Supplementary Materials

Quantification of microplastics in biowastes including biosolids, compost, and vermicompost destined for land application

Helena Ruffell¹, Olga Pantos², Brett Robinson¹, Sally Gaw¹

¹School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.

²Institute of Environmental Science and Research, Christchurch 8041, New Zealand.

Correspondence to: Dr. Helena Ruffell, School of Physical and Chemical Sciences, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch 8041, New Zealand. Email: <u>hcr38@uclive.ac.nz</u>

Contents

Table S1. Summary of previous studies of microplastics in biosolids from 2018 - 2023 Table S2. Summary of previous studies of microplastics in compost from 2018 - 2023 Section S1. Sampling facility information Section S2. Detailed sample collection procedure Section S3. Spectral tests of reference polymers before and after drying at 75°C Section S4. Criteria for suspected microplastics and example photographs of suspected microplastics in a biosolid sample Section S5. FTIR spectral libraries Section S6. Spectral tests of reference polymers before and after WPO Section S7. Spiked recoveries Section S8. Example µ-FTIR spectra of microplastics found in biowaste samples Section S9. Equations for the estimation of microplastic contamination to soil from amendment application Figure S1. Average abundance of microplastics in each biowaste sample type per g of dried sample Figure S2. Average abundance of microplastics at each biowaste facility/brand per g of dried sample Figure S3. Average morphotype proportion of microplastics at each biowaste facility/brand

Figure S4. Average polymer type proportion of microplastics at each biowaste facility/brand

Figure S5. Average microplastics size distribution between sample types

Figure S6. Average microplastic colour proportion between sample types

Table S3. Average microplastic morphotype proportion and mean abundance in biowaste

 from each facility/brand

Table S4. Average microplastic polymer type proportion in biowaste from each facility/brand

Table S5. Average size distribution proportion of microplastics in biowaste from each facility/brand

Table S6. Average microplastic colour proportion in biowaste from each facility/brand

	Sample mass (g. Brief extraction			Size		Common	Abundance	
Location	mass (g,	Brief extraction	Analysis	range,	Common	nolymer	(MP/g dry	Rafaranca
Location	dry	method	method	lower size	morphotype	tyne	(WII / g UI y weight)	iterer enec
	weight)			limit (µm)		type	weight)	
		Digestion with			Fragment	PP 29.3%,		
	30	Fentons, density	Vigual 100%	25	60.7% fibros	PE 26.3%,	Λ vorage 2.71	
New Zealand		separation with	particles μ- FTIR		22.1% films	PMMA	Average 2.71 ,	This study
		water, followed by			16 4% boods	16.2%, PET	1 ange 0.90-	This study
		density separation			10.4%, beads	13.1%, PU	4.94	
		with 1.8 g cm ⁻³ NaI			0.870	6.3%		
		Digestion with	I DIR of					
		Fentons, enzymatic	LDIK OI		Fragment			
	5 (mat	digestion, density	particles $20 =$		718gment	DET and DU	Damas 11 1	Zicichacami
Australia	J (wet	separation with	500 μIII, ATK-	20	58.5-55.770,	$r \ge 1$ and $r \cup$	150	$\sum_{i=1}^{n} a_{i} (2024)$
	weight)	water, followed by	FTIR IOF		11bres 44.5-	24.3-80.9%	130	<i>el al.</i> (2024)
		NaI (1.8 g cm ⁻³)	particles 500 –		61.5.			
		via centrifugation	3000 μm					

 Table S1. Summary of previous studies on the presence of microplastics in biosolids from 2018-2023

Location	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Size range, lower size limit (µm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
USA	5	Digestion with Fenton's, density separation with NaCl (1.17 g cm ⁻³) and ZnBr2 (1.72 g cm ⁻³) via centrifugation	Visual subsample of 20% (n = 27) <300 μm for ATR-FTIR	300	Fragment 44%, Fibres 39%, Films 10%, bead 5%, foam 2%	PE 34%, PET 17%, PP 13%	Average 9.1	Naderi Beni et al. (2023)
Canada	~1	Digestion with 30% H ₂ O ₂	Visual	80 (filter)	Fibres 86%, fragments 13% (median)	NA PET 42%.	Median 636, range 228- 1353	Sivarajah <i>et</i> al. (2023)
Australia	10	Digestion with Fentons, density separation with $ZnCl_2$ (1.6 g cm ⁻³)	Visual, μ- FTIR	20	Fibres 74%, Fragment 26%	PE 20%, PA 17%, PVC 10%, PP 8%, PMMA 4%	Average 63.8, range 55.4- 73.8	Rezaei Rashti <i>et al.</i> (2023)

Location	Sample mass (g, dry	Brief extraction method	Analysis method	Size range, lower size	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
	weight)	Digestion with	Visual, subsample	limit (µm)	Fragments	PET 40%,	Average 70,	Harley-
United Kingdom	0.2	Fentons, density separation with $ZnCl_2(1.5 \text{ g cm}^{-3})$	between 40- 61% for μ- FTIR	50	57.5%, fibres 42.5%	PVA 14%, PE 13%	range 37.7- 97.2	Nyang <i>et al</i> . (2022)
Australia	4-20	Digestion with 30% H ₂ O ₂ , density separation with NaI (1.59 g cm ⁻³) via centrifugation	Visual with dye staining and $10 - 20\%$ subsample for ATR-FTIR (> 500 μ m) and μ -FTIR (25 - 500 μ m)	25	Fibres 89%, fragments 11%	PET majority	Average 52, range 48.5- 56.5	Ziajahromi <i>et al.</i> (2021)

