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Abstract
Aim: This paper proposes a novel risk assessment methodology for complex cyber-physical systems. The proposed
methodologymay assist risk assessors in: (1) assessing the risks deriving from cyber and physical interactions among
cyber-physical components; and (2) prioritizing the control selection process for mitigating these risks.

Methods: To achieve this, we appropriately combine andmodify two recent risk assessmentmethodologies targeted
to cyber-physical systems and interactions as underlying building blocks. By applying the existing methodology, we
enable the utilization of well-known software vulnerability taxonomies to extract vulnerability and impact submetrics
for all the interactions among the system components. Thesemetrics are then fed to the risk analysis phase to assess
the overall cyber-physical risks and prioritize the list of potential mitigation controls.

Results: To validate the applicability and efficiency of the proposed methodology, we applied it in a realistic scenario
involving supply chain tracking systems.
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Conclusion: Our results show that the proposedmethodology can be effectively applied to capture the risks deriving
from cyber and physical interactions among system components in realistic application scenarios, while for large-
scale networks, further testing should be carried out.

Keywords: Cyber-physical systems, risk assessment, risk mitigation, attack paths, security control selection

1. INTRODUCTION
The digitalization of critical infrastructures enables the dynamic, remote, and efficient monitoring and control
of complex cyber-physical systems (CPS) to facilitate their services and operations.

At the same time, it enables new security threats and risks, which may exploit the increased connectivity of
CPS, and the underlying vulnerabilities of numerous interconnected system components. As cyber-physical
connectivity enables cyber-physical attack paths between interconnected systems, this leads to multiple at-
tack opportunities for attackers. Potential security issues could disrupt critical system functions and services,
including critical data and services, or even physical damage to the critical infrastructure. As long as the
interconnectivity and interdependency of such infrastructures increases, the propagation of these risks will
increase.

The complexity of critical infrastructures and the heterogeneity of CPS employed have introduced several
security issues. Supply chain management is a typical instance of heterogeneous CPS with increased security
risks. The supply chain infrastructure relies on typical information and communication technology (ICT),
as well as operational technology (OT). Additionally, the geographical diversity of systems and the multiple
levels of outsourcing increase the risks of cyber attacks. According to NIST [1], the supply chain is defined as
the linked set of resources, services, and systems in several levels of an enterprise throughout the product and
services life-cycle. Potential security issues in such infrastructure could provoke cascading effects on other
systems and infrastructure.

Several security threats, vulnerabilities, and risks have been analyzed for CPS and critical infrastructures [2,3].
Security attacks may propagate within the infrastructure by exploiting the interactions of CPS components,
along with their underlying security vulnerabilities, to create complex attack paths. These attack paths are
essentially sequences of interacting assets that an attacker can exploit in turn to attack one or more systems
within the path [4]. Additionally, several security risks may arise throughout the supply chain in suppliers,
their supply chains, and their products or services [1]. Furthermore, the flows and stocks of the supply chain
could be the entry points to attack the overall infrastructure [5]. Various security vulnerabilities for supply
chain infrastructures have been studied in the literature [1,6]. To address such security issues and improve the
security and resilience of such infrastructures, a comprehensive security analysis is needed.

Therefore, the security threats, vulnerabilities, and risks of the supply chain infrastructure need to be analyzed
systematically towards a secure and resilient infrastructure. Security risks throughout the supply chain are
often undetected, while their impact is significant for the overall infrastructure [1]. Indeed, research on supply
chain cyber security has pointed out that several security risks exist and should be adequately mitigated [7,8].
Although several risk management methodologies for supply chain infrastructures exist, the risk propaga-
tion within the infrastructure and the optimal control selection to minimize security risks are only partially
analyzed [9]. Furthermore, the analysis of the possible attack paths between the infrastructure’s components
facilitates understanding the cascading effects of a cyber attack.

In this paper, we focus on the risk analysis and risk treatment phases of the risk management process [10] for
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cyber-physical systems. Particularly, we propose a methodology to analyze security risks considering system
vulnerabilities and threats and the aggregate risks between the systems, as well as identifying the optimal secu-
rity controls to minimize the risks posed by the aforementioned security issues. The proposed methodology
leverages the novel risk assessment methodology for assessing IoT-enabled cyber-physical attack paths pro-
posed in [11] and the risk assessment and treatment methodology proposed in [12].

Namely, a comprehensive risk management framework for CPS is proposed combining the steps and phases
from the aforementioned approaches. The novel framework includes the steps and phases from both ap-
proaches and enables the modeling of interactions between components, the threat and vulnerability anal-
ysis, the impact of each threat, and the mitigation of these threats and vulnerabilities by identifying the most
appropriate security controls. The contributions of this work are as follows:

• We extend our previous works described in [11,12] towards a comprehensive risk management framework
for CPS. Our main goal is to identify and assess the risk derived from the combined cyber and physical
interactions, as well as producing the optimal set of security controls to effectively minimize the derived
risk.

• We propose a method to analyze the risk propagation in CPS by leveraging the cyber and physical interac-
tions between the system components. By applying and properly modifying the methodology of Stellios et
al. [11], we enable the utilization of well-known software vulnerability taxonomies, such as CVE and CPE,
to extract vulnerability and impact submetrics for all the interactions among the system components.

• We propose a method to systematically select the optimal set of security controls to minimize security risks.
The interaction metrics are then fed to the risk analysis engine initially proposed by Kavallieratos et al. [13]
to assess the overall cyber-physical risks and prioritize the list of potential mitigation controls.

• We apply the proposed methodology in a realistic supply chain tracking CPS to illustrate the workings of
the proposed methodology.

The structure of the paper is as follows. Section 2 provides a background analysis of themethods and tools used.
Section 3 introduces the proposed methodology. Section 4 illustrates the working of the proposed method in
a supply chain use case. Section 5 concludes this work and introduces future research paths.

2. BACKGROUND WORK
Various risk assessment and risk management frameworks can be found in both gray and scientific literature,
which are also applicable to cyber-physical systems. First, we briefly describe threat, vulnerability, and security
control models, frameworks, and scoring systems that have been proposed by standardization bodies and/or
other relevant organizations. Although these works belong to the gray literature, these standards are widely
accepted and are often used as de facto standards. Then, we briefly describe risk assessment methodologies
recently proposed in the literature for cyber-physical systems. Finally, we focus on two CPS risk assessment
methodologies, which serve as the underlying building blocks for the proposed methodology.

2.1. Basic building blocks
We briefly describe some well-known security models, including vulnerability catalogs and threat and risk
assessment models, which are utilized as building blocks in selected phases of the proposed methodology. In
Section 3, where the proposed methodology is presented, we explain how these blocks are utilized in specific
phases.

2.1.1. CPE
The Common Platform Enumeration [14] catalog is a structured naming scheme for information technology
systems, software, and packages. Utilizing CPE-recorded products makes it easier to map the various compo-
nents residing in systems, and various scanners used for enumeration utilize the CPE catalog for their output.
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Finally, for each product recorded in the CPE catalog, linked entries might reside in the CVE and CWE cat-
alogs. In the proposed methodology, we utilize CPE to assist in the mapping of CPS components to actual
vulnerabilities.

2.1.2. CVE
The Common Vulnerabilities and Exposures (CVE) [15] list contains publicly known cybersecurity vulnerabil-
ities. A vulnerability is defined as a “weakness in the computational logic (e.g., code) found in software and
hardware components that, when exploited, results in a negative impact to confidentiality, integrity, or avail-
ability”. Each CVE entry, i.e. vulnerability, contains an identification number, a description, and at least one
reference for publicly known cybersecurity vulnerabilities. Additional entry information can include mitiga-
tion information, severity scores, and impact ratings according to the Common Vulnerability Scoring System
(CVSS). We utilize CVE in the identification of low-level software vulnerabilities for the system components.

