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Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity for all sexes, racial and ethnic groups. 
Age, and its associated physiological and pathological consequences, exacerbate CVD incidence and progression, 
while modulation of biological age with interventions track with cardiovascular health. Despite the strong link 
between aging and CVD, surprisingly few studies have directly investigated heart failure and vascular dysfunction 
in aged models and subjects. Nevertheless, strong correlations have been found between heart disease, 
atherosclerosis, hypertension, fibrosis, and regeneration efficiency with senescent cell burden and its 
proinflammatory sequelae. In agreement, senotherapeutics have had success in reducing the detrimental effects in 
experimental models of cardiovascular aging and disease. Aside from senotherapeutics, cellular reprogramming 
strategies targeting epigenetic enzymes remain an unexplored yet viable option for reversing or delaying CVD. 
Epigenetic alterations comprising local and global changes in DNA and histone modifications, transcription factor 
binding, disorganization of the nuclear lamina, and misfolding of the genome are hallmarks of aging. Limited studies 
in the aging cardiovascular system of murine models or human patient samples have identified strong correlations 
between the epigenome, age, and senescence. Here, we compile the findings in published studies linking epigenetic 
changes to CVD and identify clear themes of epigenetic deregulation during aging. Pending direct investigation of 
these general mechanisms in aged tissues, this review predicts that future work will establish epigenetic 
rejuvenation as a potent method to delay CVD.
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INTRODUCTION
Cardiovascular disease (CVD), including heart failure, hypertension, atherosclerosis, and cardiomyopathy, 
remains the leading cause of death worldwide and carries a severe socioeconomic burden. While many 
factors contribute to CVD development, including diet, genetics, and the environment, one core, 
independent risk factor amongst almost everyone with a CVD is aging. It was once estimated that by 2030, 
about 20% of the United States population would be aged 65 or older and that CVD will account for 40% of 
the deaths of that group, making CVD the leading cause of death[1,2]. According to the United States Census 
Bureau, we have observed an increase in the elderly population from 40 million in 2007 to 51 million in 
2017, with the projected number of people over 65 to leap to 95 million in 2060. CVD prevalence continues 
to increase as human life expectancy also continues to rise, likely due to greater exposure to the traditional 
external risk factors and intrinsic pathways of aging[3]. After adjusting for the other major risk factors for 
CVD, one study found the odds of vascular diseases increased with every decade of life, demonstrating a 
strong increase in peripheral arterial disease (PAD), carotid artery stenosis, and abdominal aortic aneurysm 
(AAA) with advanced age[4].

The pathological consequences associated with normal cardiovascular aging include hypertrophy, altered 
left ventricular (LV) diastolic and systolic function, heart failure, enhanced arterial stiffness, and endothelial 
dysfunction, all of which can alter the structure and function of the heart and arterial system[5,6]. In the 
vasculature specifically, aging contributes to decreasing vascular compliance. Furthermore, it promotes 
vascular remodeling, including calcification and fibrosis, which in turn precedes the development of 
hypertension and accelerates the progression of other vascular-related diseases such as atherosclerosis or 
heart failure[7]. In addition, the incidence of metabolic diseases such as diabetes also increases significantly 
with age and contributes greatly to CVD morbidities and mortalities[8]. Interestingly, many metabolic 
disorders are associated with premature aging, suggesting that there are mechanisms we can unravel to 
potentially intervene and prevent the deterioration of the cardiovascular system independent of natural 
aging.

Until recently, aging has widely been considered an unmodifiable risk factor for many chronic diseases 
(cancer and neurodegenerative diseases) and very prominently CVDs[9-11]. Aging interventions have become 
a rising area of interest, where molecular and clinical dissection of aging processes have begun to show 
promising therapeutic targets. The monumental finding in 1939 that caloric restriction (CR) in mice and 
rats, and most recently in primates, extended lifespan led to the important hypothesis that lifespan 
extension with delayed aging improved healthspan[12,13]. Since then, an examination of healthy aging and 
processes that promote age-related deterioration across species and organs has increased our understanding 
of the involvement of aging in chronic diseases[14].

THE ROLE OF SENESCENT CELLS IN CARDIOVASCULAR PATHOLOGIES AND AGE-
RELATED PATHWAYS
CVD and cellular senescence
A major contributor to age-related cellular dysfunction was found to be the accumulation of senescent cells 
in tissues[15]. Senescent cells were discovered in 1965 by Hayflick[16] as cells with a limited proliferative 
capacity; however, we now define senescence as those cells with indefinite cell cycle arrest, resistance to 
apoptosis, and expression of a senescence-associated secretory phenotype (SASP)[17]. Thus, senescent cells 
provide a new avenue for therapeutic interventions, known as senotherapies[18,19]. Specifically, a class of 



Page 3 of Herman et al. J Cardiovasc Aging 2021;1:10 https://dx.doi.org/10.20517/jca.2021.16 22

drugs known as “senolytics” is designed to take advantage of the senescent cell’s resistance to apoptosis by 
targeting cell survival pathways to eliminate senescent cells from tissue selectively, thereby removing their 
detrimental effects[20-22]. Alternatively, another class of drugs known as “senostatics” is designed to modulate 
the proinflammatory SASP; however, the complex composition of the SASP varies widely among different 
cell types, different stages of senescence (early, middle, or late), and various senescence inducers, providing 
many obstacles to a successful therapeutic intervention[23]. While the components of the SASP may vary, the 
beneficial effects of senotherapies (both senolytics and senostatics) are mostly attributed to blunting the 
secretion of proinflammatory cytokines, chemokines, growth factors, and extracellular matrix (ECM) 
remodeling proteins, among others secreted by senescent cells[24-26]. For a more detailed discussion of these 
senotherapeutic agents, please consult the reviews by Kirkland and Tchkonia[24], 2020 and Robbins et al.[26], 
2021.

