
                                                                                              www.cdrjournal.com

Review Open Access

Juric et al. Cancer Drug Resist 2020;3:48-62
DOI: 10.20517/cdr.2019.105

Cancer 
Drug Resistance

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 

sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Cyclin-dependent kinase inhibitors in brain cancer: 
current state and future directions
Viktorija Juric, Brona Murphy

Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02, Ireland. 

Correspondence to: Dr. Brona Murphy, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 39A 
York Street, Dublin D02, Ireland. E-mail: bronamurphy@rcsi.com

How to cite this article: Juric V, Murphy B. Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions. 
Cancer Drug Resist 2020;3:48-62. http://dx.doi.org/10.20517/cdr.2019.105

Received: 5 Nov 2019    First Decision: 4 Dec 2019    Revised: 11 Dec 2019    Accepted: 20 Dec 2019    Published: 19 Mar 2020

Science Editor: Lee M. Graves    Copy Editor: Jing-Wen Zhang    Production Editor: Jing Yu

Abstract

Cyclin-dependent kinases (CDKs) are important regulatory enzymes in the normal physiological processes that 
drive cell-cycle transitions and regulate transcription. Virtually all cancers harbour genomic alterations that lead to 
the constitutive activation of CDKs, resulting in the proliferation of cancer cells. CDK inhibitors (CKIs) are currently 
in clinical use for the treatment of breast cancer, combined with endocrine therapy. In this review, we describe 
the potential of CKIs for the treatment of cancer with specific focus on glioblastoma (GBM), the most common 
and aggressive primary brain tumour in adults. Despite intense effort to combat GBM with surgery, radiation and 
temozolomide chemotherapy, the median survival for patients is 15 months and the majority of patients experience 
disease recurrence within 6-8 months of treatment onset. Novel therapeutic approaches are urgently needed for 
both newly diagnosed and recurrent GBM patients. In this review, we summarise the current preclinical and clinical 
findings emphasising that CKIs could represent an exciting novel approach for GBM treatment.
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INTRODUCTION
Cyclin-dependent kinases (CDKs) are a family of enzymes-serine threonine kinases - that, under normal 
physiological conditions, play significant roles in controlling cell-cycle progression and transcription 
regulation[1]. Overexpression of some CDKs and their associated cyclins, as well as downregulation of 



CDK inhibitors (CKIs), can lead to abnormal cellular proliferation and cancer progression[2]. Due to such 
dysregulation of CDKs in many cancers, targeting of this family of enzymes has emerged as a promising 
strategy in the treatment of multiple cancer types, including blood and solid tumours[3,4]. Targeting the 
cell cycle via the CDK4/6-Rb axis has proven the most successful approach in the clinic to date. The FDA 
has approved the CDK4/6 inhibitors palbociclib, abemaciclib and ribociclib as treatments for hormone 
receptor-positive (HR+) metastatic breast cancer (mBC), in combination with endocrine therapy[5-7].

Glioblastoma (GBM) tumours also harbour genomic alterations that lead to the constitutive activation 
of CDKs, resulting in tumour proliferation[8]. Hence, the potential of CKIs as a novel treatment option 
for GBM patients has been investigated. Preclinical studies in cell lines and animal models have yielded 
positive results and provided hope for the future utilisation of these inhibitors as a novel treatment option 
for GBM patients[9,10]. However, clinical trials undertaken to test CKIs in glioma patients have not proven 
successful[11]. In this review, we discuss the main findings from the application of CKIs as a potential 
treatment for glioma, in both preclinical and clinical studies. We highlight the main drawbacks and 
examine the future opportunities in developing these drugs as single or combinational treatment options 
for glioma patients with the specific focus on GBM.