2.1.3. CVSS
The Common Vulnerability Scoring System (CVSS) [16] provides a framework and a methodology, through
which security experts and vulnerability researchers may define specific exploitability metrics of a vulnerability
that include: The attack vector (AV) that is required to exploit the vulnerability, with possible values physi-
cal (P), local (L), adjacent network (A), and network (N); the attack complexity (AC) required for exploiting
the vulnerability, either low (L) or high (H); the privileges required (PR) to exploit the vulnerability, taking
the value none (N), low (L), or high (H); the required user interaction (UI) with possible values none (N)
and required (R); and finally the scope (S), which denotes whether the vulnerability affects only the system in
question or changes to affect other software. Furthermore, the impact metrics define the potential effect on
confidentiality (C), integrity (I), and availability (A), all taking the value none (N), low (L), or high (H). The
available labels for these characteristics are supported by weights, which can be utilized to produce numeri-
cal scores reflecting the severity and impact of the vulnerability. These scores can then be translated into a
qualitative representation to help organizations properly assess and prioritize their vulnerability management
processes. In our methodology, we extensively use CVSS to measure and map the cumulative vulnerability
level for each identified interaction between system components.

2.1.4. DREAD and STRIDE
DREAD [17] is a cybersecurity risk assessment approach that stands for damage, reproducibility, exploitability,
affected users/systems, and discoverability. The aforementioned aspects characterize the risk associated with
different attack scenarios, and in particular, they aim to answer questions such as “what is the damage of a
potential attack or threat to a system”, “how an attack may be reproduced”, “how easy an adversary may attack
to a system”, “how many systems or people may be affected”, and “how easy it is for the attacker to identify the
relevant vulnerabilities”. Additionally, STRIDE [18] is a threat modeling approach that facilitates the process of
threat identification and analysis of six types of threats: spoofing (violation of authenticity), tampering (viola-
tion of integrity), repudiation (violation of non-repudiability), information disclosure (violation of availability),
and elevation of privileges (violation of authorization). Both approaches have been developed byMicrosoft aim-
ing at the comprehensive security analysis of the targeted systems, since STRIDE identifies and analyzes the
cybersecurity threats, while DREAD analyzes the accordant risks of the aforementioned cybersecurity threats.
Although both approaches have been developed to analyze the security of software-related systems, their appli-
cation in domains where the application of CPS is prominent is popular [19–21]. In the proposed methodology,
we utilize STRIDE in threat analysis and DREAD in risk evaluation and propagation.

2.1.5. Genetic algorithms
Genetic algorithms (GAs) facilitate the randomized search by leveraging the structures of natural genetics and
natural selection mechanisms [22]. Particularly, GAs aim to solve problems for which the solution cannot be
found with exhaustive search mechanisms due to the very large solution space. The main attributes of GAs
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are the coding scheme, a set of operators, and a fitness function [23]. Overall, a GA addresses unconstrained
optimization problems, including the one this study aims to address.

2.2. Related Work on CPS risk assessment methodologies
Various methods have been proposed for CPS risk assessment. Kott et al. [24] proposed a method that uses
mission impact assessments as a tool to assist operational decision makers in applying cyber defense security
controls. They defined a simulation platform that can emulate CPS, such as water and energy distribution
systems. The analysis demonstrates that, based on the simulation platform, it is possible to discover various
hidden dependencies which require risk treatment. Lyu et al. [25] proposed a cyber-to-physical (C2P) risk
assessment model based on hierarchical Bayesian networks (BN). The model estimates the probability of a
security incident compromising a target based on CVSS metrics to produce quantitative risk values, which
are also assessed through qualitative risk analysis. Tantawy et al. [26] presented an integrated approach for the
analysis and design of a cyber security system for a given CPS, where the physical threats are identified first to
guide the risk assessment process.

Some works are targeted to specific CPS application environments. For example, Abie and Balasingham [27]

proposed an adaptive risk-based security framework for CPS for the health sector. The goal is to assess the
potential damages and future benefits using game theory and machine learning techniques, which, in turn,
enables the security mechanisms to adjust their security decisions accordingly. Seale et al. [28] presented a
risk assessment framework for medical infrastructures. Their framework uses various building blocks that
we also apply, such as STRIDE, CVE and CVSS. Furthermore, Mokalled et al. [29] proposed a general risk
management framework for CPSs focusing on specific characteristics of the CPSs. Rosado et al. [30] proposed
a risk analysis approach for CPS based on MARISMA. However, this approach focuses on general elements of
the CPS. Additionally, defensive strategies and policies in CPS towards increasing the level of defense for the
communication network in a ship infrastructure were proposed by R. Sahay et al. [31]. The propagation of the
attacks between CPSs is studied in [32] considering the sensitivity of the assets and the impact of the attacks.

Security risks in supply chain infrastructure have been extensively analyzed in the literature [33,34]. Ho et al. [9]
conducted a literature review of existingmethodologies tomanage risks in supply chain infrastructures. Supply
chain systems are cyber-physical systems where both safety and cyber security risks may arise [35]. To this
end, a comprehensive risk assessment methodology is needed to analyze both safety and security risks and
the accordant controls. Furthermore, the analysis of the risk propagation between the supply chain systems
facilitates the identification of optimal sets of security controls.

The proposed methodology combines and extends two recent cyber-physical risk assessment methodologies.
We focus on those underlying methodologies, and below we will briefly describe them and their advantages
and disadvantages.

2.2.1. A methodology to assess IoT-enabled, cyber-physical attack paths [11]
The methodology of Stellios et al. [11] is a CPS-specific risk assessment methodology, whose goal is to assess
cyber-physical attack paths which are IoT-enabled, i.e. the attack involves the exploitation of inter-connected
IoT-IT systems. The methodology is target-oriented and source-driven. For each run of the methodology, a
critical system is defined as the attack target. For all the systems/devices in range, their interactions, i.e. con-
nectivity or other dependencies, are defined. Then, based on the interactions, a recursive algorithm is executed
to construct all the attack paths and thus identify all the effective sources for all the attack paths. To assess the
vulnerability of each interaction and each attack path, it utilizes CVSS-like vectors to indentify specific interac-
tions and assess their exploitability characteristics in cyber-physical systems. Ultimately, the vulnerability level
of components is also calculated in a CVSS vector and compared with the interaction capabilities to produce
validated results. Furthermroe, this approach enables the assessor to map and express all the interactions in a
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Figure 1. An overview of the underlying CPS RA methodologies of Stellios et al. [11] (left) and Kavallieratos et al. [13] (right).

source–destination format„ which are then combined to generate probable attack paths to later be assessed.

As illustrated in Figure 1, the methodology consists of four phases. In the first phase, the interaction modeling
is executed, which aims to map all of the potential cyber and physical interactions that reside in the context of
the infrastructure under duress and target towards a designated system. The algorithmdeveloped for this phase
essentially iterates over cataloged device and network classes, which contain connectivity configurations and
input/output capabilities, to enumerate applicable interactions amongst the components. In the second phase,
the calculated interactions are further assessed based on the vulnerabilities of the target component. Essentially,
the previously enumerated interactions are extended with a so-called cumulative vulnerability vector (CVV),
derived from a combination of the CVEs identified for the active devices acting as targets. This cumulative
score is refined by environmental information such as networking information and related security controls.
In the third phase, the attack paths are built through the exhaustive combination of the assessed interactions
enumerated in Phase 2. This algorithm builds attack paths that may vary in length, involving one or more
interactions; in this case, loops that do not offer elevated exploitability characteristics are considered as noise
and removed. In the fourth phase, the previously enumerated attack paths are assessed and a risk value per
path is assigned. This risk is produced using the CVV of each interaction tuple, the vulnerabilities of the initial
nodes, and the characteristics of adversaries that are applicable to the infrastructure and capable of initiating
the attack path.

