follow-up. As a result, these studies show that 
ferumoxytol signal changes may indicate a greater 
risk of aneurysm rupture and suggest macrophage 
infiltration as a potential marker of aneurysms more 
likely to rupture.

Myeloperoxidase-specific paramagnetic magnetic 
resonance (MR) contrast agents, which are specific for 
MPO activity, have been evaluated in animal and tissue 
culture studies to examine their utility for imaging 
active inflammation.[74,84,85] Rabbit studies have shown 
promise for the use of an MPO-specific paramagnetic 
MR contrast agent, di-5-hydroxytryptamide of 
gadopentetate dimeglumine, in detecting local 
inflammation.[86] Since MPO has been detected in IAs, 
specially ruptured IAs, using MPO-specific contrast 
agents to monitor MPO within IAs will predict active 
inflammation and may aid in the management of 
unruptured aneurysms.

FUTURE DIRECTION AND THERAPEUTIC 
APPROACHES

Despite advances in microsurgical and endovascular 
therapy, outcomes following IA rupture remain poor. 
Thus, the identification of indicators of pending rupture 
and the development of pharmacologic interventions 
designed at limiting aneurysm progression and rupture 
are of great clinical interest. A better understanding 
of the relationship between inflammation and IA 
pathogenesis is a promising avenue of exploration, as 
there are multiple cellular and molecular targets for 
potential exploitation. Pharmacologic interventions 
targeting inflammation-driven IA formation and 
progression have shown promise in animal and human 
studies.[5] These drugs target inflammatory molecules 
such as TNF-α (DTH),[18] NF-κB (decoy ODN),[43] 
Ets-1 (decoy ODN),[45] SDF-1 (blocking anti-SDF-1 
antibodies),[47] MMPs (tolylsam and doxycline),[10,49,52] 
MCP1 (7ND),[9] and cathepsins (NC-2300)[56] [Table 1]. 
In addition, mast cell degranulation inhibitors (tranilast 
and emedastine difumarate)[65] have also been 
tested. All these therapeutic agents have shown 
to decrease aneurysm size in experimental animal 
models. Ferumoxytol-enhanced and MPO-specific 
paramagnetic MRI appear to offer a possible means 
by which to evaluate the inflammatory profile of 
individual aneurysms. Additional investigations into 
the role of inflammation and IA formation, progression, 
and rupture are required to better elucidate potential 
clinically relevant pathways for intervention.
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