There is a rapidly growing body of evidence supporting the deleterious role of senescent cells in several 
CVDs. During embryonic development, tissue regeneration, and wound healing, vascular senescent cells 
have a beneficial presence to maintain homeostasis[27]; however, we have learned that impaired removal and 
accumulation of senescent cells in cardiovascular tissue foments impaired function and disease 
development. Senescent cells have been implicated in several CVD pathologies, most notably, 
atherosclerosis[28], AAA[29], cardiac fibrosis[30], heart failure[31], and hypertension[32]. Further incriminating 
senescent cells as causative agents of CVD, Childs et al.[33] demonstrated that senescent cells are critical 
drivers of atherosclerosis and selective removal of these cells has therapeutic potential to improve disease 
outcomes. In the same year, Roos et al.[34], found that pharmacological clearance of senescent cells can lessen 
the vasomotor dysfunction that occurs in murine aging and atherosclerosis.

Senescent cardiomyocytes contribute to cardiac pathologies
Heart failure is an age-related cardiac pathology that is a major source of mortality, affecting approximately 
1% of all people over 50 years and doubling its prevalence with each decade of life[35,36]. Cardiomyocyte 
senescence is common in cardiac aging and related diseases, although senescent cardiomyocytes are more 
difficult to identify due to their terminally differentiated state[37]. Senescent cardiomyocytes display 
contractile dysfunction, endoplasmic reticulum (ER) stress, DNA damage, genomic instability, declining 
mitochondrial function, SASP, and hypertrophic growth[38]. Further, the exact triggers and effects of 
cardiomyocyte senescence in vivo have not been well described. However, studies in mice and rats have 
identified many of the signatures of cellular senescence, such as increased cardiomyocyte size, telomere 
attrition, ROS production, and elevated senescence markers p16 (CDKN2A) and p53 (TP53)[39,40]. In 
hypertrophic cardiomyopathy patients, cardiomyocytes with DNA damage also had the shortest telomeres, 
and patients with ischemic cardiomyopathy also displayed shortened telomere length[41]. While senescence is 
often associated with telomere shortening, cardiomyocytes are post-mitotic cells that do not experience 
replicative exhaustion; therefore, senescent cardiomyocytes demonstrate length-independent telomere 
damage caused by mitochondrial dysfunction and ROS[42]. As mentioned above, hypertrophy is a hallmark 
of age-associated heart dysfunction, and although cardiomyocyte hypertrophic growth is commonly 
associated with senescence, it is unclear whether senescent myocyte growth directly contributes to cardiac 
hypertrophy[43]. A few studies have found that ER stress appears to promote a hypertrophic cardiomyocyte 
phenotype in vitro, hypertrophy was detected in hearts post-infarction, and aged rat hearts demonstrated 
cardiomyocyte hypertrophy and increased LV fibrosis; however, none of these studies directly measured 
senescence[43-45]. Interestingly, treatment of aged mice with the senolytic drug navitoclax selectively removed 
senescent cardiomyocytes, which improved myocardial remodeling and increased survival following 
myocardial infarction[46]. While studies have outlined that accumulated damage to mitochondria, proteins, 
and DNA with age contributes to cardiomyocyte malfunction, telomere damage and cellular senescence are 
also critical to heart failure in humans, and more efforts will be needed to fully elucidate the contribution of 
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senescent cardiomyocytes to age-related cardiac pathologies[47].

Further, cardiomyocyte senescence and the downstream pathologies are also the results of stress-induced 
premature senescence. Cardiomyocytes treated with doxorubicin demonstrated similar characteristics to 
those of aged rats, including increased senescence-associated beta-galactosidase positive cells, reduced 
telomerase activity, and increased expression of cell cycle regulatory proteins such as p16 and p21 
(CDKN1A)[48]. Recently, Mitry et al.[49], further described the mechanism by which doxorubicin accelerates 
cardiomyocyte senescence and cardiotoxicity. In the study, Mitry et al.[49] found that doxorubicin caused 
early and persistent topoisomerase-induced mtDNA damage that enhanced cardiomyocyte senescence, in 
turn straining the heart’s aerobic metabolism over time and promoting late-onset heart failure often 
observed in survivors of childhood cancers.

Aside from cardiomyocytes, other cardiac cells promote senescence and aging and the downstream age-
related diseases. For example, cardiac fibroblasts secrete many paracrine factors such as matrix 
metalloproteinases and express integrins to promote signaling and ECM interactions that regulate 
cardiomyocyte senescence[50,51]. Endothelial cell senescence has also been implicated in heart failure with 
preserved ejection fraction, in which the activation of p53 signaling generates cardiac inflammation and left 
ventricular pressure overload in mice[52]. Interestingly, cardiomyocyte dysfunction can also promote changes 
in neighboring cell types, such as fibroblasts, and impair the reparative function of cardiac fibrosis after 
cardiomyocyte injury[53,54].

An important area of study for cardiac aging is impaired cardiomyocyte regeneration. We have discussed 
the key hallmark of cardiac aging; the increased size of cardiomyocytes, but another critical change is the 
loss of cardiomyocytes with age[55]. While the neonatal heart demonstrates regenerative capacity, it was long 
thought the adult heart lacked the ability to renew cardiomyocytes[56]. Recent observations that adult 
cardiomyocytes renew at a rate of 0.5% to 2% per year demonstrating a limited, innate regenerative ability 
that has dismantled those previous theories; however, the capacity of the heart to regenerate declines with 
age[57-59]. Increased cardiomyocyte death, even in the very small numbers, was shown experimentally to 
promote heart failure, and that inhibiting the loss of cardiomyocytes, potentially through regeneration, 
could be an ideal therapeutic avenue[60]. The heart regeneration field suffers from a lack of consistent and 
reproducible data on the subject; however, a consensus has developed that stem cells are not the source of 
cardiomyogenesis, but rather preexisting cardiomyocytes divide to give rise to new cells[57,61-63]. A deeper 
understanding of the mechanisms that drive cardiomyocyte death with age may yield therapeutic potential 
for promoting regeneration in aged and damaged hearts.