On the positive side, the methodology in [11] allows for detailed cyber and physical interaction modeling. In
addition, it takes into account low-level vulnerability input by utilizing de facto standards such as CPE, CVE,
and CVSS. Finally, by targeting the analysis to a specific “critical target system”, it allows for an efficient com-
putation of risks for all the attack paths that may lead to the critical target system. On the negative aspects, it
does not support detailed risk management and control selection, which is only possible through a repeated
“what-if ” analysis that requires sequential re-execution of the methodology.
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2.2.2. A CPS methodology for risk propagation and control selection [13]

Kavallieratos et al. [13] proposed a methodology to analyze the propagation of the security risks among com-
plex CPS infrastructures. By leveraging a genetic algorithm approach, the most effective and efficient security
controls per CPS component are identified. Building upon the results of the aforementioned work, we extend
the methodology to analyze attack paths between CPSs and improve the security control selection process to
identify a set of security controls that minimizes both the residual risk and the cost [12]. Overall, the phases of
the aforementioned works are the stepping stones for the methodology proposed herein.

In the environment analysis, the system model is described in terms of components. The CPS components
are identified along with their interconnections, dependencies, and inter-dependencies. By leveraging this in-
formation, the CPS coefficients are estimated and their values represent the effects of each component on the
other components and the overall system. The rest of the process defined as Cybersecurity analysis consists
of different stages of the risk management process, as specified in ISO 31000 [10]. In the Threat analysis stage,
the cybersecurity threats are identified per component and CPS using the STRIDE methodology. In the Risk
assessment stage, the risk value associated with each threat from the previous step is estimated by leveraging
the DREAD methodology. Having estimated the risk values, the risk per component, CPS, and path is eval-
uated. Consequently, in the Attack path analysis step, the risk aggregation between components and CPSs
are analyzed, and the most critical attack paths are identified. Finally, in the Risk treatment step, a genetic
algorithm s decides the most effective and efficient set of cybersecurity controls. The applicability, effectiveness,
and cost of each control is considered.

The aforementioned approach analyzes the target environment following a system of systems perspective.
Namely, the security analysis of each component is performed towards the overall analysis of the targeted
ecosystem, also considering the total effect of each component on the targeted ecosystem. This approach facil-
itates the analysis of ecosystems under development to ensure their overall security. However, the correlations
between the components are estimated considering only the information and control flows without taking into
account cyber interactions. Additionally, the system and component vulnerabilities are not considered in this
approach.

3. THE PROPOSED METHODOLOGY
We combine and properlymodify the above-mentionedmethodologies [11,13] to allow for dynamic and efficient
risk analysis and risk treatment methodology for complex CPS.

The proposed methodology utilizes in the various phases and properly combines, as building blocks, the se-
curity models described in Section 2.1. By utilizing the interaction modeling (see Phase 1) and interaction
assessment (see Phase 2) phases of Stellios et al. [11], we model both the cyber and physical interactions be-
tween the components in a detailed manner.

In phase 1, we utilize existing asset catalogs to map assets in the form of CPE entries. In Phase 2, the CVE
catalog is utilized to map vulnerabilities to assets, while the CVSS scoring system is extensively used in the
interaction assessment phase.

The threat analysis (see Phase 3) is based on the relevant component of Kavallieratos et al. [13] and follows the
STRIDE threat model. The output of this phase is mapped to the DREAD risk assessment model to assist later
in the control selection process.

By combining the threat input with the vulnerability and impact interaction assessment metrics, system risks
are computed for the whole system under study by extending the relevant phase in [13] (Phase 4). The risk
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Figure 2. The proposed CPS methodology extends those in [11,13] to take into account detailed vulnerability information and existing inter-
actions while also assessing mitigation controls.

treatment (Phase 5) is again based on the relevant phase in [13], where the effect of detailed security control
selection can be evaluated. Risk treatment utilizes a genetic algorithm approach to allow the prioritization of
possible security controls.

Finally, as a verification of the control selection, the attack path construction (Phase 6) and attack path assess-
ment (Phase 7) in [11] may be optionally computed for chosen target components to verify the effectiveness of
the control selection process. In the following, we analyze the proposed methodology in detail. The proposed
methodology is depicted in Figure 2.

To assist the reader in mapping the relevant phases and flow of the proposed methodology with respect to
the underlying methodologies [11,13], we depict in bold frames the main phases of the methodology (Phases
1-5) and in light frames the optional phases (Phases 6 and 7). Finally, for easier reference with the underlying
methodologies shown in Figure 1, those phases that are not used in the proposed methodology are grayed out.

3.1. Interaction modeling
Following our previous approach [11], we model both the cyber and physical interactions by mapping their
physical channels, networks, and logical access. We denote an interaction between a source node (asset) 𝑥
and a destination node 𝑦 as 𝐼𝑛𝑡 (𝑥, 𝑦, 𝑡𝑦𝑝𝑒), which represents the effect that 𝑥 may have on 𝑦 based on their
proximity and connectivity. We define two categories of interactions, physical and cyber, where each category
defines specific interaction types.

Cyber interactions include all the actions that may be triggered by the source towards the destination node
due to their cyber connectivity. Nodes that have cyber interactions belong to either the same local network
(Adjacent network in the CVSS terminology) or different networks. In addition, the source node 𝑥 may have
various access rights in the destination of the interaction 𝑦, ranging from no access (i.e., 𝑥 and 𝑦 are simply
nodes in the same network), low-level access (e.g., 𝑥may have user-level access on 𝑦), or full access (i.e., admin
rights). Table 1 summarizes the cyber interaction types that we adopt from [11].

Then, utilizing the proximity of systems and their interface types as input enables us to enumerate their physical
interactions by iterating over an exhaustive combination of those elements. The physical attack vector (AV:P)
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Table 1. Cyber interaction types C1–C6, based on the connectivity and the logical access of 𝑥 to 𝑦

Logical access
Connectivity None (no explicit access) Low (user-level) High (admin-level)

L2 (local) network C1 C2 C3
L3 (remote) network C4 C5 C6

Table 2. Physical interactions types defined based on the physical proximity (P1), wireless I/O proximity (P2), and network proximity
(P3) of shared-band network interfaces

Type Description Interface Examples

P1 Physical proximity (𝑥 may use a moving part and/or
moving capabilities to physically reach 𝑦)

Remotely controlled moving parts
or devices

Robotic arm, crane, wheeled device,
drone

P2 Wireless I/O proximity (𝑥 is in range with a wireless I/O
interface of 𝑦)

Audio, visual, optical interfaces Line-of-sight (LiDAR, IR), audio/video
interfaces

P3 Networks’ proximity (𝑥 and 𝑦 at different networks that
are in range)

Different, but shared-band
wireless interfaces

802.11.x and 802.15.x operate at 2.4
GHz

described in CVSS is applied for machine-to-machine interactions that are able to reach each other physically.
In addition, AV:A is considered appropriate for physical interaction types P2 and P3, since adjacent network
access is adequate for physical interactions that require network proximity. We define three types of physical
interactions, as shown in Table 2.

3.2. Interaction vulnerability and impact assessment
To analyze the vulnerability and impact level for each interaction, we properly modify the interaction assess-
ment phase of our previous work [11]. We briefly refer to the underlying methodology and the work in [11] for
a detailed analysis.