Location	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Size range, lower size limit (μm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
Mauritius	20 (wet)	Density separation with NaCl (1.2 g cm ⁻³), supernatant digested with 30% H_2O_2	Visual, subsample of ~10% >500 µm for ATR- FTIR	250	Fibres 84%, foam 8%, fragments 6%, spheres 2%	Cotton-PA 88.85%, PE 2.77%, EVA 1.66%	Range 2.2- 11.3	Ragoobur <i>et</i> <i>al.</i> (2021)
Spain	3	Density separation with water and NaI (1.7 g cm ⁻³) via centrifugation	Visual, subsample of 5 particles for μ- FTIR	50	Fragments > fibres > films	3 PP, 2 PVC	Light density average 18, heavy density 32 (total 50)	van den Berg <i>et al.</i> (2020)
Spain	1 (wet sludge and dry pellets)	Digestion with 33% H ₂ O ₂ , density separation with NaCl (1.2 g cm ⁻³)	v isual, subsample of 172 particles (wastewater and sludge) for µ-FTIR	36	Fibres > fragments	PET > PMMA	133 wet sludge, 101 dry pellets	Edo <i>et al.</i> (2020)

Location	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Size range, lower size limit (µm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
Canada	10 cm ³ (wet)	Digestion with Fentons, density separation with water and NaI (1.8 g cm ⁻³)	Visual, >300 μm ATR- FTIR, <300 μm μ-FTIR	50	Fragments between 63- 73%	PE 43%, PP 20%, PET 17%	Average 11.5, range 8.7- 14.4	Crossman <i>et</i> <i>al.</i> (2020)
Italy	50 mL (wet)	Density separation with NaCl (1.2 g cm ⁻³), supernatant digested with 15% H_2O_2	Visual, ATR- μ-FTIR	65	Fragments 53%, fibres 47%	ABS 27%, PE 18%, PET 15%	113	Magni <i>et al.</i> (2019)
China	10	Density separation with water, NaCl, and NaI via centrifugation, supernatant digested with 30% H ₂ O ₂	Visual, subsample of 158 MPs by Raman	60	Fragment > bead > fibre	PA 78%, PP 14%, PE 5%	240	Liu <i>et al.</i> (2019)

Location	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Size range, lower size limit (μm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
China	20 (wet)	Density separation with NaCl (1.2 g cm ⁻³), supernatant digested with 30% H_2O_2	Visual, 10% subsample by µ-FTIR	37	Fibres 62.5%, shaft 14.9%, film 14%, flake 7.3%, sphere 1.3%	PP, PMMA, PE, PA	Average 22.7, range 1.6- 56.4	Li <i>et al.</i> (2018)
Canada	5 (wet)	Digestion with 30% H ₂ O ₂ and density separation with canola oil	Visual	100	Fibres 81.1%, fragments 20.9%	NA	Average 4.4	Gies <i>et al.</i> (2018)

*References in order of appearance:

Ziajahromi S, Slynkova N, Dwyer J, Griffith M, Fernandes M, Jaeger JE, et al. Comprehensive assessment of microplastics in Australian biosolids: Abundance, seasonal variation and potential transport to agroecosystems. *Water Research* 2024;250:121071.

Naderi Beni N, Karimifard S, Gilley J, Messer T, Schmidt A, Bartelt-Hunt S. Higher concentrations of microplastics in runoff from biosolidamended croplands than manure-amended croplands. *Communications Earth & Environment* 2023;4:42.

Sivarajah B, Lapen DR, Gewurtz SB, Smyth SA, Provencher JF, Vermaire JC. How many microplastic particles are present in Canadian biosolids? Wiley Online Library, 2023.

Rezaei Rashti M, Hintz J, Esfandbod M, Bahadori M, Lan Z, Chen C. Detecting microplastics in organic-rich materials and their potential risks to earthworms in agroecosystems. *Waste Management* 2023;166:96-103.

Harley-Nyang D, Memon FA, Jones N, Galloway T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. *Science of the Total Environment* 2022;823:153735.

Ziajahromi S, Neale PA, Telles Silveira I, Chua A, Leusch FDL. An audit of microplastic abundance throughout three Australian wastewater treatment plants. *Chemosphere* 2021;263:128294.

Ragoobur D, Huerta-Lwanga E, Somaroo GD. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. *Science of The Total Environment* 2021:149326.

van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. *Environmental Pollution* 2020;261:114198.

Edo C, González-Pleiter M, Leganés F, Fernández-Piñas F, Rosal R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. *Environmental Pollution* 2020;259:113837.

Crossman J, Hurley RR, Futter M, Nizzetto L. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. *Science of The Total Environment* 2020:138334.

Magni S, Binelli A, Pittura L, Avio CG, Della Torre C, Parenti CC, et al. The fate of microplastics in an Italian Wastewater Treatment Plant. *Science of the Total Environment* 2019; 652:602-610.

Liu X, Yuan W, Di M, Li Z, Wang J. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. *Chemical Engineering Journal* 2019; 362:176-182.

Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, et al. Microplastics in sewage sludge from the wastewater treatment plants in China. *Water research* 2018; 142: 75-85.