Senescent vascular cells contribute to vascular diseases of aging
Among the many changes observed with aging, arterial remodeling and dysfunction are critical to the 
development of CVD, even in individuals who may be deemed healthy by all other standards. For example, 
aged arteries are defined by an increased ratio of intima-to-media thickness, and multiple reports have 
determined a 2- to 3-fold increase in intima thickness between 20- and 90-year-old people[5]. In addition, 
changes in the arterial wall feature increased collagen synthesis and elastin degradation with age, promoting 
arterial stiffness and reduced elasticity[64]. The consequence of such vascular remodeling manifests as 
increased blood pressure and lower diastolic pressure generating a predisposition to developing 
hypertension and atherosclerosis, among other vascular diseases[65-67].

Both of the primary cell types of the artery, vascular smooth muscle cells (VSMCs) and endothelial cells 
(ECs), become senescent with age, regardless of the presence of a vascular-related disorder[68-70]. The human 
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VSMCs from aged vessels and advanced-stage atherosclerotic plaques displayed senescence indicators with 
prolonged population doubling times and reduced cell proliferation[71,72]. These findings were corroborated 
by associating the growth arrest of VSMCs with increased expression of p16 and p21, cyclin-dependent 
kinase inhibitors, and RB1 phosphorylation, all of which are observed during replicative VSMC senescence 
and are widely considered hallmarks of senescence[28,73,74]. The VSMCs from the fibrous cap region of the 
atherosclerotic plaque compared to the vascular media demonstrated telomere shortening caused by 
oxidative stress-induced DNA damage. The resulting VSMC senescence accelerates vascular disorders such 
as atherosclerosis[28]. Angiotensin II is another well-described driver of VSMC senescence, and recently, 
smooth muscle 22α, an actin-binding protein, has been shown to prevent p53 degradation via MDM2 
suppression to promote angiotensin II-induced VSMC senescence[75]. Importantly, senescent VSMCs in the 
plaque of carotid arteries express enhanced levels of interleukin-6 (IL-6), signifying VSMCs as a SASP 
producer and source of inflammation during vascular disease[76]. Most recently, Uryga et al.[77] suggested 
persistent telomere damage in VSMCs causes senescence and inflammation via immune cell recruitment 
and retention. Overall, senescent VSMCs have been recognized in atherosclerotic lesions, AAA, and PAD, 
suggesting that VSMCs have a critical role in age-related vascular pathologies[70].

Aside from VSMCs, ECs play an influential role in vascular disorders with age. While ECs typically 
maintain vascular homeostasis, senescent or dysfunctional ECs establish proinflammatory, prothrombotic, 
and vasoconstrictor characteristics in addition to reduced proliferation and migration. Replicative senescent 
ECs express increased cell adhesion molecules such as ICAM-1 and decreased endothelial nitric oxide 
synthase and activity, caused by telomere shortening[70]. Another cause of EC senescence may be disturbed 
flow during atherosclerosis. In both mice and in vitro, the aberrant flow was a driver of EC senescence by 
activating the p21-p53 pathway[78]. Aged and senescent ECs are also producers of inflammatory cytokines, 
namely IL-6, tumor necrosis factor alpha (TNFα), and monocyte chemoattractant protein-1 (MCP-1), 
which also suggests that the accumulation of senescent ECs in the artery with age causes chronic sterile 
inflammation and vascular changes that predispose one to vascular diseases[79,80].

Although VSMCs and ECs compose most of the artery, immune cell aging and senescence may also 
contribute greatly to vascular pathologies associated with aging. Individuals 60 years or older with 
shortened telomeres in leukocytes experience a higher mortality rate that has been linked to increased death 
from CVD[81]. In an interesting and clinically relevant study, the analysis of leukocyte populations led to the 
finding that telomere length was strongly associated with the development of atherosclerosis and CVD[82,83]. 
Furthermore, senescent leukocytes and senescent effector memory T cells were found preferentially in 
unstable atherosclerotic plaques[84]. Additionally, enhanced cytokine expression (TNF, MCP-1/CCL2, IL6) 
and ROS production have been observed in monocytes from atherosclerosis patients[85]. Importantly, the 
proinflammatory phenotype of aged and senescent monocytes is driven by senescence[86]. Figure 1 
summarizes the known consequences of cardiovascular aging and the molecular mechanisms, cell types, 
environmental factors involved, and potential therapeutics and interventions.

Overall, the evidence overwhelmingly points to the need to continue to study aging and senescence in CVD. 
Here, we present the body of work thus far that has uncovered numerous important pathways and 
mechanisms by which aged and senescent cells contribute to the development of different cardiovascular 
pathologies. Recurring thematic features of cardiovascular aging and disease suggest an unstable genome 
with shortened telomeres and a deregulated transcriptome that is pro-fibrotic, proinflammatory, but anti-
proliferative with reduced regenerative capacity. In sum, these cellular phenotypes suggest an altered 
epigenome that has emerged as one of the hallmarks of aging in recent years. By focusing on mechanisms 
with druggable targets such as epigenetic alterations, we can develop therapies to modulate aging and 
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Figure 1. Molecular mechanisms involved in cardiovascular aging: consequences and potential therapeutics and interventions. Telomere 
damage, epigenetic changes, and mitochondrial damage are associated with the accumulation of senescent cardiovascular/immune 
cells, cardiovascular aging, and disease. Diet, smoking, and air pollution can also negatively contribute to aging, while physical exercise 
may improve cardiovascular health. Potential therapeutics and interventions include targeted elimination of senescent cells (senolytics), 
modulation of the proinflammatory SASP (senescence-associated secretory phenotype; senostatics), and dietary interventions (caloric 
restriction).

senescence in CVD. Outlined below are the central findings from studies that have investigated epigenetic 
changes in CVD, although as discussed in FUTURE PERSPECTIVES, these studies are limited and mostly 
out of context with aging. Nevertheless, these studies have revealed important insights that can be validated 
and developed into targeted therapeutics in the future.
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EPIGENETIC CHANGES IN THE AGING CARDIOVASCULAR SYSTEM
Epigenetic alterations are one of the key features of aging and age-related disease, including CVD. These 
alterations include changes in DNA modifications, histone modifications, histone composition, 
transcription factor (TF) binding, non-coding RNA-mediated regulation, chromatin remodeling, 
nucleosome positioning, and 3D genome folding[87,88]. Whether epigenetic changes drive aging or are a 
consequence of activated stress signaling pathways remains to be dissected but likely are part of a vicious 
cycle that ultimately leads to tissue damage, inflammation, and disease. In the following sections, we first 
discuss the probable impact of diet, exercise, and other environmental factors on cardiovascular health and 
then elaborate on the role of specific epigenetic regulators studied in the context of cardiovascular aging and 
disease.