GBM: STANDARD OF CARE AND TREATMENT RESISTANCE
Gliomas represent the most common primary malignancy in the central nervous system (CNS) including 
astrocytomas, oligodendrogliomas and ependymomas and account for approximately 80% of malignant 
brain and CNS tumours[12]. Based on clinical and biological characteristics, gliomas can be subdivided into 
two main categories, low-grade glioma and high-grade glioma. Based on their histological appearance, the 
World Health Organisation (WHO) categorises gliomas using a classification index, ranging from I to IV, 
which grades gliomas according to disease prognosis[13]. WHO grades I and II have been referred to as low-
grade gliomas, with a possibility of cure following surgical resection alone, while more rapidly progressing 
tumours are referred to as high-grade gliomas. Grade III neoplasms are associated with histological 
signs of malignancy, nuclear atypia, mitotic activity and high proliferative lesions. GBM is the highest-
grade glioma tumour (Grade IV) and the most malignant form of astrocytic glioma with extremely poor 
treatment response and prognosis[13,14]. Two types of GBM usually occur: primary and secondary. Primary 
GBM develops de novo from glial cells or supportive tissues of the brain, accounts for approximately 90% 
of GBM cases and is more common in older patients. Secondary GBMs develop from pre-existing low-
grade gliomas, accounting for 10% of GBM cases and are more common in younger patients[15]. Some 
DNA alterations are shared between primary and secondary GBM, including TP53 mutations and EGFR 
overexpression[16]. On the other hand, loss of PTEN has been typically observed only in primary GBM, 
whereas secondary GBM often contains loss of chromosome 19q along with TP53[17,18]. As for the median 
survival rate, primary GBM shows worse prognosis when compared to secondary GBM following maximal 
therapy, with overall survival of 15 months and 31 months, respectively[19]. Using genomic profiling to 
classify GBM tumours, Verhaak et al.[20] divided GBM into four subtypes. Proneural, mesenchymal, 
classical and neural subtypes were distinguished upon analysis of an 840-gene signature[20]. Proneural 
subtype is described as being less aggressive with some similarities to secondary GBM, including mutations 
of TP53 contributing to the genetic changes that lead to tumour progression[21-23]. Additionally, alterations 
of PDGFRA and point mutations in IDH1 are found in the proneural subtype[20]. On the other hand, 
mesenchymal, classical and neural subtypes are more aggressive with high expression of genes responsible 
for cell proliferation, angiogenesis and invasion[24]. Classical subtype is characterised by high levels of 
EGFR amplification which is not commonly found in other subtypes. CDKN2A homozygous deletion is 
also commonly found in this subtype[20]. Interestingly, a lack of TP53 mutations is observed in the classical 
subtype even though it is the most common mutation in GBM[25]. Mesenchymal subtype is characterised 
by a high frequency of NF1 abnormalities and markers associated with inflammation, wound healing, and 
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NF-κB signalling pathways[20,24]. Neural subtype is associated with EGFR overexpression and has a strong 
enrichment for genes differentially expressed by neurons[20]. More recently, the neural subtype has been 
discarded as it showed no tumour specificity in a gene set enrichment analysis using a 50-gene signature 
per subtype[26]. Other types of classification are known and, while such subtyping of GBM tumours will 
hopefully lead to more targeted therapies in the future, such classifications are not currently applied in the 
clinic.

The standard treatment for newly diagnosed GBM patients consists of maximal neurosurgical resection 
with the overall aim to remove all visible tumour such that no tumour is observed post-surgery upon 
magnetic resonance imaging. Following surgery, adjuvant treatment is advocated and the so-called Stupp 
protocol is widely used[27]. According to this protocol, patients should receive concomitant radiotherapy 
(RT) and temozolomide (TMZ) followed by adjuvant TMZ. Radiotherapy consists of fractionated focal 
irradiation at a dose of 2 Gray (Gy) per fraction given once daily, five days per week over a period of six 
weeks, for a total dose of 60 Gy. Concomitant chemotherapy consists of TMZ at a dose of 75 mg/m2 per 
day, given seven days per week during radiotherapy. Upon completion of chemo- and radiotherapy, there 
should be a 4-week break. After that, patients should receive up to 6 cycles of adjuvant TMZ, given for five 
days every 28 days, with a starting dose of 150 mg/m2 for the first cycle. This dose is subsequently increased 
to 200 mg/m2 at the beginning of the second cycle, as long as there are no hematologic toxic effects[28]. 
To date, the addition of TMZ to the armamentarium remains the biggest significant advance in the 
management of GBM. When successful, TMZ induces cell death by causing DNA double strand breaks that 
eventually lead to growth arrest and activation of cellular apoptosis[29,30]. Unfortunately, however, its benefit 
is limited to prolonging patient survival rather than being a curative treatment adjunct. Most patients 
experience tumour relapse within seven months of treatment onset, while a large proportion gain no 
survival advantage to TMZ therapy at all[31]. Several factors contribute to this poor survival, including but 
not limited to, patient condition, tumour location, and the heterogeneous instability within GBM cells[32]. 
Another potential mechanism of treatment failure is the blood-brain barrier (BBB), which consists of 
specialised endothelial cells with tight junctions and transport proteins that serves to restrict brain uptake 
of drugs, including systemic chemotherapies[33]. Another significant factor in such disappointing patient 
survival rates is TMZ resistance. TMZ, as well as most other anti-cancer therapies, exerts its cytotoxic 
effect by triggering apoptosis in cancer cells[30,34], thus defective apoptosis provides a significant mechanism 
by which TMZ treatment fails in patients. A key marker of GBM responsiveness to TMZ is the methylation 
status of the O6-methylguanine-DNA methyltransferase (MGMT)[27]. MGMT mediates the direct removal 
of O6-methylguanine lesion, the most common cytotoxic lesion induced by TMZ. Approximately 50% 
of GBM patients do not respond to TMZ treatment, most likely due to MGMT overexpression, while 
epigenetic silencing of MGMT via methylation of the MGMT gene promoter results in increased genome 
instability and chemosensitivity to TMZ[35]. Overexpression of numerous survival proteins and attenuated 
levels of several proapoptotic proteins also contribute to the apoptosis resistance in GBM[36]; Bcl-2, Bcl-xL, 
Bax and myeloid cell leukemia 1 (Mcl-1) proteins are among most studied so far[37].