Gies EA, LeNoble JL, Noël M, Etemadifar A, Bishay F, Hall ER, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. *Marine pollution bulletin* 2018; 133: 553-561.

Location	Feedstocks	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Lower size limit (µm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
New Zealand	VC: food waste, green waste, biosolids, industry processing waste BC: residential and commercial food waste, green waste, paper. BD: livestock manure, bark mulch, green	30	Digestion with Fentons, density separation with water, followed by density separation with 1.8 g cm ⁻³ NaI	Visual, 100% particles µ- FTIR	18	VC: Fragments 59.3%, films 28.9%, fibres 11.4%, beads 0.4% BC: fragments 59.2%, films 34.5%, fibres 9.1% BD: fragments 71.5%, films 24.7%,	VC: PP 47.5%, PE 24.0%, PMMA 13.1% BC: PP 32.7%, PE 27.7%, PMMA 10.3% BD: PP 37.9%, PE 28.6%,	VC: average 2.69, range 0.52-6.92 BC: average 1.94, range 1.06-2.99 BD: average 1.1, range 0.48-2.61	This study

 Table S2. Summary of previous studies on the presence of microplastics in compost from 2018-2023

Location	Feedstocks	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Lower size limit (µm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
	waste					fibres 12.2%,	PMMA 11.7%		
China	Livestock manure, bacterial residues, crop processing waste	20	Density separation with NaCl (1.2 $g cm^{-3}$) and ZnCl ₂ (1.55 g cm ⁻³). Supernatant digested with 30% H ₂ O ₂ and 2 mol/L HCl	Visual, 10 particles selected for µ-FTIR analysis	20	Film 39%,fibre 30%,fragment29%, foam2%	PE, PP, PVC, PET	Average 0.33, range 0-2.55	Zhang <i>et al.</i> (2022)
Germany	Municipal green waste, biowaste	200	Density separation with ZnCl ₂ (1.8 g cm ⁻³)	Visual	0.3 (filter)	Fragments 68-91%, fibres 5- 13%	NA	Average 0.028, range 0.012-0.046	Braun <i>et al.</i> (2021)

Location	Feedstocks	Sample mass (g, dry weight)	Brief extraction method	Analysis method	Lower size limit (µm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
Spain	Residential and commercial green waste and food waste, agricultural waste, wood processing waste	30	Digestion with 30% H_2O_2 , density separation with ZnCl ₂ (1.7 g cm ⁻³)	Visual, 15% subsample for ATR- FTIR and µ- FTIR	25 (filter)	Fibres 42.7%, fragments 31.2%, films 22.1%, filaments 3.9%	PE > PS > PET > PP > PVC > PMMA	Range 5-20	Edo <i>et al.</i> (2021)
China Lithuania	Rural domestic waste Municipal green waste	5 10-20	Digestion with 30% H ₂ O ₂ , density separation with NaCl (1.2 g cm ⁻³) Digestion with Fentons,	Visual, 21% subsample for ATR-µ- FTIR Visual, 1- 5mm FTIR,	50 50	Fibres > films Films 47.6%,	PET, PP, PE 70- 80% of total PE 42.7%, PP	Average 2.4 Average range: SOW	Gui <i>et al.</i> (2021) Sholokhova <i>et al.</i> (2021)

		Sample	Derief		Lower		C	A.h	
Location	Feedstocks	mass (g, dry weight)	Brief extraction method	Analysis method	size limit (µm)	Common morphotype	Common polymer type	Abundance (MP/g dry weight)	Reference
	(GW), food		density	<1mm		fragments	31%, PS	46-62, FW	
	waste (FW),		separation	stained with		33.6%,	14.7%,	13-15, GW	
	stabilised		with CHKO ₂	Nile Red and		undefined	PET 5.3%	11-13	
	organic waste		(1.5 g cm^{-3})	visual		6.7%,			
	(SOW)			analysis by		spheres			
				fluorescent		6.6%, fibres			
				microscope		5.5%			
The Netherlands	Municipal waste and green waste	5	Density separation with water via centrifugation	Visual, 5 particles selected for ATR-FTIR	30	NS	NS	Average 2	van Schothorst <i>et</i> <i>al.</i> (2021)
Germany	Municipal waste and green waste	0.75-3 L volume (mass not specified)	Wet-sieved 5, 2, 1, 0.5 mm	Visual, ATR-FTIR	1000	Fragments > fibres > beads	Styrene- based > PE	Plant A (aerobic): 0.02-0.024; Plant B (anaerobic): 0.014-0.146	Weithmann et al. (2018)

VC= vermicompost, BC = bulk compost, BD = bagged compost

References in order of appearance:

Zhang S, Li Y, Chen X, Jiang X, Li J, Yang L, et al. Occurrence and distribution of microplastics in organic fertilizers in China. *Science of The Total Environment* 2022; 844: 157061.

Braun M, Mail M, Heyse R, Amelung W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. *Science of The Total Environment* 2021; 760: 143335.

Edo C, Fernández-Piñas F, Rosal R. Microplastics identification and quantification in the composted Organic Fraction of Municipal Solid Waste. *Science of The Total Environment* 2021: 151902.

Gui J, Sun Y, Wang J, Chen X, Zhang S, Wu D. Microplastics in composting of rural domestic waste: abundance, characteristics, and release from the surface of macroplastics. *Environmental Pollution* 2021; 274: 116553.