For each identified cyber and physical interaction, a CVSS vector is assigned based on predefined values (see
Table 3). The CVSS-like vector presented in Table 3, called 𝐼𝑛𝑡𝐶𝑉𝑆𝑆, corresponds to the implied capabilities
that the source node 𝑥 has on the destination node 𝑦, due to their interaction type1. We provide some
examples to clarify how each 𝐼𝑛𝑡𝐶𝑉𝑆𝑆 vector is derived (see [11] for the complete process). Furthermore, in
Section 2.1, we provide a brief summary of the CVSS metrics and values.

For example, a cyber interaction of type C3 implies that the source and the destination nodes reside in the
same network and the source node 𝑥 has admin-level access to the destination node 𝑦 (see Table 1). This is
reflected in the 𝐼𝑛𝑡𝐶𝑉𝑆𝑆 vector through the metrics AV and PR and the C/I/A Impact, which are, respectively,
adjacent network (AV:A), high implied privileges (PR:H) and high impact for all types (C:H/I:H/A:H). Sim-
ilarly, physical interaction of type P3 implies that, while the source and the destination nodes are connected
in different networks, they are equipped with shared band frequency interfaces and are within range [Table 2].
Therefore, 𝑥 has the implied capability of performing jamming or injection attacks on 𝑦. This is reflected by
the adjacent network attack vector (AV:A), no implied access privileges (PR:N), and the low integrity and
availability impact (I:L/A:L).

As explained above, the 𝐼𝑛𝑡𝐶𝑉𝑆𝑆 vector denotes the initial capabilities that the source node 𝑥 has on the
destination node 𝑦 due to their interaction. However, this “inherited” relation may be extended by the source
node by exploiting the underlying vulnerabilities that exist on node 𝑦. As mentioned in Section 2, the CPE
identifiers of all the nodes (assets) are utilized to retrieve all the underlying vulnerabilities of each node. Each
vulnerability found is examined as an isolated (single) vulnerability. In addition, all the vulnerabilities that
correspond to each node are combined for each different asset (CPE id) using the vulnerability chaining process

1The cyber and physical interaction types are illustrated in Tables 1 and 2, respectively
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Table 3. 𝐼 𝑛𝑡𝐶𝑉 𝑆𝑆: predefined implied capabilities for all interaction types in the form of CVSS vectors. To interpret the values, refer to
section 2.1

Exploitability metrics Impact metrics
Interaction type AV AC PR UI S C I A

C1 A H N N U N N N
C2 A H L N U L L L
C3 A H H N U H H H
C4 N H N N U N N N
C5 N H L N U L L L
C6 N H H N U H H H
P1 P H N N U N L L
P2 A H N N U L L L
P3 A H N N U N L L

Table 4. Summary of all vectors utilized in interaction assessment

𝐼 𝑛𝑡𝐶𝑉 𝑆𝑆 (𝑥, 𝑦, 𝑡 𝑦𝑝𝑒) A CVSS-like capability vector assigned on the interaction based on the interaction’s type, by applying section
2.1.. The 𝐼 𝑛𝑡𝐶𝑉 𝑆𝑆 may also be transformed based on the environment by considering relevant network security
controls if such information is available.

{𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑉 𝑆𝑆𝑦 } A list of all the single CVSS vectors corresponding to vulnerabilities identified in 𝑦.

{𝐶ℎ𝑎𝑖𝑛𝑒𝑑𝐶𝑉 𝑆𝑆𝑦 } A list of all the CVSS vectors of the chained vulnerabilities of 𝑦.

𝐶𝑉𝑉
(
(𝑥, 𝑦, type)

)
The resulting Cumulative Vulnerability Vector of the interaction as defined in Equation (1).

Table 5. STRIDE per system

System per threat S T R I D E

System 1 x x
System 2 x x x

described in the CVSS standard [36] to produce the chained vulnerability vector of each node.

Based on the above information, the cumulative vulnerability vector (CVV) of an interaction𝐶𝑉𝑉
(
(𝑥, 𝑦, type)

)
is defined as a uniqueCVSS-like vector, representing the implied capabilities of the source node and the existing
vulnerabilities of each interaction. Table 4 summarizes all the input vectors used for the computation of the
CVV, while Equation (1) denotes the computation formula. The output vector can then be easily transformed
to a numerical value in the range of 0–10, as defined in the CVSS standard.

𝐶𝑉𝑉
(
(𝑥, 𝑦, type)

)
= 𝑉 ∈

(
𝐼𝑛𝑡𝐶𝑉𝑆𝑆(𝑥, 𝑦), 𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑉𝑆𝑆𝑦 , 𝐶ℎ𝑎𝑖𝑛𝑒𝑑𝐶𝑉𝑆𝑆𝑦

)
s.t.:{

C ≥ L & I ≥ L & A ≥ L
V has max(Impact,Exploitability)

(1)

3.3. Threat analysis
The analysis of the risk propagation requires the identification of potential security threats that the risks may
arise. To this end, the STRIDE methodology is utilized in the phase of the proposed methodology. By leverag-
ing the six threats (spoofing, tampering, repudiation, information disclosure, denial of service, and elevation of
privileges), the attack scenarios of each component/system of the targeted environment are analyzed. STRIDE
provides a qualitative threat analysis, and the results are used as input to the DREAD methodology for a
comprehensive risk analysis. Furthermore, this technique facilitates the identification of threats per element
(system), as shown in Table 5.
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3.4. Risk analysis
In this phase, the quantitative risk analysis is performed, considering the results from the previous phases. Par-
ticularly, theDREADmethodology is utilized aiming to quantify specific aspects (damage potential, reproducibility,
exploitability, affected systems, and discoverability) of STRIDE threats and attacks to assign meaningful num-
bers to the elements of risk by means of Equations 2-4.

The risk value 𝑅 associated with each STRIDE threat 𝑡 ∈ {𝑆, 𝑇, 𝑅, 𝐼, 𝐷, 𝐸} for system 𝑠 is calculated by using
the following formulas [17,37]:

𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑡 =
𝐷𝑎𝑚𝑎𝑔𝑒 + 𝐴 𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑𝑠𝑦𝑠𝑡𝑒𝑚𝑠

2
, (2)

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑡 =
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

3
, (3)

𝑅𝑖𝑠𝑘 𝑠𝑡 =
(𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑡 + 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑡 )

2
. (4)

𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑡 describes the effect of a cyber attack realizing specific threat 𝑡 upon a component 𝑠, while 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑡
describes the probability of the specific threat 𝑡 being realizing in 𝑠.

3.4.1. Risk propagation
The aggregate risk 𝑅

𝑎𝑔𝑔𝑐 𝑗
𝑡 of component 𝑐 𝑗 is calculated using Equation (5).

𝑅
𝑎𝑔𝑔𝑐 𝑗
𝑡 = max(𝑅

𝑑𝑖𝑟𝑐 𝑗
𝑡 , 𝑅

𝑝𝑟𝑜𝑝𝑐 𝑗
𝑡 ), (5)

where direct risk 𝑅
𝑑𝑖𝑟𝑐 𝑗
𝑡 is the risk of 𝑐 𝑗 without considering the possible connections with other components

and is estimated using Equations 2-4, while the propagated risk 𝑅
𝑝𝑟𝑜𝑝𝑐 𝑗
𝑡 is calculated considering the connec-

tions to other components that 𝑐 𝑗 has. The fraction of the impact that an event has on any 𝑐𝑘 on any path 𝑝𝑙
from 𝑐𝑖 to 𝑐 𝑗 is represented by 𝑒 𝑓 𝑓 𝑇𝑝𝑙 and is calculated as

𝑒 𝑓 𝑓 𝑇𝑝𝑙 =
𝑗−1∏
𝑖=1

𝑒 𝑓 𝑓 𝑇𝑐𝑖𝑐𝑖+1 . (6)

where 𝑒 𝑓 𝑓 𝑇𝑐𝑖𝑐𝑖+1 values are extracted from the CVV interaction scores of Equation (1) after the values have been
normalized in the range [0,1].