Undoubtedly, new treatment options are needed. Maximising the apoptotic activity within GBM cells, 
by using other death-inducing stimuli, may help to reduce the resistance of GBM to cell death-inducing 
treatment strategies[38]. Recent studies showed that the treatment resistance evident in GBM can be 
overcome by using drugs targeting not only the expression of anti-apoptotic proteins but also those that 
target cell-cycle dysregulation[39], including but not limited to, CDK4/6/cyclin D overexpression. These 
attributes are evident in CKIs. 

CDKS AND THEIR PHYSIOLOGICAL ROLE 
The mammalian CDK family has more than 20 known members[3]. The first CDK, now known as CDK1, 
was discovered in yeast where it was shown to be essential for progressing the cell cycle[40]. Soon after 
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homologues of CDK1 were identified in human cells[41]. Unsurprisingly, the cell-cycle process is strictly 
controlled to ensure successful cell division. Cyclin-dependent kinases tightly regulate progression 
through the G1 (growth phase), S (DNA synthesis), G2 (second growth phase) and M (mitosis) phases of 
the cell cycle, working in conjunction with their associated cyclins[42,43]. CDKs 1-4, 6 and 11 control varying 
aspects of cell division including DNA replication, mitotic progression, and response to regulatory growth 
signals[44-50]. In association with their cyclins, CDKs 2, 4 and 6 regulate progression from G1 to S phase. 
CDK3 is involved in G0 and interphase and not much is known about it since it is inactive in most strains 
of laboratory mice[51]. In conjunction with cyclins E and A, CDK2 is involved in regulating progression 
from S to G2 phase. CDK1 with cyclins A and B is involved in regulating the G2 phase. Finally, mitosis is 
under the control of CDK1-CycB and CDK11-CycL complexes [Table 1 and Figure 1].

The kinase activity of CDK-cyclin complexes is also highly controlled by an abundance of CKIs, which 
serve as brakes to control cell-cycle progression according to the conditions in cells[64]. CKIs are divided 
into two groups. The Ink4 family members, including p16INK4a, p15INK4b, p18INK4c and p19INK4d, are mainly 
involved in the regulation of CDKs 4 and 6[65]. On the other hand, the Cip/Kip family members, namely 
p21Cip1, p27Kip1 and p57Kip2, regulate the activities of cyclin D-, E-, A- and B-dependent kinase complexes, 
mostly CDKs 2, 4 and 6[66-68] [Figure 1]. Moreover, an important substrate for CDKs is the retinoblastoma 
protein (Rb)[69,70]. During cell division, Rb binds to the transcription factor E2 transcription factor (E2F) 
and inhibits the activity of the E2F complex, thus preventing cell-cycle progression from the G1 phase to 
the S phase[71]. Phosphorylation of Rb is primarily initiated by the CDK4/CDK6-CycD complex, followed 
by additional phosphorylation by the CDK2-CycE complex[72], resulting in the inactivation of Rb and cell-
cycle progression[69,73,74] [Figure 1].

Besides their well-established function in the cell cycle, it is now clear that CDKs, cyclins and CKIs play 
crucial roles in other cellular processes such as transcription, mRNA processing, epigenetic regulation, 
metabolism, stem cell self-renewal and differentiation of nerve cells[75]. For instance, CDKs 8 and 9 are 
primarily implicated in transcriptional regulation[75-77] [Table 1 and Figure 2]. Phosphorylation of a key 
threonine residue located within the activating segment, also known as T-loop, of the CDK subunit 
is required for full kinase activity[55]. This step is carried out by the CDK-activating kinase, known as 
CDK7, which becomes activated by binding to cyclin H. CDK9, together with cyclin T1, comprises a 
positive transcription elongation factor b, which plays a key role in the regulation of RNA polymerase 
II (RNAP II)-mediated transcription via phosphorylation of RNAP II[60]. This phosphorylation releases 
RNAP II from its paused state, triggering transcriptional elongation and ultimately mRNA transcript 

CDKs Cyclin partner(s) Cellular functions Ref.
CDK1 Cyclin A, B1 DNA structure checkpoints during late G2 and the spindle assembly checkpoint during mitosis [44,45]
CDK2 Cyclin A Control of G1-S phase of cell cycle (DNA replication) [44,45]