Sholokhova A, Ceponkus J, Sablinskas V, Denafas G. Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania. *Environmental Science and Pollution Research* 2021: 1-10.

van Schothorst B, Beriot N, Huerta Lwanga E, Geissen V. Sources of light density microplastic related to two agricultural practices: the use of compost and plastic mulch. *Environments* 2021; 8: 36.

Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. *Science Advances* 2018; 4: eaap8060.

Section S1. Sampling facility information

All samples were collected from facilities around Aotearoa New Zealand. Limited information is presented as the samples were collected under a condition of anonymity. All samples are the mature product.

Biosolids

The final treated product before it leaves the WWTP.

Table A1.1. Sampling facility information including basic WWTP treatment procedure and final biosolids destination

Facility	Basic treatment (WW and biosolids)	Product destination		
1	WW: influent is screened, primary and secondary treatment with tertiary maturation ponds. Sludge: anaerobic digestion.	Land disposal (not rehabilitation)		
	WW: influent is screened, primary and secondary			
2	treatment, tertiary maturation ponds. Sludge:	Land rehabilitation and		
2	anaerobic digestion and polymer assisted	composting		
	flocculation, dewatering.			
3	WW: influent is screened, SBR treatment. Sludge:	Vermicomposting		
5	Polymer assisted flocculation and dewatered.	venincomposting		
	WW: influent is screened, primary and secondary			
4	treatment, with tertiary UV. Sludge: anaerobic	Vermicomposting		
	diegstion and dewatered.			
	WW: influent is screened, primary and secondary			
5	treatment, with tertiary UV. Sludge: polymer	T and ush shilitation		
5	assisted flocculation, anaerobic digestion and	Land renabilitation		
	dewatered.			

Vermicompost

All vermicompost facilities treated their samples by vermicomposting for between 6-18 months. Limited vermicomposting facilities exist in New Zealand, and as a result specific timeframes are not provided along with specific feedstocks to ensure confidentiality. Feedstocks used by vermicomposting facilities include green waste, organic waste

(foodscraps), biosolids, dairy shed waste, dairy processing waste, paper processing waste, septic tank waste, oxidation pond waste, and livestock freezing works waste. The number of different feedstocks used by each facility is provided in the table below.

Facility	Number of different feedstocks used	Are bioplastics accepted?	Is plastic removed manually?	Final product destination and land use
1	Three	Yes, unsure what kinds	Only large pieces	Agriculture and landscaping
2	Two	No	By screening	Agriculture and horticulture
3	No response to ques	stionaire		
4	Four	No	By screening	Agriculture, horticulture, landscaping
5	Two	No	By screening	Agriculture, horticulture, landscaping

Table A1.2. Sampling facility information including number of feedstocks, bioplastics acceptance, manual removal of plastic, and final product destination.

Bulk compost

Table A1.3. Sampling facility information including feedstocks, treatment processes, bioplastic acceptance, manual plastic removal, and final product destination

Facility	Feedstock	Treatment processes	Are bioplastics accepted?	Is plastic removed manually?	Final product destination and land use
1	Food and green waste	Hot compost, 12 weeks	Yes, certified compostable packaging	No	Horticulture
2	Food, green	Hot compost,	Yes – food	Yes by spot	Market

	waste, paper	3-6 months	waste liners,	picking and	garden
			certified	screening	
			compostable		
			packaging		
3	Food and green waste	Hot compost, 3.5 months	No	Yes	Residential, commercial, rural
4	Food, green waste, paper, compostable packaging	Hot compost, 4-6 months	Yes – PLA packaging	Yes	Market garden
5	Food, green waste, paper	Hot compost, 3+ months	Yes – PLA packaging	Yes by visual assessment	Market garden

Bagged compost

The brand names were omitted due to privacy reasons.

T 11 11 1 D	1 .1 1	0 1 . 1 1	1	1 •
Table A L 4 Ragge	d compost brand	teedstocks as stated	on the product	nackaging
Tuble III. H. Dugge	a composi orana	Teedstoeks as stated	on the product	packaging.

Brand number	Feedstocks
1	Sheep manure, blood and bone, gypsum, fine bark material
2	Chicken manure, blood and bone, gypsum, bioinoculant granules
3	Green waste
4	Bark mulch, sawdust, pig and sheep manure
5	Green waste, bark mulch, manure

Section S2. Detailed sample collection procedure

Sample kits were sent to facilities around New Zealand. All equipment in sampling kits were pre-cleaned following the method in Section 2. The sampling kits contained 1x empty 1 L glass jar with lid (for field control), 3 empty 1 L glass jars with lids for the samples, an additional 1 L glass jar with lid for a sample from a reference site for soil samples, and a stainless-steel spoon to collect the samples with. Paper towels were included, and the sampler was instructed to wipe the sampling spoon with paper towels between each sample jar collection. The sampler was instructed to firstly adhere to their facilities personal protective

equipment (PPE) requirements while on site collecting samples. Nitrile gloves and a N95 face mask were also provided in the sampling kit. The sampler was instructed to reduce the instance of sample contamination as much as possible by reducing the instance of synthetic clothing if possible and to wear disposable nitrile gloves while handling the samples. The samplers were instructed to open the empty control jar just prior to collecting a sample, and to replace the lid on the control jar between sample collections. The field control was an attempt to account for any airborne microplastics which may originate from the sampler, the facility, and from other sources.