Effect of diet, exercise, and other environmental factors in cardiovascular health
Aside from age, obesity and metabolic syndrome (characterized by sarcopenic obesity, insulin resistance, 
inflammation, etc.) are also major risk factors for CVD, partly due to their systemic proinflammatory 
effects, much like in aging[89]. With increased body mass, there is an increase in the overall size of the heart, 
concentric hypertrophy, increased left ventricular mass, hypertension, and diastolic dysfunction, partially 
overlapping age-related cardiac symptoms. CR (i.e., a reduction in daily calorie intake without 
malnutrition) is one of the most reproducible lifestyle interventions that improve cardiovascular health and 
increase lifespan in multiple models[90]. Studies in non-human primates show that rhesus monkeys on long-
term, moderate CR show improvements in metabolic syndrome, including decreased body weight primarily 
due to loss of fat, decreased visceral fat mass, improved insulin sensitivity, and an altered lipid profile with 
more cardioprotective high-density lipoprotein compared to ad libitum fed controls[13,91]. Interestingly, an 
inadvertent CR in humans participating in the Biosphere 2 experiment showed tremendous cardiovascular 
health benefits[92].

Much like CR, exercise has demonstrated effects on cardiovascular health. Physical inactivity is a major 
contributing factor to age-related disabilities, declining heart health, stroke, cognitive impairment, and 
frailty primarily due to progressive arterial stiffness[93]. Older individuals undergoing regular exercise show 
increased maximal oxygen consumption rate (VO2max)[94]. Endurance exercise improves not only VO2max but 
also early diastolic left ventricular filling and relaxation, peak ejection fraction, and cardiac output. There 
are also general improvements in vascular physiology and endothelial function[95,96].

Unlike CR and exercise that have health benefits, smoking is a serious risk factor for cardiovascular disease. 
Smoking is often quantified in “pack-years”, i.e., the number of packs of cigarettes smoked per day 
multiplied by the number of years an individual has smoked (cancer.gov). In a study of > 13000 participants, 
Ding et al.[97] determined a strong correlation between pack-years, duration, intensity, and cessation time of 
smoking to deleterious cardiovascular outcomes, with the strongest risk being PAD. In addition, smoking 
has been shown to directly target the epigenome, altering DNA methylation profiles, specifically 187 CpG 
sites independently validated in a separate cohort[98]. In fact, some mortality predictive DNA methylation 
clocks, such as GrimAge (discussed below), directly incorporate smoking-related changes through an 
estimate of pack-years of smoking[99].

Similar to smoking, air pollution is a major contributing factor that accelerates the decline of 
cardiopulmonary health. A growing body of epidemiological and clinical evidence indicates that ambient 
particulate matter may directly impact the cardiovascular system, although exact biological mechanisms are 
unknown[100]. In part, the deleterious effects of particulate pollutants may be mediated by oxidative stress 
and systemic inflammation[101]. Therefore, long-term studies focused on elucidating the molecular pathways 

cancer.gov
https://www.cancer.gov/
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involved will be critical for designing mitigative approaches.

Given that environmental factors can impact multiple aspects of cardiovascular health and modulate 
lifespan, we discuss below some of the key molecular mechanisms that might be involved in this process. 
The epigenome is the interface between the environment and phenotype and, consequently, plays an 
important role in regulating health and disease.

DNA modifications in cardiac pathology
Methylation of cytosine (5-methylcytosine or 5mC) is the best-studied and most abundant modification on 
DNA. The 5mC status of groups of CpGs is associated with disease onset and mortality and therefore serves 
as the basis for several pan-tissue clocks that have been designed to act as “biological age” estimators. For 
example, GrimAge[99] and PhenoAge[102], two epigenetic clocks trained on chronological age and blood-based 
biomarkers, are associated with time to the incidence of CVD events[103]. Although a clear mechanistic basis 
for these clocks is still obscure, the primary genomic regions affected seem to be polycomb targets and those 
near developmental genes[104]. In concordance, a DNA methylome profiling in purified cardiomyocytes of 
mice undergoing heart failure showed methylation patterns that resembled those in neonates[105]. Another 
independent epigenome-wide association study examining relationships between DNA methylation and 
incident CVD discovered two CpG modules in human cohorts: one associated with developmental genes 
and the other with immune functions[106]. In keeping with the developmental gene activation theme in 
diseased hearts, the landscape of 5-hydroxymethylcytosine (5hmC, an oxidative product of 5mC) in 
cardiomyocytes derived from developing and hypertrophic hearts resemble, in part, a neonate-like 
signature. It was shown that 5hmC, which is positively correlated with gene transcription, was reduced over 
mitochondrial genes and increased over enhancers and gene bodies of fetal genes such as Myh7, thereby 
reactivating them[107].

Investigation of DNA methylation in healthy and atherosclerotic lesions from donor-matched aorta samples 
interestingly revealed focal hypermethylation in the diseased tissue over repeat and non-repeat regions of 
the genome and in both a CpG and non-CpG context[108]. Furthermore, the differentially methylated regions 
were associated with endothelial and smooth muscle function. A related study in swine, investigating 
differential methylation in ECs from an athero-susceptible location (inner curvature of the aortic arch) and 
an athero-protected region (descending thoracic aorta), also identified many hypermethylated sites that 
were linked to genes related to transcriptional regulation, pattern-specification HOX loci, oxidative stress, 
and ER stress adaptive pathway[109]. Furthermore, 5’UTR hypermethylation exhibited an inverse relationship 
with gene expression at the HOX loci primarily. These observations contrast with DNA methylation 
changes in aging[110] or cancer[111], where global hypomethylation over megabase-sized blocks of the genome 
is the primary feature despite aging being a risk factor for atherosclerosis.