Cyclin E1, E2 Rb/E2F transcription [44,45]
CDK3 Cyclin C Control of interphase NHEJ-mediated DNA damage repair [46]
CDK4 Cyclin D Control of G1 phase of cell cycle Rb/E2F transcription [47]
CDK5 p35, p39, Cyclin I Senescence, post-mitotic neurons [52-54]
CDK6 Cyclin D Control of G1 phase of cell cycle Rb/E2F transcription [50]
CDK7 Cyclin H CAK RNAP II transcription (initiation to elongation) [55-57]
CDK8 Cyclin C RNAP II transcription (transcriptional repressor) [58,59]
CDK9 Cyclin T1, T2a, T2b RNAP II transcription [60,61]

Cyclin K DNA damage response [62]
CDK10 Cyclin T G2/M transition, suppression of Ets2 transactivation domain [61,63]
CDK11 Cyclin L G2/M transition, RNA processing [48,49]

Table 1. Most extensively studied CDKs and their known physiological roles 

G1: growth phase; S: DNA synthesis; G2: second growth phase; M: mitosis; CDKs: cyclin-dependent kinases; Rb: retinoblastoma protein; 
NHEJ: non-homologous end joining; RNAP II: RNA polymerase II; CAK: cdk-activating kinase; E2F: E2 transcription factor; Ets2: E26 
transformation-specific transcription factor 2
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formation. CDK5 is mostly active in post-mitotic neurons and is essential for neuronal cell-cycle arrest 
and differentiation[52]. In addition, some studies have shown dysregulation of CDK5 in neuronal diseases 
such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, leading to neurotoxicity[52]. In 
contrast to other CDKs, CDK5 is activated by binding to p35 and p39, which have structural homologies 
to typical cyclins[53] but can also be activated by cyclins I[54]. Inhibition of transcriptional CDKs primarily 
affects the accumulation of transcripts with short half-lives, including anti-apoptotic family members, Mcl-1 
and X-linked inhibitor of apoptosis protein (XIAP)[10,78].

CKIs AS APPROVED TARGETED THERAPY IN CANCER TREATMENT
The essential roles of CDKs in the intracellular control of the cell cycle and regulation of transcription and 
DNA repair[79] make them highly suitable as targets of inhibitors for the treatment of cancer. 

Separate Phase III clinical trials using CDK4/6 inhibitors, palbociclib, abemaciclib and ribociclib showed an 
increase in median progression-free survival (PFS) of patients, approximately 7-10 months, when compared 
to placebo treated groups[5-7]. These highly selective CDK4/6 inhibitors are currently used clinically for the 
treatment of HR+ mBC patients and were the first CKIs to receive FDA approval for cancer patients[5-7]. 

Figure 1. CDK-cyclin complexes and their function in cell cycle. Each CDK is shown in complex with its corresponding cyclin. For clarity, 
only few substrates are included. CDKs 1, 2, 4 and 6  are classical CDKs involved in the regulation of cell-cycle progression and transition 
from G1 to S phase. CDK1 in complex with cyclins A and B regulate G2/M transition and mitosis together with CDK11-CycL. CDK3 is 
involved in the control of the cell-cycle interphase. Activity of these CDK-cyclin complexes is regulated by other CDKs including CDK7 (in 
complex with its cyclin H and Mat1), CKIs (p15, p16, p18, p19, p27, p21 and p57) and regulatory elements such as the Rb. CDK7 functions 
in the regulation of several other CDKs via phosphorylation and is controlled by CDK8 in complex with its cyclin C. *Nonphosphorylated 
p27. Single letters stand for cyclins, for instance H is cyclin H. CKIs: cyclin-dependent kinase inhibitors; CDK: cyclin-dependent kinase; 
Rb: retinoblastoma protein; G1: growth phase; S: DNA synthesis; G2: second growth phase; M: mitosis; G0: resting phase; E2F: E2 
transcription factor
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After Finn et al.[5] demonstrated synergy between palbociclib and endocrine therapy in luminal oestrogen 
receptor-positive human breast cancer cell lines, it was first tested in Phase I clinical trials in patients 
with other solid tumours and non-Hodgkin’s lymphoma[80]. Palbociclib was well tolerated by patients 
with advanced solid tumours, with the dose-limiting toxicities mainly related to myelosuppression[80]. 
Palbociclib was next studied in a randomised Phase II clinical trial in metastatic hormone receptor positive 
breast cancer, in which the combination of palbociclib and endocrine therapy significantly prolonged 
progression-free survival of patients over endocrine therapy alone[5]. Recently, palbociclib has been shown 
to be effective when combined with fulvestrant in patients with HR+ and human epidermal growth 
factor receptor 2 negative (HER2-) advanced breast cancer who have stopped responding to endocrine 
therapy[81]. Phase III clinical trials using palbociclib in combination with non-steroid aromatase inhibitor 
in postmenopausal women with HR+ mBC showed median PFS of 24.8 months compared to 14.5 for 
placebo treated group[82]. Another trial using palbociclib in combination with fulvestrant showed benefits 
for patients with HR+ mBC that relapsed or progressed during endocrine therapy[83].