After seeking advice from an environmental statistician, the samplers were instructed to collect replicate samples in the following manner. It was recommended that in the instance where the final product was present as a pile or windrow, the three jars of sample would be collected from the same pile/windrow, to determine the variation within a pile and produce a relevant sample. The samples were to be collected from the middle height of the pile, with the top layer scraped off. Collecting from different piles would introduce uncertainties with the variation between the piles, where there may be differences in maturation time or sample treatment to name a few. For bulk compost and vermicompost, the sampler was instructed to randomly select one pile/windrow of mature compost and take the sample from each jar at different sections of the pile. For biosolids, there is generally only one available pile at the WWTPs as they are frequently shipped off-site for land application and do not need to be stored for maturation onsite like many composts do, and so were instructed to collect each jar from different sections of the same biosolids pile. For collecting samples of soil irrigated with effluent, the samplers were first instructed to collect a reference sample in one of the jars, which was the topsoil (with any grass/plant material scraped off, up to 10 cm depth) of an area nearby with no history of effluent application. The sample jars were collected in areas randomly chosen across the irrigation field, in areas directly receiving treated effluent, with the grass scraped off and the topsoil collected. The sampler was instructed to close the jar lids very tightly after sample collection, and to place the jars into a snaplock bag in the instance of a spill during transit. On arrival, the sample kits were stored at 4°C until drying of the samples.

Health and safety

Advice from microbiologists was sought about minimising the risk of exposure to *Legionella* species while handling solid biowastes, particularly composts. Recommended advice for the

collection of compost samples included the sampler wearing appropriate PPE (disposable nitrile gloves, N95 face mask) and sampling into a glass jar which can be sealed tightly. The fresh samples were to be stored at 4°C in a sealed container until oven-drying. *Legionella* species do not survive at temperatures past 70°C (Pascale *et al.*, 2022). Oven-drying of biowaste samples at 70-90°C for 3-4 days was recommended. Digestion of oven-dried samples with hydrogen peroxide was said to also reduce the viability of *Legionella* species. Biowaste samples were handled at all times with nitrile gloves and wearing of an N95 face mask. Biowaste samples were oven dried in a pre-heated oven, at the University glasshouse to minimise the risk of inhaling aerosolised *Legionella* species. All sampling equipment was thoroughly sprayed down after sampling with 70% ethanol and bagged. Upon returning to the laboratory, sampling equipment was washed in Decon90 to avoid transmission of *Legionella* species.

Section S3. Spectral tests of reference polymers before and after drying at 75°C.

The polymers above were heated in the oven at 75°C for four days. 1x each fragment in size (500-1000 μ m) of PET, PVC, HIPS, PP, ABS, HDPE, PA. Spectra are below. No major spectral changes were observed and the temperature was deemed acceptable.

HDPE: Black = before, red = after

ABS: Black = before, red = after

HIPS: Black = before, red = after

PA: Black = before, red = after

PET: Black = before, red = after

PVC: Black = before, red = after

Section S4. Criteria for suspected microplastics and example photographs of suspected microplastics in a biosolid sample

Criteria for suspected microplastics follows Rochman *et al.* (2019) as a guide. The following criteria were incorporated: particles of diverse shapes and colours; flexible fibres with cleancut, pointed, or frayed ends; irregular shaped fragments of rigid structure; spheres with smooth surfaces; thin, flat, malleable films; and soft, compressible foams. It was observed that a number of confirmed microplastics in this study did not fit the criteria specified by Rochman *et al.* (2019), highlighting the ubiquity of microplastics characteristics and importance of polymer confirmation of all suspected microplastics.

B5 Jar 1 ultra-pure water density separation suspected microplastics

B5 Jar 1 NaI density separation microplastics

Section S5. FTIR spectral libraries

All μ-FTIR spectra were analysed against Wiley KnowItAll Informatics System spectral library database (Version 20.1.210.0) with the following libraries:

ATR-IR - Sadtler Plasticizers - Wiley; ATR-IR - Sadtler Polymers & Monomers (Basic) 2 -Wiley; ATR-IR – Sadtler Polymers & Monomers (Basic) 3 – Wiley; ATR-IR – Sadtler Polymers & Monomers (Basic) 4 - Wiley; ATR-IR - Sadtler Polymers - Wiley; IR -Automobile Paint Chips; IR – Microplastics Classifications – Wiley; IR – Polymer Additives, Hummel Industrial – Wiley; IR – Polymers, Hummel Defined – Wiley; IR – Polymers, Hummel Defined Basic – Wiley; IR – Polymers, Hummel Industrial – Wiley; IR – Polymers, Hummel Industrial Monomers – Wiley; IR – Polymers, Hummel Industrial Polymers – Wiley; IR – Sadtler Acrylates & Methacrylates – Wiley; IR – Sadtler Adhesives & Sealants (Subset) - Wiley; IR - Sadtler Adhesives & Sealants - Wiley; IR - Sadtler Coating Chemicals (Revised) – Wiley; IR – Sadtler Coating Chemicals (Revised) – Wiley; IR - Sadtler Coating Chemicals – Wiley; IR – Sadtler Epoxy Resins, Curing Agents & Additives – Wiley; IR – Sadtler Fibers & Textile Chemicals – Wiley; IR – Sadtler Fibers by Microscope – Wiley; IR - Sadtler Plasticizers - Wiley; IR - Sadtler Polymer Additives (Revised) - Wiley; IR -Sadtler Polymer Additives - Wiley; IR - Sadtler Polymeric Compounds - Wiley; IR -Sadtler Polymers & Monomers (Basic) 1 - Wiley; IR - Sadtler Polymers & Monomers (Basic) 2 – Wiley; IR – Sadtler Polymers & Monomers (Basic) 3 – Wiley; IR – Sadtler Polymers & Monomers (Comprehensive) - Wiley; IR - Sadtler Polymers & Monomers (Subset) 1 – Wiley; IR – Sadtler Polymers & Monomers (Subset) 2 – Wiley; IR – Sadtler Polymers, Controlled Pyrolyzates – Wiley; IR – Sadtler Polymers, Hummel – Wiley.