The derepression of repeat elements with retrotransposon activation is a known molecular event in 
senescence and aging. Evidence in senescent cells and mouse tissues indicates that these non-coding 
transcripts, generated from repeat elements, in turn, are reverse transcribed and activate an interferon 
response contributing to a systemic proinflammatory status in aging[112]. The overall coverage of 5hmC over 
repeat elements was shown to decrease during cardiac development but increase in the hypertrophied heart, 
particularly at long interspersed nuclear elements. This was accompanied by reduced CG methylation and 
other repressive histone modifications (discussed below), suggesting a consequential activation of these 
regions in disease[107].
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Most genome-wide methylation studies have been done using bead-based arrays, whole-genome bisulfite 
sequencing, or reduced representation bisulfite sequencing post-bisulfite treatment of DNA. However, these 
methods fail to distinguish between 5mC or 5hmC and thereby may complicate mechanistic inferences on 
gene regulation. The recent development of the oxidative bisulfite sequencing (oxBS-seq) method allows for 
the simultaneous measurement of 5mC and 5hmC at single-nucleotide resolution[113]. We propose that 
investigation of these distinct DNA modifications in cardiac aging and disease is an understudied but 
important future research direction.

Altered balance of activating and repressive histone modifications
Histone post-translational modifications (PTMs) represent another epigenetic mechanism to control gene 
expression. A core octamer comprising two copies each of H2A, H2B, H3, and H4 histones wraps 147 bp of 
DNA to form the basic unit of chromatin, the nucleosome. Linker histone H1 binds to linker DNA at the 
entry and exit sites of DNA on nucleosomes to form the next level of recurring chromatin structural unit, 
the chromatosome[114]. Core and linker histones are modified by diverse PTMs such as acetylation, 
methylation, ubiquitylation, phosphorylation, etc. primarily on the unstructured tail regions (although there 
are many core modifications) and regulate activation or repression of gene expression via opening and 
closing of chromatin structure in a heritable fashion[115]. Table 1 provides an overview of known functions of 
specific histone modifications from the literature. Active or open chromatin is referred to as euchromatin, 
and inactive, closed chromatin is called heterochromatin. An existing notion in senescence studies points 
towards the progressive euchromatinization of the genome with concomitant loss of repressive 
modifications.

A genome-wide investigation of 7 histone PTMs, lysine 9 acetylation on histone H3 (H3K9ac), H3K27ac, 
H3K79me2, H3K4me3, H3K9me2, H3K9me3, and H3K27me3 (“me” indicating methylation) in 
cardiomyocytes isolated from normal and pressure-overloaded hearts revealed a subset of hypertrophy-
associated genes that follow the conventional histone code, i.e., a mutually exclusive enrichment of 
activating (H3K9ac, H3K27ac, H3K79me2, and H3K4me3) and repressive (H3K9me2, H3K9me3, and 
H3K27me3) modifications. Additionally, this study identified a network of ~9000 putative active enhancers 
in the hypertrophic heart that might correlate to disease pathology, suggesting that histone PTMs regulate 
the gene network involved in this process[116].

A cross-tissue analysis of chromatin marks (H3K4me3 and H3K27ac) revealed a clear separation in the 
RNA and chromatin profiles of young, middle-aged, and old hearts. Importantly, these age-related 
chromatin features included H3K4me3 and H3K27ac intensity and H3K4me3 breadth, which was 
previously shown to be linked to transcriptional consistency and high expression output required for 
maintenance of cell identity. Both dynamic features (such as enhancer score and H3K4me3 breadth) and 
static features (such as H3K4me3 promoter intensity and H3K4me3 domain breadth in young tissue) were 
key predictors of age[117].

Studies focusing on the repressive H3K9 methylation, specifically H3K9me2, revealed that it promotes the 
reexpression of fetal genes during pathological cardiac hypertrophy. Downregulation of the H3K9 
dimethyltransferases EHMT1/2 by miR-217 leads to loss of H3K9me2 over the promoters of fetal heart 
genes such as atrial natriuretic peptide (Nppa), brain natriuretic peptide (Nppb), and Myh7 in 
cardiomyocytes[118]. Knockout or overexpression of the H3K9 trimethyl demethylase JMJD2A (or KDM4A) 
had no overt cardiac phenotype but exhibited an altered response to stress. For example, overexpression of 
JMJD2A resulted in exacerbated cardiac hypertrophy while its inactivation was protective after aortic 
constriction[119]. These results suggest that histone H3K9 repressive modifications play a critical role in 
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Table 1. Histone modifications involved in cardiovascular aging and disease

Function Enzymes(s) Involvement in cardiovascular aging/disease Model Ref.

H3K9ac Active promoter KAT2A/2B, KDM4A-D, 
KDM3A-B 

Positively associated with transcription in hypertrophic 
cardiomyocytes

Homo sapiens, Mus musculus [116,174]

H3K27ac Active promoter and 
enhancer

KAT3A-B, various HDACs Increased at promoters of age-related genes Mus musculus [127,175]

H3K79me2 Body of active genes KMT4 Associated with cardiac hypertrophy Mus musculus [116,176]

H3K4me3 Active promoters KMT2F, KMT2G, KMT2A, 
KMT2D, KMT8B, KDM5A-D

Domain breadth increases in the aging heart Homo sapiens, Mus musculus, Drosophila melanogaster, 
Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces 
cerevisiae

[115,117]

H3K9me2 Nuclear lamina-associated 
heterochromatin

KMT1C, KMT1D, KDM3A-B, 
KDM4A-E, KDM7B

Reduced in pathological cardiac hypertrophy Mus musculus [118,177]

H3K9me3 Constitutive 
heterochromatin, repeat 
elements

KMT1A-B, KDM4A-E JMJD2A-mediated demethylation is associated with cardiac 
hypertrophy and heart failure. Reduced in HGPS patients

Homo sapiens, Mus musculus [119,156,
171,178]

H3K27me3 Facultative heterochromatin KMT6A-B, KDM6A-B Reduced in HPGS patients Homo sapiens [157,179]

H4K20me3 Heterochromatin KMT5B-C, KDM7C Increased in aging mice fibroblasts Homo sapiens [171,180]

suppressing a cardiac stress response that may also be occurring during aging, although it remains to be explicitly tested.