Ribociclib is another highly selective CDK4/6 inhibitor approved for the treatment of HR+ mBC patients. 
A recent Phase III clinical trial using ribociclib in combination with letrozole in HR+ mBC showed an 
increase in PFS in patients: 25 months vs. 16 months compared to placebo group[6]. MONALEESA-3 study 
showed an eight-month improvement in PFS when ribociclib was used in combination with fulvestrant 
compared to fulvestrant alone[84]. Another significant trial including ribociclib, MONALEESA-7, 
demonstrated improved PFS from 13 to 23.8 months when ribociclib was administrated with tamoxifen/
goserelin or non-steroidal aromatase inhibitor/goserelin compared to placebo[85].

The third approved CKI for HR+ mBC treatment is abemaciclib. Low IC50 values for CDKs 4 and 6, ranging 
from 2 to 10 nM, respectively, in addition to CDK 9 inhibition make this CKI most potent in HR+ mBC 

Figure 2. CDKs and their function in RNA PolII transcription. CDKs 7 and 9 are involved in RNA polymerase II activity by directly 
phosphorylating CTD and thus control the generation of mRNA transcripts. CDK7-CycH-Mat1 complex is under control of CDK8-
CycC complex, which acts as its inhibitor. CDK8-CycC complex also prevents binding of RNA PolII to promoter DNA region by its 
phosphorylation. CDK7-CycH-Mat1 complex phosphorylates RNA PolII CTD domain and enables transcription initiation. Further 
phosphorylation with CDK9-CycT leads to transcription elongation and mRNA production. Single letters stand for cyclins, for instance 
T is cyclin T. Pol II: RNA polymerase II; P: phosphatidyl group; CDK: cyclin-dependent kinase; CTD: carboxy-terminal domain; mRNA: 
messenger RNA
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treatment[86]. In combination with either letrozole or anastrozole, abemaciclib significantly improved PFS 
to 14.7 months[7]. When combined with the oestrogen receptor degrader fulvestrant in the MONARCH 2 
study, abemaciclib led to PFS improvement, from 9.3 to 16.4 months[87]. 

CKIs IN GLIOMA TREATMENT - PRECLINICAL STUDIES
Flavopiridol is one of the most extensively investigated CKIs in the treatment of glioma. Flavopiridol 
directly inhibits CDKs 1, 2 and 4[88,89] and induces cell-cycle arrest in G1 or G2 phase [Figure 3]. 
Additionally, it inhibits CDK7-CycH, thus preventing the phosphorylation and subsequent activation 
of several CDKs involved in the regulation of cell-cycle progression[90]. Furthermore, flavopiridol down-
regulates cyclin D1, the cyclin associated with CDKs 4 and 6[91]. Promising results were obtained in glioma 
cell lines when flavopiridol was administered as a single agent[92]. In this study, the authors showed that 
flavopiridol induced caspase-independent cell death in a panel of GBM cell lines independently of p53 and 
Rb status[92]. Newcomb et al.[93] further showed that f lavopiridol inhibited the growth of GL261 gliomas 
in subcutaneous and intracranial models in vivo. Another study showed enhanced cytotoxicity when 
f lavopiridol was combined with TMZ, in both glioma cells in vitro and in nude mice with xenografted 
U87MG cells[9]. However, this first-generation pan-CDK inhibitor failed to enter clinical trials as its low 
specificity for CDKs resulted in a significant toxicity profile. 

