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Abstract
Themotion planning and tracking control techniques of unmanned underwater vehicles (UUV) are fundamentally sig-
nificant for efficient and robust UUV navigation, which is crucial for underwater rescue, facility maintenance, marine
resource exploration, aquatic recreation, etc. Studies on UUV motion planning and tracking control have been grow-
ing rapidly worldwide, which are usually sorted into the following topics: task assignment of the multi-UUV system,
UUV path planning, and UUV trajectory tracking. This paper provides a comprehensive review of conventional and
intelligent technologies for motion planning and tracking control of UUVs. Analysis of the benefits and drawbacks
of these various methodologies in literature is presented. In addition, the challenges and prospects of UUV motion
planning and tracking control are provided as possible developments for future research.
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1. INTRODUCTION
More attention has been concentrated on underwater navigation this century due to the abundant resources
buried in the deep-sea area, such as biological, mineral, and space resources [1]. Therefore, underwater vehicles
(UV) have been applied due to their adaptiveness and safety when exploring undersea environments. The
vehicle can tackle the problems of hardly -predictable obstacles, current flow, and hydraulic pressure as well as
provide longer operating time and more functions than human divers [2,3].
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Meanwhile, unmanned underwater vehicles (UUVs) are being developed, which can be divided into remote-
operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). The motion planning and tracking
control of UUVs are assumed to be significant technologies for accomplishing efficient underwater navigation
with a guaranteed response time and without direct contact with marine dangers. Research on the underwater
motion planning and tracking control of UUVs originated decades ago and has been under the spotlight in
recent years. The history of UUVs can be traced back to the mid-20th century when an unmanned vehicle
was invented by the US Navy to recover a hydrogen bomb lost off the coast of Spain [4]. In 2009, the success
of finding cracked pieces of Air France 447 realized by a UUV verified the vehicle’s promising application
in underwater navigation. In 2014, the search for flight MH370 also brought out the growing attention on
demanding underwater navigation, which highly depends on UUV motion planning and tracking control
technologies [5]. Nowadays, detecting deep into the ocean area for digging more available resources such as
undersea oil development also requires the continuous progress of the UUV motion planning and tracking
control [6].

According to the statistics collected by Web of Science, the number of organizations that devote efforts to un-
derwater vehicle research has impressively increased in the past years. This trend corresponds to the growing
demand for underwater navigation worldwide, where studies of underwater motion planning and tracking
control are regarded as hot topics among UUV research projects. Underwater motion planning and tracking
control form the most crucial part of underwater navigation. UUVmotion planning is established on conven-
tional or intelligent technologies of vehicle posture planning, task assignment, and path planning, while UUV
tracking control is mainly about vehicle trajectory tracking. The paper focuses on UUV task assignment, path
planning, and trajectory tracking controls. Task assignment is designed for the multi-UUV system, where
multiple vehicles are arranged simultaneously to achieve the most efficient collective navigating plan without
mutual interference; the path planning of UUVs aims at giving the optimal instruction to the vehicle for arriv-
ing at the target, which can largely save the time and reduce the energy consumption; and trajectory tracking
study of UUVs guarantees the robustness and manner of the vehicle operation in practical cases. However,
studies related to underwater motion planning and tracking control have not been thoroughly investigated
due to the complexity of the ocean environment and the vehicle system [7,8]. In addition, to overcome the diffi-
culty of accomplishing complex underwater operations, the multi-UUV system, which refers to the system of
multiple UUVs and multiple targets, has pulled great attention owing to its high parallelism, robustness, and
efficiency [9–11].

Motivated by the goal of realizing efficient and robust UUV navigation in ocean environments, studies related
to the UUVmotion planning and tracking controls should be systematically surveyed and discussed to address
their potential in applications. Meanwhile, progress in this field can be promoted by analyzing the deficiency
and possible developments of the relevant technologies. Therefore, the contribution of the paper is to collect
and analyze technologies that have been and can be applied to the motion planning and tracking control of
UUVs. The benefits and drawbacks of these technologies are discussed, and challenges and prospects are
derived based on the gap in the literature. These analyses and conclusions are supposed to provide a brief
overview of studies that can be developed on certain issues for researchers at the entry level in the field of
UUV motion planning and tracking control.

In this paper, a brief review of the technologies regarding the UUV motion planning and tracking control
is proposed. The review investigates the current development of the motion planning and tracking control
achieved byUUVs and then derives the challenges as well as possible prospects of the study. The introduction is
given in Section 1. In Sections 2 and 3, the current research status is described. Methodologies of UUVmotion
planning are organized into divisions of task assignment and path planning. In the tracking control section,
the trajectory tracking methods of the UUV are surveyed. In Section 4, challenges and possible prospects are
concluded and discussed.

http://dx.doi.org/10.20517/ir.2022.13


Zhu et al. Intell Robot 2022;2(3):200­222 I http://dx.doi.org/10.20517/ir.2022.13 Page 202

Figure 1. The underwater motion planning scenario of the UUV.

2. TECHNOLOGIES OF UUV MOTION PLANNING
In this section, technologies for motion planning of UUVs are presented. Motion planning of UUVs can be
mainly categorized into steps of task assignment and path planning, where the path planning is usually split
into point-to-point path planning and full-coverage path planning.

Underwater motion planning is the crucial part that decides the efficiency of a UUV navigation. The optimal
vehicle motion has to be addressed in the requirement of the shortest total distance and time to arrive at the
target. As shown by the underwater motion planning scenario in Figure 1, under the effect of ocean currents
and obstacles, for the multi-UUV system, the optimal task assignment between multiple vehicles (in orange)
upon multiple targets (in the red triangle) is considered as the preparation for assessing satisfactory planned
paths. For the UUV path planning, the point-to-point path planning decides the initial navigation path from
the vehicle to the target, while the full-coverage path planning instructs the vehicle’s traversing operation after
arriving at the target area (area within the black circle).