Histone acetylation is a very dynamic histone PTM and is regulated by histone acetyltransferases and histone deacetylases (HDACs). Loss of HDAC1, 2, 3, 5, 
and 9 results in exacerbated cardiac hypertrophy and, in some cases, neonatal lethality or a shortened lifespan[120-122]. Sirtuins (SIRT1-7) are a family of 
nicotinamide adenine dinucleotide (NAD+)-dependent class III HDACs that have established protective roles in lifespan regulation in multiple species. 
However, both SIRT1 and NAD+ levels decline during aging[123]. Furthermore, loss of SIRT1 interferes with angiogenesis and neovascularization after ischemia 
due to aberrant acetylation of FOXO1, potentiating its anti-angiogenic function[124]. Conversely, overexpression of SIRT1 has many beneficial effects on 
endothelial cell function, including increased migration[124], decreased endothelial progenitor cell senescence[125], and reduced vascular oxidative stress and 
inflammation via inhibition of NFκB and PARP[126]. While SIRT1 also acts on histones, this aspect of regulation remains unexplored.

Available studies taken together confirm that histone modifications contribute to CVD, with the direction of changes similar to that observed during 
senescence. There is a pronounced shift in the balance characterized by reduced repressive marks, especially over repeat elements and increased active 
modifications. However, due to the paucity of direct work in aged tissue and the lack of integrative analysis, the exact mechanisms remain to be elucidated.
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A core TF network in aging
A multi-omic (DNA methylome, transcriptome, and epigenome) profiling and integrative analyses of the 
aging murine heart, liver, and quadriceps muscle identified some common and unique aging footprints 
across tissues. As a note, this study primarily performed a gene-centric analysis, and therefore changes over 
features such as enhancers or repeat regions were not analyzed. In the heart, the DNA methylome was the 
primary epigenetic signature that changed around transcription start sites (TSSs) with approximately an 
equal number of hypo- and hyper-methylated CpGs. Although more subtle, H3K27ac enrichment increased 
in the ~5 Kb region around the TSSs, while the H3K27me3 signal decreased. A TF motif enrichment 
analysis around promoters of genes up- or down-regulated in the heart during aging revealed that TF motifs 
enriched in genes that increase expression are also enriched in genes that have an increase in H3K27ac and 
a decrease in H3K27me3. Interestingly, a few TFs common to all three tissues were enriched in upregulated 
genes and genes with increases in H3K27ac and decreases in H3K27me3 in the heart. These TFs belong to 
the zinc finger of the cerebellum (Zic) family of factors. Conversely, HMGA1 binds to genes that are 
downregulated with age. Importantly, the expression of these TFs in humans is altered during aging, and 
epidemiological studies suggest a link between the altered expression of some of these TFs and the mother’s 
age[127]. These results suggest that a common set of epigenetic “master” regulators may be responsible for 
driving some of the key transcriptomic changes in aging.

Increased transcriptional noise in the aging heart
Single-cell studies have emphasized the presence of heterogeneity and variability within tumors, complex 
tissues, and surprisingly even overtly pure cell populations. For example, an early study with purified 
cardiomyocytes isolated from fresh young and old mice hearts revealed increased gene expression variability 
in old cells[128]. The authors of the study attributed this increased variability to the stochastic nature of the 
aging process contributed by DNA damage and accumulating somatic mutations. Indeed, mouse embryonic 
fibroblasts treated with hydrogen peroxide showed a similar increase in expression variability. A more 
recent comprehensive single-cell atlas (Tabula Muris Senis[129]) of multiple mouse tissues, including heart 
and aorta, is available but begs for a deeper dive into the dataset to enable the discovery of age-related 
changes specific to the cardiovascular system.

Non-coding RNA in cardiovascular aging
The vast majority of the genome is not translated into proteins but rather serves either as cis-regulatory 
elements or mediates post-transcriptional gene regulation[130]. These non-coding areas of the genome encode 
small non-coding RNAs (< 200 nucleotides) or long non-coding RNAs (> 200 nucleotides). Small non-
coding RNAs mainly comprise micro-RNAs (miRNAs), piwi-interacting RNAs (piRNAs), transfer RNAs 
(tRNAs), small nuclear RNAs (snRNAs), small nucleolar RNA (snoRNAs), etc. Long non-coding RNAs can 
be either linear (lncRNAs) or circular (circRNAs). Non-coding RNAs have long been implicated in 
senescence and aging, with several studies conducted in the context of cardiovascular aging[131,132].

miRNAs and circRNAs present reliable biomarkers of aging due to their stability in circulation and 
conservation across species. miR-21 is a particularly well-characterized miRNA targeting SPRY1, a potent 
inhibitor of the ERK-MAPK pathway. miR-21 increases in cardiofibroblasts of the failing heart, augmenting 
ERK-MAP kinase activity impacting interstitial fibrosis and cardiac hypertrophy[133]. In a study profiling 
miRNAs in the heart of neonatal, 1 month, 6 months and 19 months old mice, miR-22, which targets 
osteoglycin, was found to be robustly upregulated. miR-22 overexpression induced senescence and 
promoted the migration of cardiac fibroblasts[134]. miR-34a is induced in aging cardiomyocytes where it 
targets PNUTS, a cardioprotective protein that otherwise reduces age-associated cardiomyocyte cell 
death[135]. Interestingly, miR-34a, through the targeting of a different protein, SIRT1 (discussed above), 
induces endothelial and VSMC senescence and proinflammatory SASP expression[136,137]. SIRT1 is also 
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targeted by miR-217 in ECs, where it induces premature senescence and leads to an impairment in 
angiogenesis via modulation of FOXO1 and nitric oxide synthase acetylation[138]. Transcriptomic analysis of 
aortic tissue in old mice revealed miR-29 upregulation and the concomitant downregulation of many ECM 
components that in turn sensitizes the aorta to aneurysm formation[139]. In contrast, a number of other 
miRNAs (miR-18, miR-19, miR-17-3p, miR-92, reviewed in[140]) are reduced in expression during aging, 
specifically elevating their targets to affect cardiovascular aging and disease.