The risk propagated over path 𝑝𝑙 , originating at component 𝑐𝑖 and terminating at component 𝑐 𝑗 , is calculated
by:

𝑅
𝑝𝑟𝑜𝑝

𝑝𝑙
𝑐 𝑗

𝑡 =
𝑒 𝑓 𝑓

𝑇𝑝𝑙
𝑐𝑖𝑐 𝑗 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝑐𝑖𝑡 + 𝐿𝑐𝑖

𝑡

2
. (7)

The whole system is described by 𝑐0 and the global risk of threat 𝑡 for the system is calculated by:

𝑅𝑠
𝑡 = 𝑅

𝑎𝑔𝑔𝑐0
𝑡 = max(𝑅𝑑𝑖𝑟𝑐0

𝑡 , 𝑅
𝑝𝑟𝑜𝑝𝑐0
𝑡 ), (8)
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where the direct risk for the system is not applicable (𝑅𝑑𝑖𝑟𝑐0
𝑡 = 0) and the propagated risk for the system is

calculated as for any other node (𝑅𝑝𝑟𝑜𝑝𝑐0
𝑡 = max𝑝𝑙 𝑅

𝑝𝑟𝑜𝑝
𝑝𝑙
𝑐0

𝑡 ). Thus,

𝑅𝑠
𝑡 = max

𝑝𝑙
𝑅
𝑝𝑟𝑜𝑝

𝑝𝑙
𝑐0

𝑡 (9)

To summarize, our risk analysis method is able to capture the effect of both the cyber and physical interactions
between components. This is due to the fact that the 𝐶𝑉𝑉 value of each interaction has the ability to chain
vulnerabilities and interactions of different types, as illustrated in Equation (1). The 𝐶𝑉𝑉 is then utilized in
Equation (6) to compute the coefficient 𝑒 𝑓 𝑓 𝑇𝑐𝑖𝑐𝑖+1 . The paths along which the risk is propagated consist of po-
tential one-to-one interactions between different system components, which can be physical or cyber-related.
As the global risk computed in Equations 8 and 9 is based on the propagated risk over paths [ Equation (7)],
this enables our model to capture the impact reflected from the cyber to physical components and vice versa.

Further details about the method used and the aforementioned equations are omitted in the interest of saving
space and can be found in [12,13].

3.5. Risk treatment
The purpose of the risk treatment phase is twofold. First, the identified risk is to be minimized. Second,
the propagation of the risk within the infrastructure is to be mitigated. Particularly, the proposed approach
leverages a set of security controls that are appropriate for the targeted system. The effectiveness and the cost
of each control are considered in selecting the most appropriate security control. The effectiveness of the
controls reflects the effect of each control for each threat and each component 𝑐𝑖 . The values of 𝐼𝑚𝑝𝑎𝑐𝑡𝑐𝑖𝑡 and
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑐𝑖𝑡 are affected by the effectiveness of controls and, therefore, the risk per system and to the overall
infrastructure. Furthermore, the cost𝐶𝑜𝑠𝑡𝑚 of each control𝑚 is considered. For a system with 𝑁 components
and a list with 𝑀 controls with the cost vector 𝐶 = [𝑐𝑜𝑠𝑡1, 𝑐𝑜𝑠𝑡2, ..., 𝑐𝑜𝑠𝑡𝑀 ], the following binary matrix 𝐴𝐶

compactly depicts the applied controls throughout the system:

𝐴𝐶 =


𝑎𝑐1,1 𝑎𝑐1,2 ... 𝑎𝑐1,𝑁
𝑎𝑐2,1 𝑎𝑐2,2 ... 𝑎𝑐2,𝑁
... ... ... ...

𝑎𝑐𝑀,1 𝑎𝑐𝑀,2 ... 𝑎𝑐𝑀,𝑁


, (10)

where

𝑎𝑐𝑖, 𝑗 =

{
0, if control 𝑖 is not applied to component 𝑗
1, if control 𝑖 is applied to component 𝑗

. (11)

The total cost 𝑇𝐶𝐴𝐶 of the applied controls solution 𝐴𝐶 is 𝑇𝐶𝐴𝐶 = 𝐴𝐶 ∗ 𝐶.

The approach proposed in [13] aims to provide separate lists of security controls taking into consideration
STRIDE threats. The proposed methodology analyzes all the controls identified for all systems, to produce
an effective set of security control for the overall infrastructure. The process that enables the elicitation of con-
trols that are effective for more than threats is proposed in [12]. Namely, the process takes for granted that the
controls identified in the previous steps are implemented for each threat by leveraging a cascading application
of the genetic algorithm approach. For instance, the application of a single control to a specific component
could reduce the overall system risk for more than one threat. In terms of global implementation cost, the
chocie is more efficient. The proposed scheme supports the identification of the set of controls that minimizes
the risk all threats and the implementation cost of the system, as depicted in Figure 3.
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Figure 3. Cascading GA process [12].

The concept upon which the approach is based is analyzed in detail in [12]. After applying the genetic algorithm
for each threat, the resulting controls are fixed in the set of available controls used as input for the rest of the
threats. After all threats have been analyzed, the resulting controls are unified into the optimal set of cyber
security controls for the entire system.

Specifically, for each threat, an instance of a genetic algorithm is run to decide the optimal control selection
for that threat. This amounts to selecting the set of controls 𝐴𝐶 that minimizes the system residual risk 𝑅𝑠

𝑡𝐴𝐶

at the lowest total cost 𝑇𝐶. For each threat, the controls selected for the threats analyzed previously are fixed
as enabled in the 𝐴𝐶 array. The large size of the search space (all candidate solutions) prohibits the use of
exhaustive searchmethods. Hence, a heuristic optimizationmethod has to be employed [38]; we select a genetic
algorithm, even though any other heuristic optimization method would apply in principle.

The design parameters of the genetic algorithm are as follows:

• The search space comprises all possible combinations of controls applied to components.
• Each individual solution is represented by the matrix 𝐴𝐶, which is transformed into a binary vector of size

𝑀 ∗𝑁 . The value of each element of the vector represents the decision to apply a specific control to a specific
component or not.

• The fitness function is defined as 𝑓 𝑖𝑡 (𝐴𝐶) = 𝑅𝑠
𝑡𝐴𝐶

+ 𝐶𝑛𝑜𝑟𝑚 (𝐴𝐶), where 𝐶𝑛𝑜𝑟𝑚 (𝐴𝐶) = 𝑇𝐶𝐴𝐶

𝑇𝐶𝑚𝑎𝑥
, with 𝑇𝐶𝑚𝑎𝑥

being the largest possible cost of applying all available controls to all system components.
• The initial population size is 100.
• The mutation probability is 0.1.
• The next generation is determined by uniform crossover, with crossover probability equal to 0.5, an elite
ratio of 0.01, and 0.3 of the population consisting of the fittest members of the previous generation (i.e., the
parents).

• The algorithm terminates when the maximum number of allowed iterations is used. This number is calcu-
lated as 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 50 ∗∑𝑖=𝑀, 𝑗=𝑁

𝑖=1, 𝑗=1 𝑎𝑐𝑖 𝑗 .