Figure 3. Cell-cycle regulation, CKIs studied in glioma treatment and their targets. Cell-cycle progression in cancer and the role of cyclin-
dependent kinases inhibitors used in glioma studies. CDK2-cyclin E complex phosphorylates Rb leading to loss of repression of E2F 
factors, resulting in cell-cycle progression. Blocking the CDK2 with CKIs leads to cell-cycle arrest by preventing cell-cycle progression 
from G1 to S phase. Phosphorylation of carboxy-terminal domain of RNAP II by CDK9-cyclin T and CDK7-cyclin H complexes leads to 
transcription elongation. Blocking of CDKs 9 and 7 leads to transcription inhibition and downregulation of short-lived mRNAs, including 
MCL-1, c-MYC and XIAP. Single letters stand for cyclins, for instance E is cyclin E. G1: growth phase; S: DNA synthesis; G2: second growth 
phase; M: mitosis; G0: resting phase; CDK: cyclin-dependent kinase; MCL-1: myeloid leukaemia 1 protein; c-MYC: avian myelocytomatosis 
virus oncogene cellular homolog; RNAP II: RNA polymerase II; Rb: retinoblastoma protein; XIAP: X-linked inhibior of apoptosis protein;  
E2F: E2 transcription factor
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Roscovitine, another pan-CDK inhibitor, was first described by Meijer et al.[94]. They demonstrated the 
drug’s ability to inhibit CDKs 1, 2 and 5 [Figure 3]. More recent research has revealed that roscovitine also 
inhibits CDKs which are not directly involved in the regulation of the cell cycle, namely CDKs 7 and 9[95,96]. 
Kolodziej et al.[96] showed anti-tumour effects of roscovitine when administrated as a single agent in the 
GBM cell lines A172 and G28. Several groups have shown that roscovitine can induce significant levels 
of apoptosis in GBM cell lines upon co-treatment with the death receptor ligand TNF-related apoptosis-
inducing ligand (TRAIL)[97,98]. Resistance to TRAIL-mediated apoptosis in GBM was overcome by 
roscovitine’s ability to downregulate survivin, XIAP and Mcl-1[97,98]. More recently, using glioma cell lines 
and an in vivo orthotopic glioma model, the combination of roscovitine with TMZ was shown to result in 
increased autophagy and caspase-3 mediated cell death[99]. Menn et al.[100] showed the ability of roscovitine 
to cross the BBB in healthy adult rats while studying ischemic stroke. While roscovitine has not been 
tested in GBM patients, it is currently in clinical trials for non-small cell lung carcinoma (NCT00372073), 
rheumatoid arthritis (ISRCTN36667085) and Cushing’s disease (NCT03774446).

Milciclib is another CKI developed to target CDKs 2, 7, 4, 5 and 1 [Figure 3]. This CKI was first tested in 
human ovarian carcinoma cells. Upon demonstration of in vitro effectiveness[101], it entered Phase I and II 
studies in adult patients with advanced/metastatic solid tumours (NCT01300468). It has been shown that 
milciclib induces autophagic cell death in a panel of GBM cell lines[102]. In this same study, it was shown 
that milciclib effectively crossed the BBB and reduced tumour size in two in vivo GBM models[102]. Milciclib 
has also shown anti-tumour activity when used in combination with TMZ and RT in a xenograft model 
of GBM[102]. Overall, these results highlight the potential for future investigations on the applicability of 
milciclib for the treatment of GBM patients. 

Dinaciclib is another inhibitor that targets multiple CDKs[103]. Dinaciclib inhibits CDKs 1, 2, 5 and 9 [Figure 3], 
thus inhibiting CDKs involved in both cell-cycle regulation and transcription[104,105]. In vitro studies by 
Jane and colleagues showed that dinaciclib induced cell-cycle arrest in glioma cells regardless of p53 
mutational status[106]. Although antiproliferative effects were present, there was no evidence of cell death 
when dinaciclib was used as a single agent[106]. In combination with the Bcl-2 and Bcl-xL inhibitor ABT-737, 
dinaciclib induced apoptotic cell death in glioma cells, while further mechanistic investigations showed 
that the observed cell death was a consequence of Mcl-1 downregulation[106]. Dinaciclib has a lower toxicity 
profile compared to other pan-CKIs but the exact reasons behind this are still unknown. It could be due to 
more specific targeting of CDKs compared to other pan-CKIs or due to having fewer non-CDK off-target 
effects[107]. As a result of lower toxicity profile, dinaciclib has entered clinical trials and is currently in Phase 
III trial for refractory chronic lymphocytic leukaemia (NCT01580228) and the results from this trial are 
eagerly anticipated.

SNS-032 is a potent CKI that inhibits both the cell cycle via CDKs 2 and 7 and transcription via CDKs 
7 and 9 [Figure 3]. SNS-032 was shown to be effective in GBM cell lines, where it inhibited cellular 
proliferation in a dose-dependent manner[108], by blocking the production of vascular endothelial growth 
factor. Ali et al.[109] additionally showed that SNS-032 prevented hypoxia-mediated U87MG cell invasion, 
via its ability to interfere with the expression of HIF-1α and its trans-regulating factors. SNS-032 was also 
tested in lymphocytic leukaemia where Chen et al.[110], showed the ability of SNS-032 to downregulate the 
anti-apoptotic protein Mcl-1 and induce apoptotic cell death, to a much higher extent when compared to 
flavopiridol and roscovitine. These results led to a clinical study using SNS-032 in chronic lymphocytic 
leukaemia and multiple myeloma (NCT00446342)[111]. The results from this clinical study remain 
unpublished.

