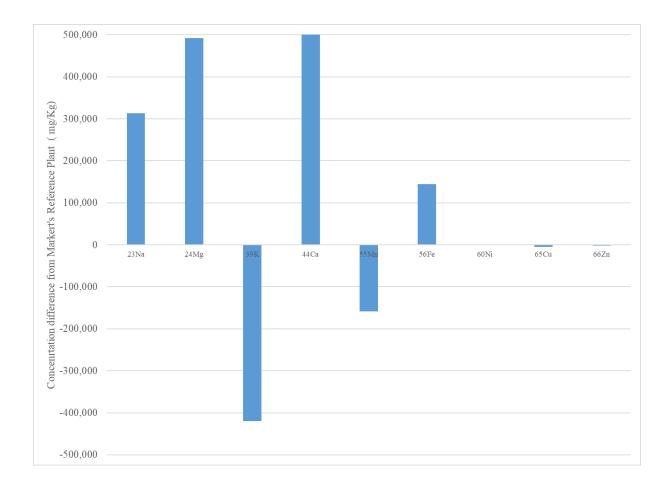
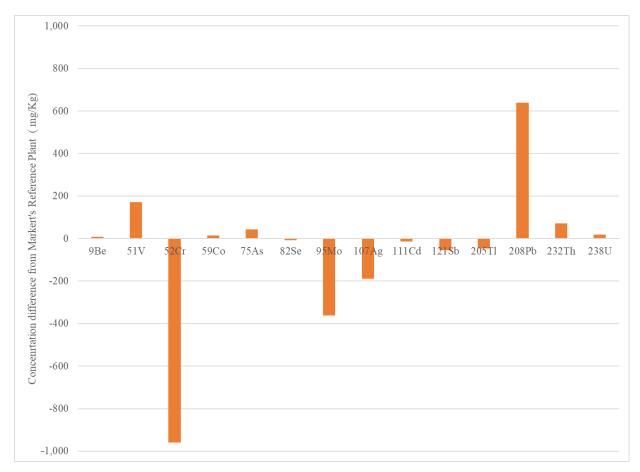
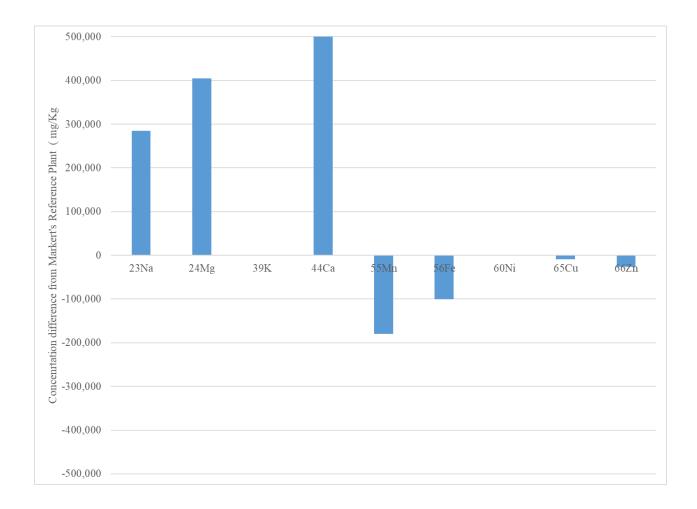
Supplementary Materials

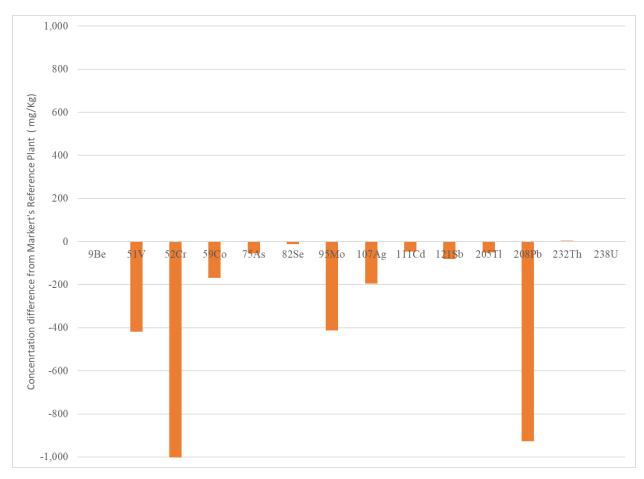

Name of Journal: Journal of Environmental Exposure Assessment Manuscript NO: 202309 Manuscript Type: Research Article