3.6. Attack path construction and attack path risk assessment
The last two phases of the proposed methodology may be optionally executed to validate the effect of the
control selection produced by the Risk Treatment phase. The Attack Path Construction and Attack Path Risk
Assessment phases are based on the relevant phases defined in the methodology of Stellios et al. [11]. Our goal
here, however, is not to prioritize the attack paths but to validate the effect of the controls selected in the Risk
Treatment phase in effectively reducing the risk of the critical attack paths. To construct the attack paths, the
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Figure 4. Supply chain scenario.

assessor must first select which asset is set as the critical target system. All the attack paths towards the critical
target system are then computed and their risk is calculated as in [11]. Then, the security controls derived from
the Risk Treatment phase can be considered in “what-if ” scenarios, and the attack path assessment is re-run
to verify if the selected security controls have effectively dealt with the highest risk paths towards the critical
targets. The selection of a different target system will require re-computing the relevant attack paths and their
risk, as well as the risk of the attack paths after the security controls have been considered in the input (i.e.,
vulnerabilities and interaction types).

4. METHODOLOGY APPLICATION
4.1. Application scenario: supply chain tracking system
To validate the proposed methodology, we applied it in a typical CPS system from supply chain management,
mainly supply chain tracking systems. The scenario and the environment mapping were built and adjusted
based on a real implementation and the input provided by different stakeholders involved in a common supply
chain, such as producers of transferred goods and tracking service providers. We established a typical asset
and network map per organization, containing any observed assets or networks that contribute to the supply
chain tracking service, and based on the provided input, we implemented the interactionmodeling phase of the
proposed CPSmethodology presented in Section 3. The system under examination contains typical CPS assets
used to support logistic functionalities [Figure 4]. The sensors are installed in moving trucks with the purpose
of sensing data related to the state of the transferred products, such as current temperature and humidity.
The data are then forwarded to an edge device, typically a smartphone acting as the sensors’ gateway. The
accumulated data are passed from the gateway to a local database hosted by the logistics vendor and two cloud
computing services, AmazonElastic ComputeCloud (AmazonEC2), which offers a broad computing platform,
and Azure Compute, which offers a massive range of infrastructure as a service (IaaS) facilities depending on
the computation needs of the functionality.
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Table 6. CPE identifiers of assets and enumerated vulnerabilities

Asset name CPE Relevant CVEs

Sensor cpe:2.3:h:teltonika-networks:trb245:-:*:*:*:*:*:*:* CVE-2020-5771, CVE-2020-5772, CVE-2020-5785 , CVE-2020-5787
Phone cpe:2.3:h:xiaomi:mi_5s:-:*:*:*:*:*:*:* CVE-2018-20823
AWS compute cpe:2.3:o:debian:debian_linux:10.0:*:*:*:*:*:*:* CVE-2022-21682, CVE-2022-26846, CVE-2022-26847, CVE-2022-24301
Vendor DB cpe:2.3:a:oracle:mysql:5.7.0 CVE-2021-2226, CVE-2021-2202, CVE-2022-21304, CVE-2021-2171
Vendor OS cpe:2.3:o:debian:debian_linux:10.0:*:*:*:*:*:*:* CVE-2022-21682, CVE-2022-26846, CVE-2022-26847, CVE-2022-24301
Azure OS cpe:2.3:o:microsoft:azure:-:*:*:*:*:*:*:* CVE-2019-0816
Azure compute cpe:2.3:a:microsoft:azure_stack:-:*:*:*:*:*:*:* CVE-2019-1234

To calculate the applicable interactions among the various assets within the presented scenario, the algorithm
that supports Phase 1 was iterated over the recorded instances of available devices and executed a set of con-
ditions that consider network connectivity, device proximity, and access level from asset to asset. Finally, the
identified assets were correlated with the corresponding identifiers from the CPE catalog, which were then uti-
lized to index the corresponding vulnerabilities in the form of CVEs retrieved from the National Vulnerability
Database.

4.2. System security analysis (supply chain)
4.2.1. System threat and vulnerability analysis (supply chain)
To initiate and execute the system threat and vulnerability analysis, a combination of the calculated interactions
and the enumerated vulnerabilities was implemented. For the destination nodes of the recorded interactions,
the applicable vulnerabilities were initially enumerated in a list as SingleCVSS vectors, and then the same
vulnerabilities were combined to produce ChainedCVSS vectors, which were also added to the list. From each
list, a single or chained vulnerability with the highest exploitability and impact values was selected to act as the
CVV. Table 6 illustrates the CPE identifiers of the assets included in the scenario along with a set of enumerated
vulnerabilities that acted as the SingleCVSS vectors.

Table 7 contains the initial interaction vector 𝐼𝑛𝑡𝐶𝑉𝑆𝑆 (modified based on existing network security con-
trols), the resulting 𝐶𝑉𝑉 of the interaction resulting from 𝐼𝑛𝑡𝐶𝑉𝑆𝑆, and the existing vulnerabilities, as de-
scribed by Equation (1). For each 𝐶𝑉𝑉 value, we present its CVSS vector, the exploitability and impact sub-
scores, and the overall score. In the context of this table, we observe a set of interesting interactions: For
the interaction (Sensor, Phone, C2), we observe that the sensor has write privileges in the database
of the phone application that forwards the data to the VendorDB. If the sensor is compromised, this data
flow can be abused to inject malicious messages into the phone. For interaction (Phone, Sensor, P3),
we observe that both the sensor and the phone utilize Bluetooth frequencies; in this spectrum, both jam-
ming and packet injection attacks are applicable. By compromising the phone in this case, an attacker could
both send falsified data to the VendorDB about the sensor readings and send confirmations to the sensor that
the data are received. Furthermore, by installing a small jammer on the truck, an attacker could disrupt the
communication throughout transfer, which could result in product spoilage. This fact is confirmed by the
high values of the calculated integrity and availability impact for the observed interaction. For interaction
(AzureOS,AzureCompute,C3), we observe that all the initial impact values are mitigated from high
to low based on the existing network security controls; nevertheless, the impact is increased due to the vul-
nerabilities found on the destination system and the final 𝐶𝑉𝑉 impact is shifted to high. A similar case holds
for the interaction (VendorDB,AzureCompute,C4). Finally, for interaction (VendorDB, Phone,
C4), we observe that an attacker that has compromised the phone network, through either the phone or the
service provider, could intercept and inject the confirmation messages sent from the vendor database towards
the phone application. In such a scenario, neither the phone application nor the VendorDB would be able to
identify the loss of integrity of the relevant supply chain tracking data.