Erbayraktar et al.[112] used the cell division cycle 7-related protein kinase (Cdc7) inhibitor PHA-767491 to 
enhance replicative stress in glioblastoma cells. They showed that Cdc7 inhibition resulted in inhibition of 
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cellular proliferation, apoptotic cell death induction and blocked GBM invasiveness. PHA-767491 is a first-
generation Cdc7 inhibitor with well described anti-tumour activity and more improvement in this field is 
expected.

Table 2 summarises CKIs used in glioma preclinical studies either as a single treatment or in combination 
with TMZ/other drugs.

CKIs REACHED CLINICAL STUDIES IN GLIOMA
After being extensively investigated in different types of cancer and clinically approved for patients with 
ER+ mBC, palbociclib entered studies for glioma treatment. Initial results showed promise, with palbociclib 
being able to penetrate the BBB and reduce tumour growth in glioblastoma intracranial xenografts[114]. 
Palbociclib was also shown to be effective in vitro and in vivo as a single treatment and in combination with 
GBM standard of care, radiotherapy and TMZ[114]. A recent publication showed the potential of palbociclib 
combined with RT in patient-derived glioblastoma cell lines[115]. Despite these promising results obtained 
in preclinical studies, palbociclib was inefficient when tested as a monotherapy in a Phase II clinical trial 
for recurrent GBM patients with detectable Rb expression (NCT01227434)[11]. More recently, a clinical trial 
examining the effectiveness of palbociclib in anaplastic oligodendrogliomas was stopped early due to lack 
of efficacy, with 74% of evaluable patients progressing within six months, despite good drug tolerance and 
exposure[116]. Among the many on-going or terminated clinical trials using palbociclib in glioma treatment, 
these are the only studies with published results while findings from other clinical studies are highly 
anticipated. 

Ribociclib, an orally bioavailable CDK4/6 inhibitor [Figure 3], is currently under investigation for the 
treatment of paediatric CNS tumours[117]. Initially tested was ribociclib’s ability to reach its targets in the 
brain. This characteristic was tested in both non-tumour bearing mice and in mice bearing DIPGx7 (glioma) 
cortical allograft tumours[117]. Ribociclib was shown to have adequate CNS exposure and will be further 
investigated as a treatment option for childhood brain tumours. However, a recent study showed that the 
brain penetrance of ribociclib in vivo is restricted by the ABCB1 transporter[118], leading to the suggestion 
that co-administration of the ABCB1 inhibitor elacridar could dramatically improve the brain penetrance 
of ribociclib[118] and further investigations are underway. A clinical trial testing ribociclib in recurrent 
GBM patients showed that ribociclib can cross the tumour-brain barrier at pharmacologically-active 

CKI drugs Targets Combination with other drugs BBB penetration Ref.
Flavopiridol (alvocidib) CDK 1, 2, 4, 9, 7 Not reported Yes [92]

Not reported [113]
Not reported [93]
Temozolomide [9]
Not reported [91]

Roscovitine (Seliciclib, CYC202) CDK 2, 5, 7, 9 TRAIL Yes [97]
TRAIL [98]
Not reported [96]
Temozolomide [99]

Milciclib (PHA-848125) CDK 2, 4, 7, 1 Temozolomide Yes [102]
Dinaciclib (SCH727965, MK-7965) CDK 2, 5, 1, 9 ABT-737 Not reported [106]
SNS-032 (BMS-387032) CDK 2, 7, 9 Not reported Not reported [108]

Celecoxib, SU 5416 and GM 6001 [109]
PHA-767491 Cdc7; CDK 9, 2, 1 Not reported Not reported [112]

Table 2. CKIs used in glioma preclinical studies

CKIs: cyclin-dependent kinase inhibitors; CDK: cyclin-dependent kinase; BBB: blood-brain barrier; TRAIL: TNF-related apoptosis-inducing 
ligand; Cdc7: cell division cycle 7-related protein kinase
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concentrations and suppress tumour proliferation. This Phase II study suggested however that ribociclib is 
ineffective as a monotherapy, and proposed that the addition of an mTOR inhibitor may be a viable dual-
drug strategy for recurrent glioblastoma[119]. 

Raub et al.[120] used in vivo glioblastoma models to assess the anti-tumour activity of abemaciclib, while 
also comparing it to palbociclib. They showed that abemaciclib has anti-tumour activity in intracranial 
glioblastoma xenograft models, as survival times of tumour-bearing rats increased upon abemaciclib 
administration[120]. More importantly, additive or greater than additive effects were noted when abemaciclib 
was combined with TMZ[120]. In the same study, they showed that abemaciclib crosses the BBB more readily 
when compared to palbociclib[120], giving hope for its future exploitation in clinical settings for glioma 
treatment. 