2.1. Task assignment of Multi­UUV system
Originated from the last century, strategies applied to the task assignment of the multi-UUV system are mostly
realized by directly imitating animal behaviors. These assignments are designed through sensor-collected in-
formation, and the vehicle tasks are arranged referring to actual creature grouping behaviors [12,13]. Mataric et
al. proposed a task assignment algorithm that imitates the animal grouping behaviors such as swarming and
distributing [14]. Parkers established a distributed system that divides the assignment into smaller computing
sections based on vehicle behaviors [12]. Miyata developed a behavior-based algorithm that independently as-
signed the task for vehicles based on the time priority [15]. These studies verify the directness, simple operating
procedure, and no delays of behavior-based algorithms. However, they stay at the low administrative levels
of imitation, which are short of self-regulation/optimization, and the unsatisfactory collaboration leads to the
inefficiency of the algorithm and the requirement of intelligent task assignment methods.

Agent-based algorithms have been commonly applied to the task assignment of themulti-vehicle system [16–18].
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In the agent-based task assignment algorithm, the whole system is assumed to be an economy entity, while
each vehicle works as an agent. The agent-based algorithms are regarded as decentralized approaches, as each
vehicle agent is supposed to know its requirement and limitation, and the final solution is deduced based on
the balance between them. The task assigned to each agent is balanced after the repeated computation and
comparison of the cost to their targets; therefore, the minor consumption and the largest profit for the whole
entity can be obtained at the end [19]. The agent-based algorithms such as the auction algorithm resolve the
task assignment problem of known targets efficiently; however, they do not work well in the vehicle assignment
problem of unknown targets [20,21]. Yao applied the biased min-consensus (BMC) method, which introduces
the edge weight into the standard min-consensus protocol. Yao achieved the path planning of simultaneous
arrival for all UUVs through this agent-based task assignment algorithm, yet the situation of unknown targets
is still not developed [22,23].

Intelligent methods such as swarm intelligence, genetic algorithm (GA), and neural network (NN) have been
tested in solving the problem of the multi-vehicle task assignment [24–26]. These intelligent methods find the
best task assignment solution by the objective function established on the total searching length and the heuris-
tic cost through iteration algorithms. In recent years, the self-organizing map (SOM), an NN-based algorithm,
was applied to the task assignment problem of a multi-vehicle system due to the competitiveness and self-
improving features of the neural network [27]. The SOM-based task assignment algorithm guarantees that each
vehicle in the multi-vehicle system can navigate along the shortest path to their target while maintaining the
shortest total navigation cost for the whole system, whose structure is shown in Figure 2. The target locations
serve as the inputs while the vehicle positions and paths are the outputs of the network, and the network is up-
dated by the weights between layers that are deduced based on distances between targets and vehicles [28]. The
turning direction angle and turning radius of the vehicle are then involved on the basis of the SOM method
due to the vehicle’s practical requirement of reducing the energy cost by reaching the target in a smooth curve
in the task assignment problem [29,30].

However, the task assignment algorithms considering the underwater environment are still not thoroughly
investigated due to the complex environmental factors and the nonlinear UUV system. Considering the com-
plexity of the underwater environment such as the currents effect, Chow proposed an improved K-means
algorithm to simultaneously resolve the task assignment and path planning problems for the multi-UUV sys-
tem under the static ocean currents effect, where the vehicle successfully reached the target along smooth
curves on the basis of optimal task assignment [31]. Nevertheless, the method does not work well for mov-
ing targets, and it lacks the discussion of applications under the 3D static ocean currents effect as well as the
dynamic currents condition. Zhu et al. introduced SOM into the multi-UUV system and combined SOM
with a velocity synthesis algorithm; hence, the task assignment and path planning problem for the multi-UUV
system under time-varying ocean currents when chasing both static or dynamic targets could be addressed,
which resolved the issues that existed in Chow’s study. However, neither SOM-based methods could realize
satisfactory collision avoidance [32].

Methods that have been applied to the task assignment of the multi-UUV system are listed in Table 1. Details
of various intelligent methods for task assignment of UUVs can be found in Section 2.1. Gaps are still left for
relative studies, which can be mainly concluded into two problems. The first problem is the difference among
heterogeneous UUVs. They have different model parameters, navigating velocities or safe distances such that
the assignment of parameters for every single UUV is not consistent in the practical application. The other
problem is the effect of the underwater environmental factors such as the obstacles and the fluid effect, which
may produce inevitable deviations or too many dynamic requirements for vehicles in the task assignment.
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Figure 2. Structure of the SOM algorithm.

Table 1 Algorithms for task assignment of multi-vehicle system

Algorithms Logic Benefits Drawbacks

Behavior imitation
algorithms [12–15]

Simple imitation of the animal (including
human) grouping behaviors such as swarming
and distributing behaviors

(1) Easy to implement
(2) React without lags

(1) Low efficiency
(2) Cannot regulate themselves
(3) Difficult to optimize

Agent-based
algorithms [16–23]

(1) Assume the whole system as an economy
entity while each vehicle works as an agent
(2) Assign the task to each agent in the goal
of gaining lowest cost for the whole entity

(1) Easy to implement
(2) Satisfactory efficiency
when resolving problems
of known targets

Do not work well in the
task assignment of unknown
targets

Intelligent
algorithms [24–30]

(GA- or NN-based)

(1) Regard the task assignment as a search
optimization problem
(2) Take the searching distance as the objective
function
(3) Optimize through iterations

Outstanding adaptiveness
due to consideration of the
UUV system or environmental
factors in the objective function

(1) Unsatisfactory real-time
reaction owing to the
computation complexity
(2) Local minimum

2.2. Path planning of UUV
In this section, current methodologies developed for the path planning of the UUV system under different
application cases are presented and concluded, divided into subsections on point-to-point path planning and
full-coverage path planning.

2.2.1. Point-to-Point path planning
After completion of the task assignment, the UUV is required to navigate to the supposed destination position
from its current position with: (1) an optimized path of shortest distance; and (2) avoidance of obstacles,
which is described as the point-to-point path planning problem. Conventional map building methods such
as grid-based modeling and topological approaches are used in the point-to-point path planning. Nowadays,
typical methods that are applied in the UUV point-to-point path planning also include artificial potential field
methods and a wide range of intelligent path planning algorithms.