CircRNAs impact transcription by acting as sponges of miRNA and RNA binding proteins (RBPs) or 
serving as scaffolds for assembly of larger complexes[141]. Many circRNAs are altered in expression upon 
hypoxic injury or myocardial infarction (reviewed extensively in[142]); a few relevant to aging are discussed 
here. circFoxo3 is generated from the Foxo3 transcript and was shown to be overexpressed in the aged 
hearts of mice and humans and correlated to senescence markers. CircFoxo3 is localized to the cytoplasm 
where it retains several anti-senescence proteins such as ID1, E2F1, FAK, and HIF1α, thus siphoning their 
activity away from the nucleus[143]. In addition, a circRNA produced from the senescence/aging relevant 
Cdkn2b locus called Antisense non-coding RNA in the INK4 locus (circANRIL) correlates with the 
expression of its linear RNA and confers atheroprotection. circANRIL binds to PES1, a 60S-preribosomal 
assembly factor, impairs ribosome biogenesis and thereby induces nucleolar stress and apoptosis in 
atherogenic VSMCs and macrophages[144,145]. Unlike miRNAs that are well studied in aged hearts and 
vasculature, key age-related circRNAs remain to be profiled in detail.

lncRNAs, unlike miRNAs, are not well conserved across species, and therefore their targets and functions 
should be interpreted with caution. Nevertheless, numerous studies have evaluated the role of lncRNAs in 
cardiovascular aging and disease (reviewed in[146]). lncRNAs are highly versatile, serving as expression 
signals to trigger a response, competitive endogenous RNAs, guides to direct factors to specific genomic 
locations, scaffolds for RBPs, or mediators of chromatin looping[146]. For example, Mhrt, an antisense 
lncRNA produced from the region between Myh6 and Myh7, interferes with the switch to fetal Myh7 
expression in hypertrophic hearts. Mhrt antagonizes BRG1 function by interacting with its helicase domain 
and inhibiting chromatin targeting (see next section)[147]. Chaer, another lncRNA mediating cardiac 
hypertrophy, interacts with PRC2 subunits and thereby inhibits the repression of cardiac hypertrophy-
related genes[148]. Meg3 expression is upregulated in senescent HUVEC (endothelial) cells and in the aging 
cardiovascular system, where it also targets PRC2 components to assert a pro-aging function in aging 
vasculature[149]. An RNA-seq study in porcine cardiac muscle revealed 4 lncRNAs that were consistently 
expressed during aging. Ontology analysis of the target genes of these lncRNAs was significantly enriched 
for negative regulation of myotube differentiation and muscle contraction, suggesting that the lncRNAs 
likely interfere with the normal muscle physiology[150].

There are numerous other examples of non-coding RNA functions in cardiovascular aging that are beyond 
the scope of this review. However, it is interesting to note that many of them target epigenetic enzymes or 
TFs and therefore may directly and pervasively impact the epigenome.

ATP-dependent chromatin remodeling in the diseased heart
ATP-dependent chromatin remodeling complexes are large multi-subunit molecular machines that utilize 
ATP to reposition or evict nucleosomes or exchange histones to alter chromatin structure. The BRG1/BRM-
associated factor (BAF) chromatin remodeling complexes are comprised of either brahma or brahma-
related gene 1 (BRG1) catalytic subunits along with several other accessory proteins. BAF complexes are 
critical for heart development and disease pathogenesis. For example, BRG1 plays opposing roles at the 
Myh6 and Myh7 loci: in embryos, it interacts with HDACs and poly (ADP ribose) polymerase 1 (PARP1) to 
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repress the adult-specific Myh6 while activating fetal Myh7[151]. Brg1 expression is lost in cardiomyocytes but 
reactivated in hypertrophic hearts. It sequentially recruits G9a and then DNMT3 to deposit H3K9me2 and 
5mC at the Myh6 promoter impairing cardiac contraction[152]. Thus, a complex interplay of repressors and 
co-repressors recruited by BRG1 in injured hearts activates fetal Myh7 while interfering with adult Myh6 
expression. Cardiac regeneration (as may be promoted by injury) requires BRG1 not only to suppress Myh6 
but also to increase the expression of pro-proliferative Bmp10 and Cdkn1c genes. Although not directly 
tested in aging hearts, reactivation of Brg1 is a plausible mechanism to promote repair. Finally, mutations in 
genes encoding BAF complex subunits have been associated with various cancers and congenital heart 
diseases[153,154].

Laminopathy and loss of heterochromatin lead to premature aging
Hutchinson Gilford Progeria Syndrome (HGPS) is a premature aging disorder attributed to a mutation in 
the lamin A (LMNA) gene that results in the production and incorporation of a truncated version of lamin 
A called progerin in the nuclear membrane. This misincorporation grossly disrupts the nuclear lamina and 
lamina-associated heterochromatin and pro-senescence/pro-aging gene expression changes. Surprisingly, 
HGPS patients usually die in their teens from atherosclerosis and CVD complications suggesting strong 
links between chromatin dysregulation and CVD events in these patients. Interestingly, vascular progerin 
production and its progressive increase with age have also been noted in normal individuals, and there are 
many common histological features in the vasculature of HGPS and geriatric subjects[155]. Additionally, 
fibroblasts isolated from HGPS patients undergo premature senescence, and in iPSC models of HGPS, 
many epigenetic changes noted mimic those found in in vitro models of cellular senescence. For example, 
there is a reduction in repressive histone modifications, H3K27me3 and H3K9me3, loss of EZH2, and 
derepression of LINE elements[156,157]. This evidence suggests that epigenetic alterations, particularly those 
found in senescent cells, may drive some of the key CVD pathologies in HGPS. Indeed, selective clearance 
of naturally occurring p16 positive senescent cells in the heart and senescent foam macrophages at 
atherosclerotic lesions by senolytics can ameliorate disease symptoms[33,158].

Figure 2 summarizes the key concepts of epigenetic regulation impacting CVD: DNA modifications 
[Figure 2A], histone modifications [Figure 2B], TF binding [Figure 2C], altered gene expression 
[Figure 2D], non-coding RNAs [Figure 2E], chromatin remodeling [Figure 2F] and lamina disorganization 
[Figure 2G] as derived from models of heart failure, and limitedly, aged tissues.