Further adding to abemaciclib’s potential as a future therapy for brain tumour patients is its ability to cross 
the BBB, as demonstrated in a study examining its benefit as a treatment for patients with brain metastases 
(BM) secondary to breast cancer[121]. A clinical trial testing abemaciclib in patients with BM is now closed 
and results are anticipated (NCT02308020). 

TG02 is a brain-penetrating multi-CDK inhibitor[122] [Figure 3]. A recent study showed that TG02 
decreased cell viability by targeting CDK9 in patient-derived GBM cells and inhibited tumour growth in 
an intracranial GBM mouse model[122]. TG02 also inhibited cell proliferation and induced cell death in a 
CDK9 expression-dependent manner in panel of GBM cell lines[123]. Additionally, synergism was observed 
when TG02 was combined with TMZ in cell lines and syngeneic mouse orthotopic GBM model[123]. 
Another group also showed that TG02 reduced cell viability in a panel of GBM cell lines[124], independent 

CKI drugs Targets Clinical trial 
phase Glioma grade Combination with other 

drugs/radiotherapy
ClinicalTrials.gov 

identifier
Abemaciclib 
(LY2835219, 
Verzenio)

CDK 4, 6 Phase II Recurrent glioblastoma No NCT02981940
Phase II Glioblastoma Temozolomide NCT02977780
Phase II Recurrent glioblastoma Bevacizumab NCT04074785
Phase II Recurrent glioblastoma No NCT03220646
Phase I Recurrent brain tumour No NCT02644460
Phase II Oligodendroglioma No NCT03969706

Ribociclib 
(Kisqali)

CDK 4, 6 Phase I Recurrent glioblastoma/anaplastic 
glioma

No NCT02345824

Phase I Glioma/Meningioma No NCT02933736
Phase I Paediatric gliomas/HGG Everolimus/Radiotherapy NCT03355794
Phase I Recurrent brain tumours Gemcitabine, sonidegib, 

trametinib
NCT03434262

Palbociclib (PD-
0332991)

CDK 4, 6 Phase II Oligodendroglioma/Oligoastrocytoma No NCT02530320
Phase I Central nervous system tumours No NCT02255461
Phase II Recurrent glioblastoma/gliosarcoma/

anaplastic astrocytoma
No NCT01227434

Phase I/
Phase II

Glioblastoma Radiotherapy NCT03158389

Phase II Glioma No NCT02465060	
Phase II Recurrent childhood 

Medulloblastoma/Malignant glioma
No NCT03155620

Phase II Recurrent malignant glioma/recurrent 
medulloblastoma

No NCT03526250

Phase I Medulloblastoma Temozolomide, irinotecan NCT03709680
TG02 (SB1317) CDK 1, 2, 5, 

7, 9
Phase I/
Phase II

Recurrent anaplastic astrocytoma/
glioblastoma

Temozolomide NCT02942264

Phase I Astrocytoma, Grade III glioblastoma Temozolomide, radiotherapy NCT03224104

Table 3. CKIs used in glioma clinical studies

HGG: high-grade glioma; CKIs: cyclin-dependent kinase inhibitors; CDK: cyclin-dependent kinase 
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of MGMT promoter methylation status. These findings resulted in an on-going clinical trial examining the 
effectiveness of TG02 in combination with temozolomide in patients with recurrent anaplastic astrocytoma 
and glioblastoma (NCT02942264). Even though final results are not published, promising results from the 
Phase I trial have recently been reported, showing that TG02 administration at the maximal tolerated dose 
and in combination with TMZ has a tolerable toxicity profile[125]. A second clinical trial using TG02 in 
combination with either RT or TMZ, in newly diagnosed elderly glioblastoma or anaplastic astrocytoma 
patients, is also on-going (NCT03224104). Final outcomes of both trials are eagerly awaited.

The on-going or completed clinical trials using CKIs either as a single treatment or in combination with 
other drugs or radiotherapy are given in Table 3.

A schematic figure summarising CKIs used in preclinical and clinical studies in gliomas is shown in 
Figure 3.

CONCLUSION
The location of brain tumours and their protection by the BBB means that brain tumours remain the most 
challenging malignancies to treat. Amongst these, GBM is the most deadly. New treatment approaches are 
needed that cross the BBB, specifically target the tumour cells and are relatively non-toxic to normal brain 
cells. CKIs display such attributes and their potential as a novel treatment approach for GBM patients has 
been supported by multiple preclinical studies. However, similar strong preclinical evidence supported the 
potential of CDK4/6 inhibition in breast cancer treatment for many years, yet specific and efficient CKIs 
of CDK4/6 only became recently available. As results from on-going clinical trials emerge and further 
preclinical studies are conducted, it is hoped that the potential of CDK inhibitors in the treatment of brain 
tumours, especially GBM, will soon be realised for the benefit of all brain tumour patients. 
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