Map building Method Map building methods plan the path by mapping the vehicle’s surrounding area and
then deriving the optimal solution accordingly. Based on the area information collected by the vehicle sensors
such as the obstacle occupied status, different methodologies of mapping these areas can be addressed and
deduce an efficient path solution accordingly. The fundamental part of map buildingmethods such asmapping
the vehicle searching area usually serves as the basis of most path planning algorithms, such as intelligent
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A B

Figure 3. Typical Voronoi diagrams with the indicated graph branch nodes and optimal point-connected path: (A) obstacles in points; and
(B) obstacles in convex polygons. Orange stars: Starts and ends of the path.

algorithms. However, in this section, the map building methods are limited to those that directly deduce on
the map form without the combination of complex strategies such as self-regulation or self-evolution.

One typical map building method is called the visibility graph approach, where the graph is established on
the connection of the vehicle, polygonal obstacle vertex, and the destination without crossing the obstacles [33].
The optimal path is determined by finding the route between the origin point and the destination point that has
the shortest distance. The visibility graph approach derives the shortest path, yet it consumes long searching
time and lacks flexibility, as the graph has to be reconstructed once the environmental information changes,
such as the destination position or the obstacle shapes. Moreover, the visibility graph approach does not work
for circular obstacles. The tangent graph method gives a more efficient path planning solution of shorter
distance by controlling the vehicle to navigate along the tangent lines of obstacles [34]. However, the vehicle
needs to approach the obstacle as close as possible when navigating along the tangent lines such that collisions
might be produced in practical cases. TheVoronoi diagrammethod resolves the collision problem through the
combination of lines and parabolas, as shown in Figure 3, where the line is defined by the vertex of obstacles,
while the parabola is defined by a vertex and a sideline of obstacle [35,36].

Grid-based path planning methods are also the widely used type of map building method. They decompose
the surrounding area into nonoverlapping but connected cells, and then the optimal path is addressed between
the origin and the destination cells without collisions. Dijkstra algorithm is one of the earliest grid-based path
planning methods where a global search on all possible path solutions is required such that large computation
is inevitable [37]. Therefore, A* algorithm is proposed with the advancement of adding the heuristic cost to
reduce the searching space [38]. However, typical underwater disturbances such as the effect of currents might
bring inevitable influence on UUV path planning; hence, the traditional grid-based path planning methods
that need map of high accuracy and consistency are not appropriate to the UUV system [39,40].

Artificial Potential Field Method The artificial potential field (APF) method is established on a virtual artificial
potential predefined field. The proposed destination is determined as the object that has the attraction to the
vehicle, while the obstacles are regarded as the objects that generate repulsive force to the vehicle [41]. All the
attractive and repulsive forces are quantified and presented in the form of gravity, where the positive gravity is
correlatedwith the distance between the vehicle position and the destination, and negative gravity is performed
within the domain of the obstacles. As the vehicle is closer to the destination, the gravity decreases until it
reaches the destination. Deduced by the negative gradient of respective fields, the attractive force F𝑎 and the
repulsive force F𝑟 are given by
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Figure 4. Path derived by the APF method on the 2Dmodeling map: (A) path planning based on the distribution of the APF on the map; (B)
APF path on the contour map; and (C) final APF path presented on the 2D modeling map [42].

F𝑎 (𝑥) = −∇U𝑎 (𝑥) = 𝑘𝑎𝜌(𝑥, 𝑥𝑑) (1)

F𝑟 (𝑥) = −∇U𝑟 (𝑥) =
{

𝑘𝑟 ( 1
𝜌(𝑥,𝑥𝑜) −

1
𝜌𝑜
) 1
𝜌2 (𝑥,𝑥𝑜)∇𝜌(𝑥, 𝑥𝑜), 𝜌(𝑥, 𝑥𝑑) < 𝜌𝑜

0, 𝜌(𝑥, 𝑥𝑑) ≥ 𝜌𝑜
(2)

where −∇U𝑎 represents the negative gradient of the attractive field; −∇U𝑟 represents the negative gradient
of the repulsive field; 𝑘𝑎 is the coefficient for attraction; 𝜌(𝑥, 𝑥𝑑) represents the distance between the current
position 𝑥 and the destination position 𝑥𝑑 ; 𝑘𝑟 is the repulsion coefficient; and 𝜌(𝑥, 𝑥𝑜) represents the distance
between the current position to the obstacle position 𝑥𝑜 and 𝜌𝑜 is the radius of the obstacle.

Therefore, the destination has the lowest gravity field but the highest gravity force for attraction, while the
gravity field for the obstacles performs higher such that the vehicle can flow along the gravity field descending
route to complete the optimal path planning, as the path deduced from the point in Figure 4A to the one in
Figure 4C.

The APF reduces the calculation complexity as well as performs outstanding real-time reactions, which is
widely applied in the area of vehicle path planning. The virtual gravitational potential field realizes a fast
calculation of themost optimal path to the target without collisions for the vehicle, by following the guidance of
resultant forces given by the pre-designed attraction and repulsion [43]. Zhou et al. improved the APF method
with a particle swarm algorithm to increase the pathfinding efficiency for tangent navigating robots [44]. Lin
et al. designed a subgoal algorithm for the APF such that the path planning of the unmanned vehicle can
overcome the local minimum and track the most optimal path [45]. The decision tree was added to the APF to
form the efficient path planning algorithm without local minimum and collisions for vehicles [46]. Regarding
the environmental factors, the effect of ocean currents was then involved in the path planning of the UUV
while using the APF method [42].

However, most of the APF research do not involve environmental disturbance in the design, thus affecting
the practical application of the APF. Moreover, the APF method for vehicle path planning often deduces the
problem of local minimum, where the vehicle might stick at halfway instead of reaching the target position
due to the larger resultant effect produced by the local minimum point [47]. The large computation complexity
caused by the increasing obstacle numbers also affects the planning efficiency of the APF method.

IntelligentPathPlanningMethod More andmore artificial intelligencemethods have been applied in the studies
of UUV path planning in recent years, covering the genetic algorithm, swarm intelligence, fuzzy logic, and
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neural network algorithm.