We observe that, while interactions (VendorDB,AzureCompute,C4) and (VendorDB, Phone,
C4) share the same interaction type and initial IntCVSS vector, their final CVV vectors, exploitability, and

http://dx.doi.org/10.20517/jsss.2022.17


Page 143 Kavallieratos et al. J Surveill Secur Saf 2022;3:128­49 I http://dx.doi.org/10.20517/jsss.2022.17

Table 7. Interaction vulnerability and impact metrics (CVV attributes)

Interaction 𝐼 𝑛𝑡𝐶𝑉 𝑆𝑆 𝐶𝑉𝑉 (as CVSS vector) Exploitability Impact CVV

(Phone, sensor, P3) P’, ’L’, ’N’, ’N’, ’U’, ’N’, ’H’, ’H’ ’P’, ’L’, ’N’, ’N’, ’U’, ’N’, ’H’, ’H’ 5.177088 3.887042775 9.064131
(Sensor, phone, C2) A’, ’L’, ’L’, ’N’, ’C’, ’L’, ’L’, ’L’ A’, ’L’, ’L’, ’N’, ’C’, ’L’, ’L’, ’L’ 2.068068156 3.73317227081746 5.80124
(Vendor DB, Phone, C4) ’N’, ’L’, ’N’, ’N’, ’C’, ’N’, ’N’, ’N’ N’, ’L’, ’N’, ’N’, ’U’, ’N’, ’N’, ’H 3.887042775 3.5952 7.482243
(Vendor OS, Vendor DB, C3) ’A’, ’L’, ’H’, ’N’, ’C’, ’H’, ’H’, ’L’ ’A’, ’L’, ’H’, ’N’, ’C’, ’H’, ’H’, ’H’ 0.900610326 6.04773049154452 6.948341
(Vendor OS, Vendor DB, C6) ’N’, ’L’, ’H’, ’N’, ’C’, ’H’, ’H’, ’L’ N’, ’L’, ’H’, ’N’, ’C’, ’H’, ’H’, ’H’ 1.234707705 6.04773049154452 7.282438
(Azure OS, Azure compute, C3) ’A’, ’L’, ’H’, ’N’, ’C’, ’L’, ’L’, ’L’ ’A’, ’L’, ’H’, ’N’, ’C’, ’H’, ’H’, ’H’ 0.900610326 6.04773049154452 6.948341
(Vendor DB, Azure compute, C4) ’N’, ’L’, ’N’, ’N’, ’C’, ’N’, ’N’, ’N’ ’N’, ’L’, ’N’, ’N’, ’U’, ’N’, ’L’, ’N’ 3.887042775 1.4124 5.299443

Table 8. Initial impact values

Sensor Phone AWS compute Vendor DB Vendor OS Azure OS Azure compute

Spoofing 2,50 2,50 2,00 2,00 2,50 2,50 2,00
Tampering 3,00 2,50 2,50 2,50 2,50 2,50 2,50
Repudiation 2,50 2,00 2,50 3,00 2,00 2,00 2,50
Information Disclosure 1,00 3,00 2,50 3,00 3,00 2,50 2,50
Denial of Service 3,00 3,00 2,50 3,00 2,50 2,50 2,50
Elevation of Privileges 3,00 3,00 2,50 3,00 2,50 2,50 2,50

impact values deviate. This occurs due to Equation (1), which combines the IntCVSS vector, the SingleCVSS
vectors, and the ChainedCVSS vectors to output a single CVVper interaction. The initial IntCVSS vector for in-
teraction (VendorDB,AzureCompute,C4) is AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:N;
the component has one cataloged vulnerability, so the ChainedCVSS and the SingleCVSS vectors are iden-
tical, namely AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N. Combining these vectors through Equa-
tion (1), we can see that, in the final CVV vector AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:L/A:N, the
interaction has inherited part of the impact caused by the vulnerability. The high impact of the vulnerability,
which would mean a total loss of integrity or protection, was not fully passed on to the interaction due to
network controls mitigating part of the effect. The derived low integrity impact means that data modification
might be possible from an attacker as per CVSS [16].

4.2.2. System risk analysis (supply chain)
Asmentioned in Section 3, the system security analysis is quantified using STRIDE andDREADmethodologies
to thoroughly identify the risk to each component and each threat. For each individual component, the initial
impact and likelihood values associated with the STRIDE threats were computed by DREAD, as depicted
in Tables 8 and 9. Damage represents the damage that a cyber attack may provoke to the systems; along
with the affected users/systems, it represents the impact of the attack. Additionally, reproducibility represents
the ability of the adversary to reproduce the attack, exploitability refers to the ability of the attacker to exploit
the component’s vulnerabilities, and discoverability refers to the capacity of the adversary to identify system
vulnerabilities. The sum of reproducibility, exploitability, and discoverability represents the likelihood of a
cyber attack. Each columnof Tables 8 and 9 represent individual components, indicated by their corresponding
initials, as defined in Section 4.1. The values inside the cells are the corresponding impact and likelihood values
per STRIDE threat and per individual component; these were calculated by Equations 2 and 3. Each of the
DREAD variables - damage, reproducibility, exploitability, affected users/systems, and discoverability - accepts
an integer value in [0,3], the value being assigned by considering the specific DREAD criteria described in [4].

4.2.3. Towards system security architecture (supply chain)
For each STRIDE threat, a set of security controls was selected by applying the methodology described in Sec-
tion 3 to reduce the initial risk. The primary set of controls is listed inNIST guidelines for Cybersecurity Supply
Chain Risk Management Practices [1] . In this report, cybersecurity supply chain risk management (C-SCRM)
is integrated into risk management activities by applying a multilevel, C-SCRM-specific approach, including
guidance on the development of C-SCRM strategy implementation plans, C-SCRM policies, C-SCRM plans,
and risk assessments for products and services. [1] The first column represents the global initial risk that would
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Table 9. Initial likelihood values

Sensor Phone AWS compute Vendor DB Vendor OS Azure OS Azure compute

Spoofing 1,00 1,67 1,33 1,33 1,67 1,67 1,33
Tampering 2,00 2,00 1,67 2,00 1,33 1,33 1,67
Repudiation 1,33 1,67 2,00 2,00 2,00 2,00 2,00
Information disclosure 2,00 2,00 2,00 2,00 2,00 2,00 2,00
Denial of service 2,00 2,00 2,33 2,00 2,00 2,00 2,00
Elevation of privileges 1,67 1,33 2,00 2,67 2,00 2,00 2,00

occur without any security controls, as calculated in the risk analysis step. The second column represents
the optimal set of security controls that reduce the risk, which is represented as the residual risk in the third
column.

The optimal set of security controls towards the security architecture of the supply chain architecture depicted
in Figure 4 are described in Tables 10-15. Particularly, the optimal set of security controls per STRIDE threats
and per system are depicted along with the associated risks per threat. The security risks represent both the
initial risk value - prior control selection - and the residual risk value - post control selection. Denial of service
and elevation of privileges threats are characterized as the most critical threats for the targeted supply chain
infrastructure. Tampering, repudiation, and information disclosure threats are characterized as medium level
threats, while spoofing is a low level threat since the initial risk is the lowest with the value 1.34.

The security controls depicted in the tables below were identified by leveraging an automated decision support
tool proposed in this work. Although the security controls reduce the initial risks of each component and each
threat, their applicability is should be verified by domain experts and stakeholders together. The proposed
methods enable the execution of what-if scenarios by modifying the initial list of the available security controls
from NIST [1] and/or the parameters of the genetic algorithm.

By observing Tables 10-15, it is obvious that the optimal security controls for the reference supply chain man-
agement system consist of a large number of controls.

For the spoofing threat, the component that is in need for more security controls is the Vendor DB, as all
collected data are stored there, and any successful spoofing attempt would result in a high-impact security
incident, which could pose a significant risk to the entire system. For all other components of the system, it
is also required to apply a number of spoofing-related security controls to limit the propagated risk for the
system. For the tampering threat, the same holds for the Vendor DB because of the significance of the data
stored therein. In general, it is observed that controls are significantly required in total to achieve similar risk
reduction with the spoofing threat. For the repudiation threat, even fewer controls are required for the same
risk reduction effect. For information disclosure, it should be noted that the phone must be more protected
than other components (with three controls), as it seems that more vulnerabilities on the phone may be ex-
ploited for improper retrieval of information. For the denial of service threat, endpoint components such as
sensors and phone produce low impact slightly on the system in general, and thus no controls are selected for
them. The Azure components (OS and compute) are more vulnerable and need to be more protected to mit-
igate high risk propagation to the system. Finally, regarding the elevation of privileges threat, it is not highly
critical to protect the endpoint components and themost prominent issues are identified for the AWSCompute
component.