Section S6. Spectral tests of reference polymers before and after WPO

1x each fragment in size (500-1000 μ m) of PET, PVC, HIPS, PP, ABS, HDPE, PA. After digest, the polymers were recovered, rinsed with ultra-pure water, and dried with a paper towel. The particles were checked by ATR-FTIR (Bruker Alpha II) for any spectral differences. No major spectral changes were observed and the method was deemed acceptable.

HDPE: Black = before, blue = after

ABS: black = before, blue = after

HIPS: black = before, red = after

PA: black = before, blue = after

PET: black = before, blue = after

PP: black = before, blue = after

PVC: black = before, blue = after

Section S7. Spiked recoveries

Thermally dried biosolids were collected from a local WWTP, and silt loam topsoil and bagged compost was purchased from a local garden centre. All samples were dried at 75°C, and only soil and bagged compost were sieved < 2mm. Three x 30 g of biosolids, soil, and bagged compost were spiked with: 1x each fragment in size (500-1000 μ m) of PET, PVC, HIPS, PP, ABS, HDPE, PA; 10x blue PE microbeads (between 100 – 500 μ m), 10 x purple acrylic fibres (approximately 1 mm in length). The microbeads were sourced from a facial cleanser and the fibres were created from a ball of acrylic yarn purchased from a craft store. These plastics were added to the beaker with the dry samples prior to digestion. These samples followed the digestion and density separation procedures as described earlier.

Results of the spiked recoveries:

Biosolids

Sample 1: all reference fragments 7/7, 9/10 microbeads, 9/10 fibres =100%, 90%, 90% = average of 93% Sample 2: all reference fragments 7/7, 10/10 microbeads, 10/10 fibres =100%, 100%, 90% = average of 100% Sample 3: all reference fragments 7/7, 9/10 microbeads, 9/10 fibres = 100%, 90%, 90% = average of 93% Total average: 95%

Soil

Sample 1: all reference fragments 7/7, 10/10 microbeads, 10/10 fibres =100%, 100%, 100% = average of 100% Sample 2: all reference fragments 7/7, 10/10 microbeads, 9/10 fibres = 100%, 100%, 90% = average of 97% Sample 3: all reference fragments 7/7, 9/10 microbeads, 10/10 fibres = 100%, 90%, 100% = average of 97% Total average: 98%

Bagged compost

Sample 1: all reference fragments 7/7, 9/10 microbeads, 8/10 fibres = 100%, 90%, 80% = average of 90% Sample 2: all reference fragments 7/7, 10/10 microbeads, 8/10 fibres = 100%, 100%, 80% = average of 93% Sample 3: all reference fragments 7/7, 9/10 microbeads, 9/10 fibres = 100%, 90%, 90% = average of 93% Total average: 92%

Section S8. Example μ -FTIR spectra of microplastics found in biowaste samples

Red = library match Black = environmental microplastic spectrum

Section S9. Equations for the estimation of microplastic contamination to soil from amendment application

Equation 1: estimation of microplastic particles applied onto land with the amendment (particles/ha).

MP loading in amendment

```
= (concentration of MP in amendment) × (application rate)
× (conversion of units from g to tonne)
```

Where concentration of MP in amendment is in the units MP/g, application rate is 10 tonnes/ha, and the conversion of units from g to tonne is 1000000.

Equation 2: increase of concentration of microplastics in topsoil per application of amendment (particles/kg).

```
[MP in topsoil]increase per application of amendment
= (MP loading in amendment) ÷ ((soil mass)
× (conversion of units from tonne to kg))
```

Where soil mass (t/ha) is equivalent to a soil depth of 0.15 m and density of 1.3 kg/m³. Conversion of units (particles/t to particles/kg) is 1000.