The genetic algorithm (GA) and ant colony algorithm (ACO) were widely used in the early times for under-
water path planning. The GA method imitates the natural selection and evolution procedure to provide the
optimal solution through iterations, which has been involved in the path planning and obstacle avoidance
under the underwater environment of dynamic currents effect [48,49]. The ACO method belongs to the swarm
intelligence algorithm, where it is designed based on the swarm behavior of ant groups while chasing food, and
the ant behavior-based intelligent method has been proved to work well in the UUV global path planning [50,51].
The swarm intelligence methods have been broadly applied in UUV path planning in recent years due to their
simple implementation, fast convergence speed, and satisfactory robustness whenmodeling based on different
swarming animal groups [52]. The swarm intelligence algorithms provide outstanding performance in the path
planning of UUVs, yet the local minimum problem can be produced by this intelligent method, which finally
leads to premature execution before reaching the destination.

Fuzzy logic performswell in theUUVpath planning and obstacle avoidance owing to its expertise in processing
the information uncertainty as the underwater environment is of high uncertainty and incompleteness [53,54].
Kim et al. used the fuzzy logic-based algorithm to deduce the turning direction and angle of the UUV to avoid
collisions and complete the path planning [55]. Ali developed a fuzzy ontology modeling method to realize
the UUV path planning [56]. The fuzzy logic-based intelligent algorithm does not need to establish accurate
mathematical models as it is derived from the human cognitive experience. Thus, fuzzy logic can retune
itself during the navigation and overcome the local minimum problem. However, the fuzzy logic rule relies
heavily on experts’ experience and approximations, and unverified errors cannot be thoroughly avoided. The
complexity of the dynamic environmental factors also challenges the adaptiveness of the fuzzy logic design [57].

The application of neural networks in vehicle path planning has obtained wide attention in recent decades [58].
Ghatee applied the Hopfield neural network in the optimization of path planning distances [59]. Li et al. pro-
posed a bio-inspired neural network for vehicle path planning, where both optimal planning paths and collision
avoidance are realized with high efficiency [60]. The bio-inspired neural network helps to derive the optimal
path that is composed of the continuous coordinates of the vehicle movement, based on a grid-based map and
its corresponding neural networkmodel, where each grid represents a single neuron, as shown in Figure 5. The
bio-inspired neural network algorithm continuously updates the state of neurons by transmitting the informa-
tion through the network to give an instant reaction and reduces the complexity by limiting the searching area
to a certain range. Therefore, the bio-inspired neural network path planning utilizes the preserved information
in the neurons to update its planning design while adjusting the network on time such that it is well suited to
the dynamic underwater environment, providing an efficient and high adaptive approach for the UUV path
planning [61].

In recent years, the application of reinforcement learning (RL) in UUV path planning has grown quickly. The
RL method updates the vehicle’s states and converges to the optimal path planning solution by making actions
according to rewards set based on the environment. RL-based path planning combined with APF for inter-
vention AUVs has been developed to remove sea urchins at an affordable cost [62]. AUV path planning in a
complex and changeable environment is achieved through the combination of RL and deep learning [63]. Wang
et al. proposed a multi-behavior critic RL algorithm for AUV path planning to overcome problems associated
with oscillating amplitudes and low learning efficiency in the early stages of training, and they reduced the
time consumed by the RL algorithm convergence for avoiding obstacles [64]. However, the slow convergence
issue of RL-based path planning methods still needs further investigation.

The methods that are commonly used in the point-to-point path planning of the UUV are summarized in
Table 2, where their implement theory, benefits, and drawbacks are described. Details of various intelligent
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Figure 5. The 2D model of the bio-inspired neural network-based path planning algorithm. S, start; D, destination.

Table 2 Algorithms for UUV point-to-point path planning

Algorithms Logic Benefits Drawbacks

Map Building
Method [33–40]

Visibility graph-based:
(1) Establish as graph on the connection of the
vehicle, polygonal obstacle vertex, and the
destination without crossing the obstacles
(2) Find the optimal path between the origin
point and the destination point that has the
shortest distance
Grid-based:
(1) Decompose the surrounding area into
nonoverlapping but connected cells
(2) Address the optimal path between the origin
and the destination cells without collisions

(1) Easy to implement
(2) Direct because of
visible mapping

Visibility graph-based:
(1) Long time consumption
when establishing the graph
(2) Lack of flexibility
(3) Do not work for circular
obstacles
Grid-based:
(1) Large computation
(2) Lack of consideration of
environmental disturbance

Artificial Potential
Field [41–47]

(1) Predefine a virtual artificial potential field
(2) Assume the destination provides the
attractive force while obstacles generate
repulsive force to the vehicle
(3) Address the optimal path for the vehicle
through the field descending route

(1) Simple mechanism
(2) High efficiency and
realtime reaction

(1) Local minimum
(2) Sometimes induce large
computation

Intelligent Path Planning
Algorithms [48–52,55–64]

(GA, ACO, Fuzzy logic,
NN, and RL)

(1) Regard the path planning as a search
optimization problem
(2) Take the searching cost as the objective
function
(3) Optimization through iterations

(1) Easy to implement
(2) Adaptiveness.

(1) Unsatisfactory real-time
reaction owing to the
computation complexity
(2) Local minimum

methods applied to the point-to-point path planning of a UUV can be found in the fourth part of Section 2.2.1.

2.2.2. Full-coverage path planning
The full-coverage path planning has to be considered when the vehicle reaches the designated search area,
where the global area of the searching map shall be covered. The goal of the full-coverage path planning for
the UUV is to simultaneously realize the high coverage rate, the low repetition route, and the short navigating
distance.

The random coverage strategy was proposed at early times to complete the full-coverage path planning. Maxim
proposed a full-coverage path planning algorithm for multi-robots in the unknown environment, which does
not need to obtain the global map information in advance, and the vehicles would not produce collisions with
each other [65]. However, the random coverage strategy is used in this algorithm to traverse the operating area
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for each vehicle; hence, problems of the path clutter, the high repetition rate, and a not complete full-coverage
path planning are induced.

The map building method based on sensor information is combined to achieve a complete full-coverage path
planning for the vehicle. Parlaktuna developed a full-coverage path planning method based on the sensor
system for multiple vehicles, where the generalized Voronoi diagram was applied for modeling and initializing
a full-coverage path, and the path section is divided by the capacitated arc routing algorithm [66]. The full-
coverage path planning is realized by the division of the vehicle navigation area; however, it only suits maps
consisting of narrow paths such that the vehicle can cover the whole area through one-direction navigation
and does not work well in a large space.