5. CONCLUSIONS
We present the combination of two existing methodologies that both deal with a risk analysis of cyber-physical
systems. The proposed methodology is based on the fusion of two existing CPS-specific methodologies: the
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Table 10. Optimal set of security controls per CPS component for STRIDE threat: spoofing

Spoofing - optimal controls
Initial risk Component Control Residual risk

1.34

Sensor Component authenticity (SR-11)

0.80

Component authenticity anti-counterfeit training [SR-11(1)]
Phone Account management (AC-1)

Identification and authentication policy and procedures (IA-1)
Authenticator management (IA-5)
Boundary protection (SC-7)

AWS compute Security assessment and authorization policies and procedures(CA-1)
Identification and authentication (non-organizational users) (IA-8)
System maintenance policy and procedures (MA-1)
System and communications protection policy and procedures (SC-1)

Vendor DB Access enforcement(AC-3)
Use of external information systems (AC-20)
Security assessment and authorization policies and procedures (CA-1)
Plan of action and milestones (CA-4)
Identifier management (IA-4)
Nonlocal maintenance (MA-4)
System security and privacy plans (PL-2)
Security categorization (RA-2)
System documentation (SA-5)
Malicious code protection (SI-3)
Security alerts advisories and directives (SI-5)
Software firmware and information integrity (SI-7)

Vendor OS Contingency planning policy and procedures (CP-1)
Baseline selection (PL-10)
Risk assessment (RA-3)
Risk response (RA-7)

Azure OS Contingency plan (CP-2)
Azure compute Authorization (CA-5)

Identification and authentication (non-organizational users (IA-8)
Allocation of resources (SA-2)
Acquisition process (SA-4)

Table 11. Optimal set of security controls per CPS component for STRIDE threat: tampering

Tampering - optimal controls
Initial risk Component Control Residual risk

1.60

Sensor Physical access authorizations (PE-2)

0.97

Phone Role-based security training (AT-3)
System and communications protection policy and procedures (SC-1)

AWS compute Information exchange (CA-3)
Authorization (CA-5)

Vendor DB Security assessment and authorization policies and procedures (CA-1)
Authenticator management (IA-5)
Identification and authentication (Non-organizational users) (IA-8)
Boundary protection (SC-7)
Inspection of systems or components (SR-10)

Vendor OS Information system monitoring (SI-4)
Software firmware and information integrity (SI-7)

Azure OS Personnel screening (PS-3)
Azure compute Authenticator management (IA-5)

first one is a methodology to assess IoT-enabled, cyber-physical attack paths [11], while the second one is a CPS
methodology for risk propagation and control selection [19].

However, we choose to maintain a properly modified and integrated and carefully selected subset of the com-
ponents of the previous methodologies to provide more efficient risk assessment results and verifiable risk
treatment policies. To model complex CPS components and their relation, we use the method in [11], which
allows capturing detailed cyber and physical interaction types among the system assets. The combinedmethod-
ology allows for an accurate interaction modeling of the components of a CPS that outputs interactions for
such components. The interaction assessment phase initially proposed in [11] is also selected to allow our new
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Table 12. Optimal set of security controls per CPS component for STRIDE threat: repudiation

Repudiation - optimal controls
Initial risk Component Control Residual risk

1.60

Sensor Software firmware and information integrity

0.80

Phone Event logging (AU-2)
AWS compute Event logging (AU-2)

Identification and authentication policy and procedures (IA-1)
Vendor DB Identification and authentication (Non-organizational users) (IA-8)
Vendor OS Malicious code protection (SI-3)
Azure OS Information system component inventory (CM-8)
Azure compute Identifier management (IA-4)

Table 13. Optimal set of security controls per CPS component for STRIDE threat: information disclosure

Information disclosure - optimal controls
Initial risk Component Control Residual risk

1.60

Sensor System and communications Protection policy and procedures (SC-1)

1.17

Phone Access control for mobile devices (AC-19)
System and communications protection policy and procedures (SC-1)
Malicious code protection (SI-3)

AWS compute Access control policy and procedures (AC-1)
Vendor DB Control assessments (CA-2)
Vendor OS Identification and authentication (Non-organizational users) (IA-8)
Azure OS Publicly accessible content (AC-22)

Risk assessment (RA-3)
Azure compute Account management (AC-2)

Table 14. Optimal set of security controls per CPS component for STRIDE threat: denial of service

Denial of service - optimal controls
Initial risk Component Control Residual risk

1.77

Sensor System and communications protection policy and procedures

1.34

Phone Information exchange (CA-3)
AWS compute -
Vendor DB Control assessments (CA-2)
Vendor OS Contingency plan (CP-2)
Azure OS Wireless access (AC-18)

Publicly accessible content (AC-22)
Authenticator management (IA-5)

Azure compute Impact analyses (CM-4)
Access restrictions for change (CM-5)

Table 15. Optimal set of security controls per CPS component for STRIDE threat: elevation of privileges

Elevation of privileges - optimal controls
Initial risk Component Control Residual risk

2.14

Sensor -

1.24

Phone -
AWS compute Information exchange (CA-3)

Authorization (CA-5)
System documentation (SA-5)
Security engineering principles (SA-8)

Vendor DB Security assessment and authorization policies and procedures (CA-1)
Vendor OS Remote access (AC-17)

Risk assessment policy and procedures (RA-1)
Azure OS Access enforcement (AC-3)

Incident response plan (IR-8)
Azure compute Use of external information systems (AC-20)

methodology to take detailed vulnerability information in the form of CVEs as input.

Those interactions are then fed into the risk assessment and risk treatment modules that decide the optimal
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security control selection for a given system. For threat analysis, we chose the relevant module in [13], since
it supports STRIDE analysis, which is a widely accepted model. The risk assessment phase of the proposed
methodology is also based on a modified version of the risk analysis engine originally defined in [13], as it
allows for the efficient computation of the overall system risk. The risk calculation is properly modified to
take the vulnerability and impact assessment provided from the interaction assessment phase as input, which
is not supported in the original risk analysis module in [13]. Another advantage of the proposed methodology
with respect to the underlying methodologies [11,13] is the use of the attack path assessment functionality as a
method for the validation of the control selection produced in the risk treatment phase. Attack paths may be
optionally computed and assessed based on well-defined critical target systems. Then, by re-running the attack
path assessment after considering the effect of the proposed security controls, it is possible to verify whether
the selected controls may effectively mitigate the most critical attack paths.

As an initial validation, the proposedmethodologywas applied to a reference supply chainmanagement system
and the results obtained are extremely useful to operators of such systems. The set of optimal controls per
component and per threat minimized the residual risk, as shown in Tables 10-15. For example, the Azure
Compute Identification andAuthentication (Non-OrganizationalUsers (IA-8) control aims to deal with theAzure
Stack SpoofingVulnerability (CVE-2019-1234) of theAzure Compute component. Additionally, the Information
Exchange (CA-3) control minimized the risk of the phone component that derives from the MEMS ultrasound
attack (CVE-2018-20823) vulnerability.

Some extensions to the proposed system are being considered as future work directions. In this work, the
CVV interactions [produced by Equation (1)] are used to define impact propagation in the risk propagation
module. There exists an alternative approach that could utilize different CVV scores for impact and likelihood
propagation, respectively. Another idea is to iterate the execution of the genetic algorithmwith a different order
for the STRIDE threats in order to identify which is the most cost-efficient combination of controls for all six
threats. Finally, another point for consideration is to experimentally test the effect of the critical attack paths
extracted from the attack path risk assessment module in enhancing the optimal control selection process.
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