Note: Scale bars are standard error

Figure S2. Average abundance of microplastics at each biowaste facility/brand per g of dried sample

Note: Scale bars are standard error

Fragment Fibre Film Bead

Figure S4. Average polymer type proportion of microplastics at each biowaste facility/brand

* Other includes: PC, PTFE, silicone, epoxy resin, ABS, SAN, EPM, EVOH, SBR, NBR, PLA, PBAT, PCL, PVM/MA

Figure S5. Average microplastics size distribution between sample types

Figure S6. Average microplastic colour proportion between sample types

Facility/brand	Fragmont (%)	$\mathbf{Fibro}(0/1)$	Film (%)	Boad (%)	Mean abundance	Mean standard
Facility/Drand	rragment (70)	F1010 (70)	FIIII (70)	Deau (70)	(MP/g)	error
Biosolids 1	55.1	39.8	4.5	0.6	1.73	0.18
Biosolids 2	60.7	11.2	27.7	0.3	3.17	0.12
Biosolids 3	49.4	34.6	14.8	1.2	0.90	0.06
Biosolids 4	80.2	13.4	5.5	0.8	2.81	0.24
Biosolids 5	58.2	11.5	29.2	1.1	4.94	0.33
Vermicompost 1	68.5	5.6	25.9	0.0	1.20	0.08
Vermicompost 2	67.6	22.4	8.2	1.8	2.43	0.29
Vermicompost 3	70.3	2.4	27.4	0.0	2.36	0.28
Vermicompost 4	28.3	12.0	59.4	0.3	6.92	1.70
Vermicompost 5	61.7	14.9	23.4	0.0	0.52	0.05
Bulk compost 1	72.3	5.4	22.3	0.0	1.64	0.08
Bulk compost 2	49.5	3.2	47.4	0.0	1.06	0.04
Bulk compost 3	73.6	5.7	20.8	0.0	1.77	0.09
Bulk compost 4	41.7	5.4	52.9	0.0	2.27	0.08
Bulk compost 5	59.1	11.9	29.0	0.0	2.99	0.28
Bagged compost 1	70.9	10.7	18.4	0.0	1.14	0.16
Bagged compost 2	60.5	2.3	37.2	0.0	0.48	0.10
Bagged compost 3	52.8	13.2	33.6	0.4	2.61	0.29

Table S3. Average microplastic morphotype proportion and mean abundance in biowaste from each facility/brand

Bagged compost 4	77.6	14.9	6.0	1.5	0.74	0.15
Bagged compost 5	95.6	4.4	0.0	0.0	0.51	0.11

Facility/brand	Polya mide (%)	Polyethylene terephthalate (%)	Polyethylene (%)	Polymethyl methacryla te (%)	Polypropyle ne (%)	Polystyr ene (%)	Polyvinyl chloride (%)	Polyuretha ne (%)	Other (%)	Total (%)
Biosolids 1	2.6	10.9	25.0	18.6	19.2	1.3	9.6	10.9	1.9	100.0
Biosolids 2	1.4	5.6	30.5	11.2	37.5	4.6	0.0	7.0	2.1	100.0
Biosolids 3	0.0	23.4	28.4	13.6	32.1	0.0	1.2	1.2	0.0	100.0
Biosolids 4	0.8	18.6	21.7	14.2	30.0	2.8	0.0	5.5	6.3	100.0
Biosolids 5	0.5	6.7	25.8	23.1	27.4	2.9	0.9	7.0	5.6	100.0
Vermicompost 1	0.9	4.6	21.3	4.6	61.1	1.9	0.0	1.9	3.7	100.0
Vermicompost 2	1.4	5.9	22.4	14.6	43.0	1.7	0.9	1.8	8.2	100.0
Vermicompost 3	0.0	0.9	28.8	1.9	56.1	8.5	1.4	0.0	2.4	100.0
Vermicompost 4	1.1	13.8	9.0	42.1	24.2	2.9	2.9	2.4	1.6	100.0
Vermicompost 5	0.0	2.1	38.3	2.1	53.2	0.0	0.0	0.0	4.3	100.0
Bulk compost 1	2.0	17.6	28.4	3.4	34.5	2.0	0.0	0.0	12.2	100.0
Bulk compost 2	5.3	5.3	7.4	36.8	1.0	24.2	1.0	4.2	14.7	100.0
Bulk compost 3	0.6	1.3	38.4	3.2	51.6	1.9	0.6	0.0	2.5	100.0
Bulk compost 4	0.5	13.2	21.6	6.4	26.5	6.4	2.0	4.4	19.1	100.0

Table S4. Average microplastic polymer type proportion in biowaste from each facility/brand

Bulk compost 5	0.0	0.4	42.8	1.9	49.8	3.7	0.4	0.4	0.7	100.0
Bagged compost 1	0.0	2.0	51.5	2.9	37.9	2.0	0.0	0.0	3.9	100.0
Bagged compost 2	0.0	0.0	18.6	7.0	55.8	2.3	0.0	0.0	16.3	100.0
Bagged compost 3	0.4	1.3	40.4	3.0	48.1	4.7	0.0	0.9	1.3	100.0
Bagged compost 4	1.5	3.0	16.4	19.4	38.8	6.0	0.0	4.5	10.4	100.0
Bagged compost 5	4.4	0.0	54.3	4.4	30.5	2.2	0.0	2.2	2.2	100.0
Average	1.2	6.8	28.6	11.7	37.9	4.1	1.0	2.7	6.0	100.0

* Other includes: PC, PTFE, silicone, epoxy resin, ABS, SAN, EPM, EVOH, SBR, NBR, PLA, PBAT, PCL, PVM/MA