Based on the buildingmap, many researchers have refined the full-coverage path planningmethod in themulti-
vehicle systemwhile resolving the collaboration problem, which is denoted as collaborating full-coverage prob-
lem. Janchiv applied cell decomposition to separate the operating area into several subareas and determine
the suitable path planning result for each subarea. The vehicles can consume the least turning times and main-
tain a high efficiency to complete the full-coverage path navigation [67]. However, Janchiv’s method did not
consider the collaboration among the vehicle groups, and the method lacks proof of robustness. Rekletis intro-
duced the boustrophedon cellular decomposition algorithm into the collaborating full-coverage path planning
problem for multiple vehicles, where the domain decomposition method breaks the area and a greedy auction
algorithm resolves the task assignment, as well as the collaboration of the vehicles [68]. This path planning
method achieves the full coverage of the whole area, yet a large repetition of the navigated paths still cannot be
avoided. Hazon proposed the multi-robots spanning-tree coverage algorithm (MSTC) that largely increased
the robustness for the multiple vehicles to traverse the whole area, while it cannot guarantee the optimal cov-
erage time [69]. Therefore, Zheng developed a multi-robots forest coverage (MFC) algorithm that realized the
optimal coverage time [70].

With the advancement of intelligent algorithms, the full-coverage path planning method that can retune or
optimize itself has been developed. For instance, Kapanoglu combined the genetic algorithm (GA) and tem-
plate match approach into the collaborating full-coverage path planning problem, where GA is used to address
the best match template for each single vehicle path planning such that both the fewest traversing paths and
optimal coverage time can be promised, but the method lacks the adaption for dynamically changing environ-
ment, which is commonly seen for the underwater area [71]. The advantage of a bio-inspired neural network
is to resolve the collaborating full-coverage path planning problem of ground cleaning robots, where each
vehicle regards the others as obstacles such that the full-coverage with collision-free collaboration is realized.
However, the large complexity of the neural network is still a big concern [72,73].

Moreover, to increase the efficiency of the full-coverage traversing algorithm, studies related to target search al-
gorithms based on probabilistic priority map have been proposed. For example, Cai developed a full-coverage
path planning algorithm depending on the bio-innovation such as animal behaviors, but considering the prob-
abilistic priority, where the efficiency is increased, the method yet is not highly adaptive to the changing envi-
ronment [74]. Yao proposed full-coverage path planning methods depending on the probability map of targets,
where intelligent methods such as biased min-consensus (BN-BMC) algorithm, Gaussian-based analysis, or
SOM are combined [75–77].

Generally, most full-coverage path planning methods are applied to land or aerial vehicles rather than UUVs.
The problems of not completing full coverage and high repetition routes usually occur during the navigation
process. The studies on full-coverage path planning for the UUV in underwater environments are summarized
in Table 3, which are still at the very early stage and attention has to be paid to the concerns of enhancing the
efficiency of full coverage and decreasing the repetition rate.
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Table 3 Algorithms for UUV full-coverage path planning

Algorithms Logic Benefits Drawbacks

Random Coverage
Strategy [65]

Traverse the operating area with multiple vehi-
cles following the random coverage strategy

(1) No need of initial
environmental information
(2) Collision avoidance

(1) Not complete full-coverage
(2) High repetition

Sensor-based map building
method [66–69]

(1) Build the map based on sensor information
(2) Apply the diagram algorithms for modeling
and initialize a full-coverage path by
dividing the path
into sections accordingly

(1) Complete full-coverage
(2) Consider multi-vehicle
collaboration

(1) Only work for narrow paths
(2) Complete full-coverage
cannot be realized in conditions
of broad area
(3) Lack of robustness
(4) Lack of optimal multi-vehicle
task assignment
(5) High repetition

Intelligent method-based full
coverage path planning [71–73]

Apply intelligentmethods such asGAorNN for
each single vehicle path planning

(1) Complete full-coverage;
(2) Collision avoidance due
to self-regulation;
(3) High efficiency of
shortest covering time
and lowest energy cost

(1) Low adaptiveness to the
dynamic environment (GA)
(2) Large computation (NN)

Probabilistic priority-based
full coverage path
planning [74–77]

Plan the path due to the predefined probabilis-
tic priority

(1) Easy to implement
(2) Complete full coverage
(3) Increasing efficiency

Not adaptive to dynamic en-
vironment

3. TECHNOLOGIES OF UUV TRACKING CONTROL
Due to the complex environmental factors of the deep-water space, such as the high pressure, invisibility, or
unpredictable obstacles, UUVs are applied in most cases when operating underwater to guarantee the safety
and efficiency [2,3,78]. Therefore, achieving the robustness and accuracy of controlling the UUV to track the
desired trajectory is dramatically important for completing the real-time underwater navigation [79,80]. As
mentioned in the Introduction, UUVs are mainly divided into ROV and AUV. ROV can be directly controlled
through a control model for propagation, Robot operating system (ROS)modules, a visual processing pipeline,
and a dashboard interface for the end-user, where the user gives commands remotely step by step [81]. This is
known as remote control, and the ROV is controlled manually in this case, which is not the critical point of the
section as the manual control strategy is direct and simple. For AUVs, the control is realized in an autonomous
way, meaning the AUV has to recognize the surrounding areas and make the decision itself. Moreover, some
ROVs also support the autonomous mode as a AUV, e.g., the “Falcon” ROV. Hence, in this review, the tracking
control technologies emphasize the autonomy of UUVs, and applications on ROVs can also serve as examples
of autonomous trajectory tracking control.

To realize the satisfactory trajectory tracking of the UUV, the vehicle must follow the desired path following
the corresponding time period. In other words, the errors between the desired and actual trajectories have to
be minimized at the different degrees of freedom [82]. However, different from common unmanned vehicles
such as the land vehicle or the unmanned surface vehicle (USV), the UUV system contains more states, whose
degrees of freedom (DOF) can be extended to six.