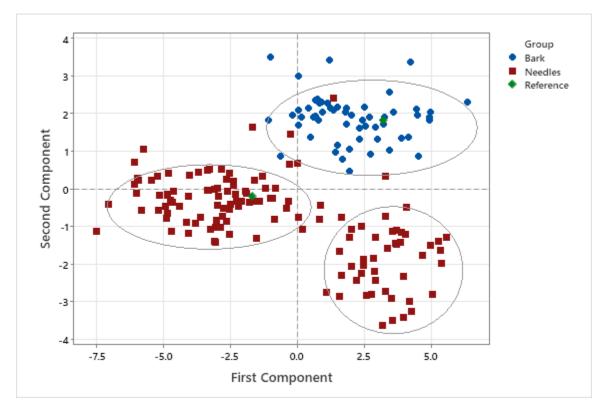
Variation in metal concentration across tree organs and stands: implications for reference specimen development


Gwen O'Sullivan¹, Kevin Hayes^{1,2}, Alex Ursino¹, Emily Hart¹

¹Mount Royal University, Department of Earth & Environmental Science, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada.
²Manchester Metropolitan University, Department of Natural Sciences, Chester Street, Manchester M1 5GD, UK.


Correspondence to: Prof. Gwen O'Sullivan, Mount Royal University, Department of Earth & Environmental Science, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada. E-mail: <u>gosullivan@mtroyal.ca</u>


Supplementary Figure 1. Reference Bark as compared to Merkart's Reference Plant for tree nutrient elements


Supplementary Figure 2. Reference Bark as compared to Merkart's Reference Plant for trace elements

Supplementary Figure 3. Reference Needles as compared to Merkart's Reference Plant for tree nutrient elements

Supplementary Figure 4. Reference Needle as compared to Merkart's Reference Plant for trace elements

Supplementary Figure 5. Principal component analysis of data for all elements and samples used to develop the reference bark and needles. The green diamonds are the reference needles and bar. The circle around the needles in the bottom right hand corner indicates needles with elevated concentrations of both trace (PC1- Cu, Cr, Fe, and Pb) and tree nutrients (PC 2-K, Mo, and Mg)

Element (Mass Number)	Method Detection Limit (ng/g)	CRM-PN-A (µg/g)	6 replicate extraction and analyses (µg/g)
Beryllium (9)	0.012		
Sodium (23)	10	62 (±3)	87 (±2)
Magnesium (24)	10	1000 (±30)	961 (±19)
Aluminum (27)	0.3	1010 (±40)	908 (±18)
Potassium (39)	10	540 (±25)	481 (±11)
Calcium (44)	10	5020 (200)	5275 (±107)
Vanadium (51)	0.3		
Chromium (52)	0.1	0.5	0.2 (±0.05)
Manganese (55)	0.1	232 (±13)	236 (±5)
Iron (56)	10	133 (±12)	62 (±1)
Cobalt (59)	0.05		
Nickle (60)	0.05	0.85	0.64 (±0.01)
Copper (65)	0.05	1.85	1.37 (±0.03)
Zinc (66)	0.5	28.8 (±1.5)	17 (±1)
Arsenic (75)	0.5		
Selenium (82)	0.03		
Molybdenum (95)	0.1		
Silver (107)	1		
Cadmium (111)	0.05	0.13 (±0.01)	0.08 (±0.002)
Antimony (121)	0.05		
Barium (137)	10	10.6 (±0.6)	8.58 (±0.2)
Thallium (205)	0.05		

Supplementary Table 1. Method limits of detection, and concentration of pine-certified reference material values compared with six replicate analysis of the CRM

Lead (208)	0.05	1.1	0.87 (±0.02)
Thorium (232)	0.5		
Uranium (238)	0.05		