Facility/brand	0 - 100 μm	100 - 300 μm	300 - 500 μm	500 - 1000 μm	> 1000 µm (%)	Total (%)
	(%)	(%)	(%)	(%)		
Biosolids 1	4.5	20.5	20.5	25.0	29.5	100.0
Biosolids 2	4.9	30.2	26.3	26.3	12.3	100.0
Biosolids 3	12.3	29.6	18.5	19.8	19.8	100.0
Biosolids 4	1.6	28.5	30.8	25.7	13.4	100.0
Biosolids 5	1.1	26.5	33.0	29.0	10.3	100.0
Vermicompost 1	2.8	38.9	23.1	18.5	16.7	100.0
Vermicompost 2	3.7	40.6	25.6	19.6	10.5	100.0
Vermicompost 3	0.0	3.8	13.2	29.7	53.3	100.0

Table S5. Average size distribution proportion of microplastics in biowaste from each facility/brand

Vermicompost 4	1.1	20.7	27.3	24.2	26.6	100.0
Vermicompost 5	2.1	36.2	8.5	25.5	27.7	100.0
Bulk compost 1	14.2	38.5	8.1	14.2	25.0	100.0
Bulk compost 2	31.6	55.8	7.4	2.1	3.2	100.0
Bulk compost 3	2.5	29.6	25.8	19.5	22.6	100.0
Bulk compost 4	2.9	23.5	17.6	30.9	25.0	100.0
Bulk compost 5	5.2	40.1	22.3	17.1	15.2	100.0
Bagged compost 1	6.8	34.0	18.4	24.3	16.5	100.0
Bagged compost 2	7.0	32.6	25.6	25.6	9.3	100.0
Bagged compost 3	3.0	33.2	19.6	18.7	25.5	100.0
Bagged compost 4	6.0	52.2	19.4	16.4	6.0	100.0
Bagged compost 5	8.7	54.3	21.7	8.7	6.5	100.0
Average	6.1	33.5	20.6	21.0	18.7	100.0

Table S6. Average microplastic colour proportion in biowaste from each facility/brand

Facility/bran d	Re d (%)	Orang e (%)	Yello w (%)	Gree n (%)	Blu e (%)	Purpl e (%)	Pin k (%)	Gre y (%)	Brow n (%)	Blac k (%)	Whit e (%)	Colourles s (%)	Multicoloure d (%)	Total (%)
Biosolids 1	19. 9	1.9	0.6	19.2	37.2	2.6	4.5	0.0	0.0	0.6	3.2	10.3	0.0	100.0

Biosolids 2	2.5	1.4	3.5	21.8	41.8	2.1	12.3	2.1	0.0	1.4	0.0	10.5	0.7	100.0
Biosolids 3	13. 6	0.0	3.7	14.8	46.9	1.2	2.5	4.9	0.0	0.0	0.0	9.9	2.5	100.0
Biosolids 4	4.7	4.0	2.4	27.7	32.0	1.6	16.2	5.1	0.0	1.2	0.8	4.0	0.4	100.0
Biosolids 5	5.8	0.9	7.2	20.7	31.5	1.3	10.6	1.6	0.0	0.9	2.5	9.0	8.1	100.0
Vermicompost 1	4.6	5.6	2.8	21.3	28.7	0.9	10.2	2.8	0.0	8.3	5.6	8.3	0.9	100.0
Vermicompost 2	5.5	0.5	0.9	28.3	40.2	2.7	5.0	4.6	0.0	1.4	0.0	11.0	0.0	100.0
Vermicompost 3	5.7	0.9	1.9	16.5	26.4	1.4	15.1	0.0	0.0	8.5	10.4	12.7	0.5	100.0
Vermicompost 4	3.4	0.8	4.3	14.6	17.3	1.4	7.4	2.6	0.2	3.5	1.9	7.2	35.3	100.0
Vermicompost 5	0.0	0.0	0.0	42.6	19.1	0.0	4.3	8.5	0.0	17.0	0.0	8.5	0.0	100.0
Bulk compost 1	1.4	0.7	1.4	53.4	23.0	0.7	1.4	1.4	0.7	3.4	0.7	10.8	1.4	100.0
Bulk compost 2	0.0	0.0	3.2	43.2	9.5	1.1	1.1	0.0	1.1	3.2	7.4	0.0	30.5	100.0
Bulk compost 3	6.9	0.6	1.3	33.3	35.8	0.0	1.9	3.8	0.0	3.1	1.3	11.3	0.6	100.0

Bulk compost	2.0	2.0	4.4	25.0	33.3	0.0	11.3	1.5	0.0	2.0	1.5	8.8	8.3	100.0
Bulk compost 5	1.5	0.4	1.1	26.8	42.4	1.1	7.4	1.9	0.4	8.2	1.1	7.4	0.4	100.0
Bagged compost 1	0.0	1.0	1.0	28.2	42.7	1.0	1.9	6.8	0.0	11.7	1.0	4.9	0.0	100.0
Bagged compost 2	2.3	2.3	2.3	11.6	65.1	0.0	2.3	0.0	0.0	0.0	0.0	14.0	0.0	100.0
Bagged compost 3	0.9	1.3	1.3	17.9	48.1	0.9	6.4	2.1	0.4	8.5	4.7	7.7	0.0	100.0
Bagged compost 4	3.0	3.0	1.5	35.8	29.9	0.0	10.4	9.0	0.0	4.5	0.0	3.0	0.0	100.0
Bagged compost 5	4.3	0.0	2.2	26.1	54.3	0.0	4.3	2.2	0.0	4.3	2.2	0.0	0.0	100.0
Average	4.4	1.4	2.3	26.4	35.3	1.0	6.8	3.0	0.1	4.6	2.2	8.0	4.5	100.0