For the kinematic equation of the UUV, the velocity vector v can be transformed into the time derivative of
position vector p by a transformation matrix J as

¤p = J(p)v. (3)

where the velocity vector v is [𝑢 𝑣 𝑤 𝑟 𝑝 𝑞]𝑇 , as the velocity variable shown at each DOF in Figure 6.
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The transformation matrix J(p) is

J(p) =
[

J1 O3×3
O3×3 J2

]
, (4)

where J1 and J2 are

J1 =


cos𝜓 cos 𝜃 cos𝜓 sin 𝜃 sin 𝜑 − sin𝜓 cos 𝜑 cos𝜓 sin 𝜃 cos 𝜑 + sin𝜓 sin 𝜑
sin𝜓 sin 𝜃 sin𝜓 sin 𝜃 sin 𝜑 + cos𝜓 cos 𝜑 sin𝜓 sin 𝜃 cos 𝜑 + cos𝜓 sin 𝜑
− sin 𝜃 cos 𝜃 sin 𝜑 cos 𝜃 cos 𝜑

 , (5)

J2 =


1 tan 𝜃 sin 𝜑 cos 𝜑 tan 𝜃
0 cos 𝜑 − sin 𝜑
0 sin 𝜑/cos 𝜃 cos 𝜑/cos 𝜃

 . (6)

Among the six DOFs of the underwater vehicle, surge, sway, heave, roll, pitch, and yaw, roll and pitch can be
neglected since these twoDOFs barely have an influence on the underwater vehicle during practical navigation.
Therefore, when establishing the trajectory trackingmodel to keep a controllable operation of the UUV, usually
only four DOFs, namely surge, sway, heave, and yaw, are involved (see the DOFs shown in Figure 6). Hence,
for the kinematic equation, the position vector can be simplified as

p =


¤𝑥
¤𝑦
¤𝑧
¤𝜓


= J(p)v =


cos𝜓 − sin𝜓 0 0
sin𝜓 cos𝜓 0 0

0 0 1 0
0 0 0 1


v =


cos𝜓 − sin𝜓 0 0
sin𝜓 cos𝜓 0 0

0 0 1 0
0 0 0 1



𝑢

𝑣

𝑤

𝑟


, (7)

where J is a transformation matrix derived from the physical structure of the UUV body, while [𝑢 𝑣 𝑤 𝑟]𝑇
represents the velocities at the chosen four axes of a UUV, as presented in Figure 6.

For UUVs, a generally accepted dynamic model has be defined as

Mv + C(v)v + D(v)v + g(p) = 𝛕 , (8)

where M is the inertia matrix of the summation of rigid body and added mass; C(v) is the Coriolis and cen-
tripetal matrix of the summation of rigid body and added mass; D(v) is the quadratic and linear drag matrix;
g(p) is the matrix of gravity and buoyancy; and 𝛕 is the torque vector of the thruster inputs.

The torque vector of the thruster input is represented by

𝛕 =
[
τ𝑥 τ𝑦 τ𝑧 τ𝑘 τ𝑚 τ𝑛

]𝑇
, (9)

where τ𝑥 , τ𝑦 , τ𝑧 , τ𝑘 , τ𝑚 , and τ𝑛 represent torques of the UUV in the surge, sway, heave, pitch, roll, and yaw
directions, as shown in Figure 6. In addition, as mentioned in the previous section, in some practical cases,
the torques in pitch and roll directions can be neglected.

Due to the nonlinearity of the UUV system, the typical linearization method, i.e., proportion–integration–
differentiation (PID) control, does not work very well and is less studied for UUV trajectory tracking [83].
Hence, in this section, the major methods that are used for UUV trajectory tracking are discussed and catego-
rized into conventional control (consisting of backstepping control, slidingmode control, andmodel predictive
control), intelligent control, and fault-tolerant control.

3.1. Conventional control
In this section, some conventional control methods such as backstepping control, sliding mode control, and
model predictive control are described. Studies regarding their applications in the trajectory tracking control
of the UUV are stated. The summary of the features for these conventional controls is given in Table 4.
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Figure 6. Degrees of freedom and corresponding axes for a UUV.

3.1.1. Backstepping control
In the backstepping method, control functions for each subsystem are designed based on the Lyapunov tech-
niques and generated to form the complete control law [84]. However, the actuator saturation is induced by the
speed-jump problem, which usually occurs in the backstepping control methods for trajectory tracking [85].
The excessive speed references affect the robustness of the UUV trajectory tracking by introducing excessive
fluctuations of velocities at initial states or other large error states during the kinematic controlling procedure.
Therefore, a sharp speed change is derived from the large errors accumulated from the generation of the subsys-
tems, where speed-jump issues are induced when the deviation occurs. As the UUV cannot provide infinite
driving inputs such as torques/forces due to its underwater workspace and limited electric power, actuator
saturation, has to be considered during the trajectory tracking process of the vehicle, with the torques/forces
constraints applied [86–88].

3.1.2. Sliding mode control
As one of the most basic robust controlling strategies, sliding mode control (SMC) is widely used due to its
simple and robustmechanism; hence, SMC is often chosen to construct the trajectory tracking controller of the
vehicle [89,90]. In SMC, a sliding surfacemode is supposed to follow the desired tracking and keep the controlled
outputs remaining on the surface. Once the controlled trajectory is out of the perfect sliding surface mode,
SMC will push the trajectory slide back to the surface with addition or subtraction on the original controlling
equation [91,92]. Therefore, SMC restricts the fluctuation of controlled outputs in an acceptable range through
a simple operation, which is highly applicable in trajectory tracking problems [93].

However, SMC suffers chattering issues, although it is robust to variable changes, which is a critical factor that
needs to be considered when designing the control strategy [94]. Xu refined SMC with a bio-inspired neural
network algorithm such that the chattering problem can be alleviated, but it is limited to the application of
land vehicles where fewer degrees of freedom are involved [95].

3.1.3. Model predictive control
Model predictive control (MPC) is appropriate for the UUV system that navigates in the mode of slow velocity.
MPC is not demanding on the model accuracy and provides in-time feedback, and constraints can be added
to the control strategy to alleviate the jumps of the speed. Therefore, motivated by the requirements of in-time
reaction and restriction of velocities within physical constraints throughout the whole tracking process, MPC
control stands out to be one of themost feasible solutions for constructing the tracking control for the UUV [96].