FUTURE PERSPECTIVES AND PROVOCATIVE THERAPIES FOR AGE-RELATED CVD
With the advent of better health monitoring, chemotherapies, vaccines, and rehabilitation programs, human 
life expectancy has increased and will continue to increase in the next few decades. This means that the 
number of people > 65 years of age will comprise 20% or more of the population by the next decade. 
Unfortunately, CVD will remain one of the top causes of death among older individuals, surpassing 
neurodegenerative diseases and cancers, suggesting that the cardiovascular system is especially prone to the 
chronic deleterious changes that come with age. Until recently, age was thought to be a largely unmodifiable 
feature of life, but the innovations of the longevity biotechnology field are on a trajectory to change this 
outcome. Thus, now is the time to identify key mechanisms contributing to heart disease in the elderly to 
design and rapid testing of breakthrough therapeutics.

Several notable interventions which directly or indirectly remodel the epigenome hold promise in 
ameliorating CVD. Preclinical studies in mouse models have already shown the efficacy of senolytics in 
countering the deleterious effects of cardiac dysfunction, vascular dysfunction, and calcification[33,34,159,160]. 
Senostatics that reduce the SASP without eliminating senescent cells, which carry the risk of fibrosis, might 



Page 14 of Herman et al. J Cardiovasc Aging 2021;1:10 https://dx.doi.org/10.20517/jca.2021.1622

Figure 2. Epigenetic mechanisms involved in cardiovascular aging and disease. Several epigenetic changes are documented in 
cardiovascular aging and disease, including (A) DNA modifications (5-methylcytosine is also used in epigenetic clocks and associated 
with cardiovascular disease onset); (B) altered balance of active and repressive histone marks; (C) alterations to transcription factor 
binding; (D) transcriptional changes; (E) altered expression of non-coding RNAs; (F) chromatin remodeling; and (G) laminopathy and 
loss of heterochromatin.

also show benefits but have not been directly tested. Potential SASP modulators include glucocorticoids[161], 
rapamycin[162], metformin[163] and CR/CR mimetics[164]. Although the exact mechanisms underlying age 
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reversal are lacking, these molecules have a profound effect on the epigenome (reviewed in[87,88,165]). Some 
direct effects of epigenome remodeling are exemplified by enzymes such as MLL1[166] and BRD4[167], which 
are critical regulators of SASP genes. Additional synthetic therapeutics that could potentially modulate 
senescence or SASP include locked nucleic acids, anti-miRs, and other antisense oligonucleotides that block 
non-coding RNA activity and/or target them for degradation[168]. Overall, given the predominance of 
senescent cell function in CVD, targeting them is a viable option to treat age-related cardiac dysfunction.

Another targetable cell type in CVD is the quiescent cardiomyocyte and fibroblast populations that 
comprise most adult heart tissue. Unlike senescent cells, quiescent cells are responsive to growth factors and 
apoptotic signals, making them more pliable for modulation. While neonatal cardiomyocytes are capable of 
proliferation and regeneration, this function declines rapidly in adults[169]. The cardiac stem cell theory was 
recently annulled following extensive fate-mapping data that clearly showed that non-myocytes could not 
produce new cardiomyocytes in the adult during homeostasis or following infarction[170]. Thus, an 
endogenous stem cell-centric therapy in CVD is contentious. However, the exogenous supply of cardiac 
progenitors produced from induced pluripotent stem cells could be explored but need careful testing. 
Another avenue to improve regeneration of adult cardiomyocytes is by inducing controlled proliferation, 
for example, by cyclical expression of Yamanaka factors. In a premature aging model carrying a Lmna 
mutation, cyclic induction of these pluripotency factors partially rescued the degeneration of VSMCs in the 
aortic arch compared to untreated mice, as indicated by an increase in the nuclei number. At the functional 
level, electrocardiographic analysis showed that there was also a partial rescue of bradycardia in the treated 
mice compared to controls. Yamanaka factors induce reprogramming by changing the histone modification 
landscape, specifically restoring H3K9me3 and H4K20me3 to youthful levels[171].

Pathological, activated cardiac fibroblasts (as opposed to quiescent fibroblasts) are induced following 
cardiac injury and can cause excessive fibrosis. These activated fibroblasts have been shown to have a 
unique gene expression signature, prominently the upregulation of fibroblast activation protein, which was 
targeted to eliminate them by chimeric antigen receptor (CAR)-T cell therapy[172] selectively. We propose 
that a similar survey of the transcriptome and epigenome can discover neoantigens on aged tissues, which 
can then be exploited for immunotherapy in CVD.

Of note, most of the studies discussed in this review use mouse models of heart failure or cardiac disease to 
interrogate epigenetic features. However, the experimental rodent is usually an adult (2-4 months old) with 
a very different epigenomic landscape than older animals, who present the most risk for disease. These 
models thus may accurately capture acute pathological changes while completely missing the contribution 
to disease of any long-term chronic effects such as systemic inflammation or global epigenetic changes. 
Conversely, studies that focused on interventions that extend lifespan rarely measured whether the 
cardiovascular function was improved[173]. Collectively, the field must embrace naturally aged mice models 
and impose the inclusion of age as a biological variable to gain deeper insight into the etiology of age-related 
cardiac dysfunction and disease.

CONCLUDING REMARKS
In the studies that have considered both the perspective of aging and cardiovascular health, we have 
accumulated important insights into the epigenetic mechanisms of cardiovascular aging that we describe in 
this review. Genomic regions that are targeted during aging include repeat elements and lamina-bound 
heterochromatin, developmental gene promoters, polycomb targets, and stress response genes. These 
regions also show prominent changes in DNA modifications. The histone code itself is unaltered, but 
specific master TFs co-opt epigenetic enzymes and chromatin architectural proteins to promote a disease 
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phenotype. Concordant with changes in DNA and histone modifications, the coding, and non-coding 
transcriptome is also significantly altered, impacting cardiac function and vascular physiology. Further 
studies will illuminate more precise roles of epigenetic factors that can ultimately be exploited to design 
novel therapeutics.
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