TheMPC resolves the online optimization problem at each timeslot and derives in-time predictions with min-
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imum errors [97]. The optimization process performs a receding horizon in MPC.When deducing the solution
of the next timeslot, the optimization algorithm embedded in the control system first gives an optimized se-
quence within a pre-defined timeslot. The first result of the sequence is adopted as the solution and works as
the basis for the next optimization loop while time is receding [98]. At the same time, constraints are added
in the optimization to set the limitation to the optimized results as well as the variation of the sequence re-
sults [97,99]. By this receding optimization algorithm and the set constraints, online control can be realized and
excessive velocity results are avoided. Sun et al. applied MPC as the vehicle trajectory tracking control, achiev-
ing satisfactory tracking results with fewer and gentler fluctuations, which demonstrates the effectiveness of
MPC [85].

3.2. Intelligent control
Intelligent controls refer to the control strategies that can realize desired control goals without manual inter-
ventions, which are often used under situations of large uncertainties.

The fuzzy logic system is used as a component of the intelligent control, which addresses the uncertainties and
gives a more flexible criterion for obtaining the optimized predictions within its conceptual framework [100,101].
It can also limit the output data and smoothen the kinematic error curves derived from the conventional back-
stepping method through its decision function. Compared to MPC, the fuzzy logic controller constructs a
model that imitates human decision-making with inputs of continuous values between 0 and 1, which largely
simplifies the computing process [53,54]. Some researchers have achieved successful tracking based on the fuzzy
logic-refined backstepping method, yet their application is based on the underactuated surface vehicle (USV),
with fewer states involved compared to the UUV [102]. Some researchers have applied synergetic learning in
their controllers designed for vehicles and better performance is obtained, but they do not consider the prac-
tical constraints of the vehicle [103]. Li developed the fuzzy logic-based controller that provides satisfactory
tracking results even with time-varying delays or input saturation, but the effectiveness of the algorithm on
specific models such as the UUV has not been discussed [104]. Wang et al. developed a fuzzy logic-based
backstepping method, yet it has not been experimented under specific application scenarios, with dynamic
constraints applied [105].

As a typical intelligent method, the neural network-based models have been applied to the tracking control of
the UUV for many years [2]. Due to the complex underwater work environment and limited electric power of
UUVs, the excessive speed references as well as the actuator saturation problems have to be considered. The
bio-inspired backstepping controller was introduced in the control design to give the resolution [87]. Based
on the characteristics of the shunting model, the outputs of the control are bounded in a limited range with
a smooth variation [106]. The bio-inspired backstepping controller has been applied to different UUVs under
various conditions by combining with a sliding mode control that controls the dynamic component of the
vehicle. An adaptive term is used in the sliding mode control to estimate the nonlinear uncertainties part and
the disturbance of the underwater vehicle dynamics [107]. For example, the actuator saturation problem of a
7000 m manned submarine was resolved through this bio-inspired backstepping with sliding mode cascade
control [108]. The control contains a kinematic controller that uses a bio-inspired backstepping control to elim-
inate the excessive speed references when the tracking error occurs at the initial state. Then, a sliding mode
dynamic controller was proposed to reduce the lumped uncertainty in the dynamics of the UUV, thus realizing
the adaptive trajectory tracking control without excessive speeds for the vehicle, as shown by the satisfactory
curve and helix tracking results in Figure 7. Jiang accomplished the trajectory tracking of the autonomous ve-
hicle in marine environments with a similar bio-inspired backstepping controller and adaptive integral sliding
mode controller [109]. In the sliding mode controller, the chattering problem was alleviated, which increased
the practical feasibility of the vehicle. However, more studies are needed to prove the effectiveness of the
proposed control strategy, such as the tracking control based on the filtered backstepping method.
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Figure 7. Tracking trajectory comparison of the bio-inspiredmodel-based control and conventional backstepping control for the underwater
robots: (A) curve tracking; and (B) helix tracking [108].

GA methods are also applied in the intelligent control of UUVs. They are usually applied based on the aim
of addressing the most optimal solution during the control process owing to their feature of self-evolution.
However, the computation cost of the GA methods always adds a burden to the tracking control algorithms
such that they are usually combined with other intelligent algorithms to reach a more efficient control strategy.
Tavanaei–Sereshki applied the quantum genetic algorithm (QGA), an optimization algorithm based on the
probability that combines the idea of quantum computing and traditional genetic algorithm to realize the
UUV’s tracking along desired paths [110]. Zhang described a route planner that enables an AUV to selectively
complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic
through a greedy strategy-based GA (GGA), which includes a novel rebirth operator that maps infeasible
individuals into the feasible solution space during evolution to improve the efficiency of the optimization and
uses a differential evolution planner for providing the deterministic local path cost [111].

A brief summary of intelligent controls on UUVs can be found in Table 4. The details of various intelligent
methods for tracking control of UUV are described in Section 3.2.

3.3. Fault­tolerant control
Regarding the unpredictability of the underwater environment, it is of high possibility for the UUV to meet
unexpected accidents that affect the preset model of the vehicle. For example, in some cases, one ormore of the
UUV’s thrusters are out of order, and themodel needs to bemodified to continue the desired trajectory tracking
designed as before. Fault-tolerant control (FTC) is usually applied to alleviate abrupt errors and provides the
most feasible solution when inevitable damages happen to the equipment in different fields [115]. However,
the FTC of underwater vehicles has not been thoroughly investigated due to the complexity brought by the
underwater environment and the UUV system [116–118].

Several techniques on the FTC have been developed in the 21st century [119–122]. Based on these studies, the
design of the excessive number of thrusters compared to the number of degrees of freedom (DOF) is raised
and accepted as a resolution to the UUV FTC problem, which is called the thruster control matrix reconfigura-
tion [123,124]. For example, as shown in Figure 8, the Falcon and URIS UUVs have five thrusters while only four
DOFs are considered such that the reconfiguration method can be applied. For example, when an unexpected
fault of the vehicle’s thrusters occurs, the thrusters installed on the vehicle that exceed the number of DOFs
(six, i.e., surge, sway, heave, row, pitch, and yaw) have enough flexible space to be retuned to provide the re-
quired propulsion in the corresponding DOFs. To implement the thruster control matrix configuration theory
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Table 4 Algorithms for UUV trajectory tracking

Algorithms Logic Benefits Drawbacks

Backstepping control [84–88] Design control function by generating the sub-
system established based on the Lyapunouv
theorem

(1) Easy to implement for
nonlinear system
(2) Real-time reaction

(1) Unsatisfactory
adaptiveness
(2) Produce excessive speed
references and actuator
saturation problems

Sliding mode control [89–95]

(1) Suppose a sliding surface mode to follow the
desired tracking
(2) Keep the controlled outputs on the
surface.

(1) Simple algorithm;
(2) Robust.

Chattering issue

Model predictive
control [96–99,112]

(1) Resolve the online optimization problem in
each timeslot and derive in-time predictions with
minimum errors
(2) Optimization algorithm embedded in the
control
system gives an optimized sequence within the
pre-defined timeslot
(3) The first result of the sequence is adopted as
the solution and worked as the basis for the next
optimization loop while time is receding

(1) High
system accuracy not needed
(2) In-time reaction
(3) Adaptive

Long time consumption
due to the recursive com-
putation

Intelligent control [100–109]

(Fuzzy logic, NN, and GA)

(1) Embed intelligent algorithms as a search
optimization for the desired tracking result;
(2) Take searching cost as the objective function;
(3) Optimization through iterations.

(1) Easy to implement;
(2) Adaptive.

Large computation.
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Figure 8. Two typical thruster configurations for the UUV: (A) Falcon UUV; and (B) URIS UUV.

in practical cases, the weighted pseudo-inverse matrix method was proposed, where the fault cases are quanti-
fied as degrees of damage and serve as the inputs to form the thruster control matrix configuration model [125].
By this method, the process of the FTC is largely simplified, as the required thruster propulsion can be deduced
directly through a weighted pseudo-inverse matrix model. Nevertheless, physical constraints of the thruster
outputs are rarely considered, thus inducing the over-actuated vehicle issue [126,127]. Additionally, among these
studies, most of them work on eliminating the static errors induced by the fault cases. However, in UUV
practical application, the realization of dynamic control on the vehicle’s outputs in a real-time manner, which
commonly refers to the trajectory tracking control for underwater vehicles, is of crucial importance [112,128].
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4. CHALLENGES AND PROSPECTS OF UUV MOTION PLANNING AND TRACKING CONTROL
The motion planning and tracking control of the UUV has a promising future in the maritime projects of
underwater rescue, detection, investigation, tube pavement, creature study, and military strategy. Hence, there
is still a large requirement for thorough and systematic research in this field. In this section, the challenges and
prospects of the UUVmotion planning and tracking control for underwater navigation are listed and analyzed.

4.1. Multi­UUV collaboration
In this section, possible future studies on the multi-UUV collaboration are given, mainly divided into the
multi-UUV collaboration considering the environmental effect and heterogeneous vehicles and the hunting
of dynamic targets.

4.1.1. Environmental effect and heterogeneous vehicles
Most researchers discuss the UUV assignment in an ideal underwater environment and regard the vehicle as
a pure particle, which lacks the consideration of the practical condition of the UUV operation. Therefore, the
complex environmental factors such as ocean currents effect, unpredictable seamounts, and various moving
obstacles should be involved in further studies. Moreover, the UUV system contains uncertainty that cannot
be addressed initially, such that the heterogeneous vehicles of different model parameters, navigating velocities,
or safe distance are required to be studied. In addition, the topics of the formation control of heterogeneous
vehicles between UUVs and USVs (or even unmanned aerial vehicles) have become more attractive, as the
USV can help to instruct the UUV in real-time positioning through its less-affected GPS system and efficient
communication above the water surface [129,130].

4.1.2. Dynamic targets
Most current UUVmotion planning and tracking control studies concentrate on tackling static targets, such as
the underwater search of crashed vehicles, yet the following or hunting of dynamic targets for UUVs is a crucial
issue in the military defense for the marine system [131]. The following or hunting of dynamic targets covers the
topics of dynamic task assignment, intelligence of the moving target, path planning while chasing the target,
and containment of the target completed by the UUVs, which are still waiting to be further investigated.

4.2. Efficient underwater positioning and path planning
The developed underwater positioning methods of real-time efficiency are required, as the conventional po-
sitioning and navigating systems such as GPS are not valid due to the poor communication affected by the
underwater environment. In addition, path planning in the underwater condition is the most vital part of
UUV motion planning, where some innovative intelligent planning methods can be applied in this field to
improve efficiency, such as reinforcement learning.

4.3. Robust underwater trajectory tracking
Owing to the complexity and uncertainty of the underwater environment and the nonlinear UUV system, the
robustness of UUV trajectory tracking has to be advanced to guarantee the UUV navigates as desired. There-
fore, the problems that affect the robustness of UUV trajectory tracking such as excessive speed references,
actuator saturation, and thruster damages are worth investigating [132].

4.4. Real­time underwater recognition
Current approaches that can attain the identity information of the underwater targets are limited due to the
low invisibility and unpredictable obstacles of the surrounding environment; the inefficient communication
through the fluids in the deep-sea area also restricts the real-time recognition of the underwater target, thus
affecting the real-time UUV navigation to unknown targets. Hence, the advanced underwater target detection
techniques such as themulti-sensor information infusion approach and deep learning-based image recognition
can be applied in this field to process and achieve the results in time [133–136].
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5. CONCLUSION
The paper discusses the methodologies that can be applied to perform satisfactory UUVmotion planning and
tracking control, as well as the authors’ thoughts on the benefits or drawbacks of these methods. In general,
motion planning and tracking control for UUVs require the vehicle to realize an efficient and robust under-
water operation of addressing and approaching the targets, with the optimal planned paths, task assignment
among multiple vehicles, and robust trajectory tracking procedure. The framework and current investigations
of UUV motion planning and tracking control are given in Sections 2 and 3. Moreover, although researchers
have developed some effective methodologies on these topics, challenges remain to be resolved, which are
listed in Section 4, together with the possible developments of UUV motion planning and tracking control
technologies.
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